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ABSTRACT

Focal cortical dysplasia (FCD), a malformation of corticalde-
velopment, is an important cause of intractable epilepsy. On
Magnetic Resonance Images (MRI), FCD lesions are difficult
to distinguish from healthy cortex and defining their spatial
extent is challenging. We previously introduced a method to
segment FCD lesions on MRI, relying on a 3D deformable
model driven by MR features of FCD. In the present paper, we
propose to improve our approach by adding a second evolu-
tion step which expands the result towards the cortical bound-
aries. A quantitative evaluation was performed in 18 FCD
patients by comparison with manually traced lesion labels.
The proposed approach achieved a strong agreement with the
manual labels and substantially improved the results obtained
with our previous method.

1. INTRODUCTION

Focal cortical dysplasia (FCD) [1], a malformation of cortical
development, is an important cause of medically intractable
epilepsy. Epilepsy surgery, consisting in the removal of the
FCD lesion, can lead to seizure freedom. However, the prog-
nosis is poorer than in patients operated for other types of
lesions. Unfavorable outcomes may be due to incomplete re-
section of the lesion [2].

High-resolution magnetic resonance imaging (MRI) has
allowed the recognition of FCD in an increased number of
cases. However, the spatial extension of FCD lesions is dif-
ficult to define on the MRI as the lesions are often subtle,
not easily differentiable from the normal cortex and with ill-
defined boundaries. The precise delineation of lesions on
MRI could lead to more complete excision and better surgical
outcome. It is thus an important issue for surgical planning.

Voxel-based techniques have been developed for detec-
tion of FCD on MRI [3, 4, 5]. In particular, computational
models of FCD characteristics [6] and a Bayesian classifier
for lesion detection [4] were previously proposed by our group.
While these approaches successfully identify the FCD in a
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majority of patients, they cover a small fraction (about 20%)
of the lesion extent and thus cannot be used for delineation.

We recently proposed a method for segmenting FCD le-
sions on T1-weighted MRI [7]. This approach, which we
called feature-based deformable model (FDM), relied on a
3D level set driven by feature maps representing known MR
characteristics of FCD. We demonstrated a good agreement
between automatic segmentations and two sets of manual la-
bels. To our knowledge, apart from our previous study, the
question of FCD segmentation has never been addressed.

Histological studies have shown that, in FCD, all corti-
cal layers, from the outer part of the cortex to the junction
with the white matter, are affected by the pathology [8]. This
suggests that FCD lesions are not limited to regions exhibit-
ing abnormal MR features but should extend over the entire
cortical section, which was not fully covered by the feature-
based deformable model. In the present paper, we propose to
improve our previous method by adding a second evolution
step to expand the result obtained with the FDM towards the
underlying and overlying cortical boundaries, throughoutthe
whole cortical section. On the contrary, intra-cortical motion
in the lateral direction will be prevented in order to avoid pro-
gressing into the neighboring healthy cortex.

2. METHODS

2.1. Previous work: feature-based deformable model

Here, we briefly recall the underlying principles of our previ-
ous feature-based deformable model for FCD segmentation.
More details can be found in [7].

The deformable model was driven by a probability map
derived from three FCD features. These features correspond
to known visual characteristics of FCD on T1-weighted MRI
and were evaluated using our previous computational mod-
els [6], resulting in three feature maps:

• a cortical thickness map, denoted asTh, to identify ar-
eas of focal cortical thickening,

• a relative intensity map (RI) to emphasize hyper-intense
signal within the dysplastic lesion,

• a gradient map (Gr) to model blurred transitions be-
tween gray and white matter.



These three characteristics defined a vector-valued feature map
f(x) = (Th(x), RI(x), Gr(x)) at each pointx in the im-
age space. Then, a supervised learning was performed on a
training set of patients in order to estimate the probabilities
P (c|f(x)) of four tissue classes c - cerebrospinal fluid (CSF),
gray matter (GM), white matter (WM), and FCD lesion (L) -
given the feature vectorf .

The 3D deformable model was designed as a region com-
petition between the lesion and the most probable non-lesional
class. The motion of a pointu belonging to the interfaceS of
the lesion was then defined as:

∂u

∂t
= α1[RNL(u) − RL(u)]nu + ε1κunu (1)

whereRL(x) = P (L|f(x)) is a term attached to the lesion,
RNL(x)=max{P (GM|f(x)),P (WM|f(x)),P (CSF|f(x))} is a term at-
tached to the healthy tissues,nu is the inward normal toS at
pointu (directed towards the interior of the lesion),κu is the
mean curvature andα1 andε1 are weighting coefficients.

To initialize the level set, we used our previously devel-
oped FCD classifier [4], under supervision.

2.2. Expansion towards cortical boundaries

To drive the second deformable model towards the boundaries
of the cortex, we relied on a gradient vector flow (GVF) [9],
computed from the GM segmentation. The GVF is computed
by diffusion of the gradient vector and provides a smooth vec-
tor field which is approximately orthogonal to the GM bound-
aries. An example of GVF is shown in Figure 1.
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Fig. 1. Computation of the gradient vector flow (GVF) in
a patient with FCD. (A) T1-weighted MRI where the FCD
lesion is indicated by the arrow. (B) Detail of the normalized
GVF in the region of the lesion.

The following force was used to drive the deformable model
towards the cortical boundaries using the GVF:

FGV F = [v̂(u) · nu]nu (2)

wherenu is the inward normal to the surface at pointu, v̂(u)
is the normalized GVF and· is the scalar product.

This force enables the model to progress in a direction
orthogonal to the cortical boundaries while avoiding lateral
motion. When the normal to the surface is oriented along
the GVF,F = ‖FGV F ‖ > 0 and the surface is attracted
towards the boundaries of GM. Conversely, when the normal
is orthogonal to the GVF,F = 0 which prevents the model
from expanding laterally into the neighboring cortex.

2.3. Deformable model design

The second deformable model, which was called “expansion
towards cortical boundaries” (ECB), combines FCD features
with the GVF motion. The GVF is used to expand the result
found with the previous FDM, towards the boundaries of the
cortex. The MR features restrict the GVF motion, to prevent
the deformable model from progressing into healthy regions.
Moreover, the GVF is not taken into account in points which
possess MR features of FCD. This ensures that lesional re-
gions segmented by the FDM will not be shrunk by the second
deformable model.

The motion of a pointu of the interfaceS was then de-
fined as:

∂u

∂t
= α2[RNL(u) − RL(u)]nu

+β2δ(u)[v̂(u) · nu]nu + ε2κunu, (3)

whereδ(u) = 1 if RNL(u) > RL(u) andδ(u) = 0 if RNL(u) ≤
RL(u), α2, β2 andε2 are weighting coefficients andκu, nu

andv̂(u) are defined as in Equations 1 and 2.
[RNL(u)− RL(u)]nu is the same feature-based term that

was used in the FDM.δ(u)[v̂(u) · nu]nu is the GVF-based
force defined in Equation 2 and is canceled ifRL(u) ≥ RNL(u),
i.e. if pointu possess the MR features of FCD.

2.4. Including transition classes

Since the second deformable model will expand the result of
the FDM, it is important to limit as much as possible the false
positives in the first model. In particular, the transition classes
GM/WM and GM/CSF may be misclassified since their char-
acteristics are closer to those of the lesions. We modified
the learning step, which estimates the probabilitiesP (c|f(x))
(Section 2.1), to take into account these transition classes.
The transition between GM and WM was defined by selecting
voxels which had a 3x3x3 neighborhood composed of at least
30% of GM and30% of WM, as in the FCD classifier [4].
The GM/CSF transition was computed using a similar pro-
cess. Then, the learning step was performed on a 6-class map
(GM, WM, CSF, L, GM/WM and GM/CSF) instead of the
original 4-class map (GM, WM, CSF and L) used in [7]. The
definition ofRNL was also modified to take into account five
non-lesional classes instead of three.



2.5. Level set evolution

The motion equation of the second deformable model was im-
plemented using the level set method [10]. The principle of
this method is to define the surfaceS as the zero level set of
a higher dimensional functionφ, called the implicit function.
To reduce the computational complexity, we used the narrow-
band method [10].

Using the derivation from curve motion to level set evolu-
tion [10], the ECB can be described by:

∂φ

∂t
(x) = α2[RNL(x) − RL(x)]|∇φ(x)|

−β2δ(x)[v̂(x) · ∇φ(x)] + ε2κx|∇φ(x)| (4)

The level set segmentations were obtained as follows. First,
the FCD classifier was used to obtain an initialization for
the FDM. The result of the 6-class FDM then constituted the
starting point of the ECB whose output defined the segmenta-
tion of the FCD lesion. We used the following segmentation
parameters:α1 = 0.8 andε1 = 0.2 for the FDM;α2 = 0.2,
β2 = 0.8 and ε2 = 0.1 in the ECB. No fine tuning of the
parameters was necessary and the same values were used for
all subjects.

3. EXPERIMENTS AND RESULTS

3.1. Subjects and image preparation

We studied 24 patients (13 males, mean age± SD=24 ± 8)
with MRI-visible FCD. The Ethics Board of the Montreal
Neurological Institute and Hospital approved the study, and
written informed consent was obtained from all participants.

3D MR images were acquired on a 1.5T scanner using
a T1-fast field echo sequence with an isotropic voxel size
of 1mm3. All images underwent automated correction for
intensity non-uniformity and intensity standardization,auto-
matic registration into stereotaxic space, brain extraction, and
classification of brain tissue in GM, WM and CSF using an
histogram-based method with automated threshold [6].

3.2. Evaluation strategy

In [7], to assess the performance of the deformable model, we
used two sets of manual lesion labels, denoted asM1 andM2,
delineated independently on 3D MRI by two trained raters.
The mean inter-rater agreement, computed using the similar-
ity indexS = 2 |M1∩M2|

|M1|+|M2|
, was0.62, which corresponds to a

substantial agreement. However, the evaluation of the auto-
mated segmentation was limited by the remaining differences
between the two manual labels.

To overcome this difficulty, we propose here to build “con-
sensus” manual labels, denoted asMC . To this purpose, two
other observers (NB and AB) jointly inspected the tracings
M1 andM2 of the two raters and provided a decision for all

ambiguous regions (i.e. regions defined as lesional by one
rater but not by the other).

The performance of each of the steps in the procedure
(classifier, FDM and ECB) was assessed by comparison with
the “consensus” labelsMC , using the following metrics:

• the aforementioned similarity indexS = 2 |A∩MC |
|A|+|MC |

(whereA is the automated segmentation);
• a coverage indexC = 100 × |A ∩ MC |/|MC |;
• a false positive indexFP = 100 × |A \ MC |/|A|.

3.3. Results

The FCD classifier [4] was used to initialize the FDM. It
successfully identified the lesion in 18 (18/24=75%) patients.
The evaluation was thus done on the 18 detected lesions.

The similarity, coverage, and false positive indices ob-
tained for the ECB, the 6-class FDM (which is used here),
the 4-class FDM (proposed in [7]) and the FCD classifier,
compared to the consensus manual labelsMC are reported
in Table 1. Segmentation results in three patients with FCD
are shown in Figure 2.

Fig. 2. Segmentation results in three patients with FCD.
(A) Intermediate results with the 6-class FDM. (B) Final re-
sults with the ECB. (C) Consensus labelsMC . (D) ECB re-
sult shown with the GVF. (E) 3D rendering of the ECB re-
sult shown with the cortical surface (rendering done with the
Anatomist software - http://www.anatomist.info).



Table 1. Results for the ECB, the FDM (with the 6-class learning and the 4-class learning), and the FCD classifier with respect
to the consensus labelsMC . They are reported as mean±SD with the range in parentheses.

Similarity (S) Coverage (C) False positives (FP )
ECB 0.73 ± 0.08 (0.60 to 0.86) 72% ± 16% (44% to 94%) 20% ± 15% (0.4% to 48%)

FDM 6-class 0.57 ± 0.17 (0.22 to 0.77) 45% ± 18% (12% to 71%) 9% ± 10% (0% to 31%)
FDM 4-class 0.65 ± 0.13 (0.4 to 0.82) 57% ± 18% (25% to 81%) 16%± 12% (0% to 41%)

Classifier 0.26 ± 0.14 (0.05 to 0.46) 16%± 10% (3% to 30%) 0.3% ± 0.8% (0% to 3.1%)

4. DISCUSSION

In this paper, we proposed and evaluated a method to segment
FCD lesions on T1-weighted MRI. We improved our previ-
ous feature-based deformable model by introducing a sec-
ond stage which expands the first result towards the underly-
ing and overlying cortical boundaries, while preventing intra-
cortical motion in the lateral direction. Additionally, weused
a modeling of the transition classes GM/WM and GM/CSF
which provides a better discrimination between lesions and
healthy tissues, thus limiting false positives.

On MRI, FCD lesions possess ill-defined boundaries and
are difficult to distinguish from the normal cortex. Their de-
lineation by raters necessarily suffers from subjectivity. For
this reason, we introduced “consensus” labels that pool the
knowledge of different experts and provide a more objective
reference than if separate labels were used.

The level set segmentations achieved a degree of simi-
larity of 0.73 with the consensus labels, which constitutes a
strong agreement. Moreover, the deformable model recov-
ered more than70% of voxels marked as lesional in the la-
bels. The mean false positive index was20% which consti-
tutes a low value when dealing with small structures such as
FCD lesions. Indeed, small objects are penalized by this mea-
sure since a small segmentation error can lead to a substantial
percentage of false positives. For example, if we consider a
sphere which volume is equal to the mean volume of our FCD
lesions (16.8cm3) and as segmentation a sphere which radius
is one voxel larger, we obtainFP = 17%.

The results also demonstrated the improvement of the sec-
ond deformable model over the FDM. It provided a substan-
tial enhancement of the lesion coverage while only marginally
increasing the false positives, resulting in a stronger overall
similarity.

The introduction of transition classes significantly reduced
the number of false positives in the FDM. Some lesional ar-
eas were also suppressed from the segmentation, resulting in
decreased coverage and similarity. However, these areas were
recovered by the second deformable model which achieved a
higher similarity than the original 4-class FDM.

In conclusion, we proposed a new approach to segment
FCD lesions on MRI, improving our previously proposed feat-
ure-based deformable model. This segmentation technique

can reduce the subjectivity of lesion delineation and unveil
overlooked lesional areas. It may lead to fruitful applications
in surgical planning and image-guided surgery.
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