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Abstract. Focal cortical dysplasia (FCD), a malformation of cortical development, is an important cause of
medically intractable epilepsy. FCD lesions are difficult to distinguish from non-lesional cortex and their de-
lineation on MRI isa challenging task. This paper presents a method to segment FCD lesions on T1-weighted
MRI, based on a 3D deformable model, implemented using the level set framework. The deformable model is
driven by three MRI features: cortical thickness, relative intensity and gradient. These features correspond to
the visual characteristics of FCD and allow to differentiate lesions from normal tissues. The proposed method
was tested on 18 patients with FCD and its performance was quantitatively evaluated by comparison with the
manual tracings of two trained raters. The validation showed that the similarity between the level set segmen-
tation and the manual labelsis similar to the agreement between the two human raters. This new approach may
become a useful tool for the presurgical evaluation of patients with intractable epilepsy.

1 Introduction

Malformations of cortical development (MCD) have been increasingly recognized as an important cause of med-
ically intractable focal epilepsy. Focal cortical dysplasia (FCD) [1], a maformation due to abnormal neuroglial
proliferation, is the most frequent MCD in patients with intractable extra-temporal epilepsy [2]. Epilepsy surgery,
consisting in the removal of the FCD lesion, is an effective treatment for these patients. However, freedom from
seizures after surgery is closely related to the resection of the whole lesion [3]. The precise delineation of lesions
isthusimportant for surgical planning in epilepsy.

Although magnetic resonance imaging (MRI) has allowed the recognition of FCD in an increased humber of
patients, standard radiological evaluation fails to identify lesions in a large number of cases [3]. Moreover, the
spatial extension of the lesions is difficult to define on the MRI. The segmentation of FCD is thus a challenging
image analysis application as the lesions are often subtle, difficult to differentiate from the normal cortex, of
variable size, position and shape, and with ill-defined boundaries. Recently, image analysis techniques have been
developed to detect FCD lesions automatically on MRI, relying on different types of voxel-wise analysis[4,5]. In
particular, computational models of FCD characteristics [6] and a Bayesian classifier for lesion detection [4] were
previously proposed by our group. While these approaches successfully identify the FCD inamajority of patients,
they provide a very limited coverage of the lesion (about 20%) and thus cannot be considered as segmentation
techniques.

This paper presents a method for segmenting focal cortical dysplasia (FCD) lesions on T1-weighted MRI, based
on alevel set deformable model driven by MR features of these lesions. This method partly relies on our previous
detection approaches [4, 6]. However, our target application is FCD segmentation and not detection. The compu-
tational models of FCD features are used to drive alevel set deformable model and the FCD classifier is used only
to obtain a starting point for the segmentation procedure.

2 Methods

Our approach relies on a 3D deformable model, based on the level set method. The level set is guided by a
probability map derived from FCD features. Thesefeatures correspond to the visual characteristicsof FCD: cortical
thickening, a blurred transition between gray matter (GM) and white matter (WM), and hyperintense signal within
the dysplastic lesion [3]. Additionaly, it is necessary to provide a starting point for the level set evolution. To this
purpose, we made use of our previously developed FCD classifier [4], under supervision of an expert user.

2.1 Probabilistic Modeling of FCD Features

To quantitatively evaluate the visual MR characteristics of FCD, we relied on our previous computational mod-
els [6]. A cortical thickness map, denoted as T'h, is computed by solving Laplace’s equation over the cortical
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ribbon. Hyperintense signad is represented using arelative intensity index defined as RI(z) = 1 — |B,— I(x)|/ B,
where I(x) is the intensity at voxel = and B, is the boundary intensity between GM and WM. Blurring of the
GM/WM transition is modeled with a gradient magnitude map, denoted as G'r. These three characteristics define
avector-valued feature map f(z) = (Th(z), RI(z), Gr(x)) at each point x in the image space.

We then performed a supervised learning to estimate the probability of different tissue classes in the brain given
the feature vector f. Four different classes, denoted as ¢, were considered: gray matter (GM), white matter (WM),
cerebro-spinal fluid (CSF) and the FCD lesion (L). Normal tissues were segmented using a histogram-based ap-
proach with automated threshold, while the FCD lesions were painted by trained observers (see Section 3). Con-
ditional probabilities P(f(x)|c) for each class ¢ were modeled using atrivariate normal distribution and estimated
using the maximum likelihood on a learning set of patients. The posterior probabilities P(c|f(z)) were then ob-
tained by Bayes' rule. Asthesize of FCD lesionsis variable, we assumed egual prior probabilitiesfor the different
classes. Figure 1 presents an example of the three feature maps and of the posterior probability maps in a patient
with FCD.

Figure 1. Probabilistic modeling of FCD features. Upper panels: T1-weighted MRI where the FCD lesion is
indicated by the arrow (A), cortical thickness map (B), relative intensity map (C), gradient map (D). Thelesionis
characterized by higher cortical thickness, higher relative intensity and lower gradient. Lower panels: probability
maps of the lesion class (E), GM (F), WM (G) and CSF (H).

2.2 Feature-based L evel Set

Based on the previous features, the deformable model was designed to separate the lesion from the non-lesional
regions. The region competition approach proposed by Zhu and Yuille[7] iswell adapted to our purpose. It aims at
segmenting an image into several regions by moving the interfaces between them. The evolution of the interfaces
is driven by functions indicating the membership to each region. In our case, these functions can be derived from
the FCD features.

We intended to isolate the FCD lesion from the non-lesional region, which is composed of three different classes
(GM, WM, CSF). However, the boundaries between these three non-lesional classes were of no interest for our
application. Thus, region competition occurred in each point between the lesion class and the most probable
non-lesional class. The membership to the lesional region was defined as Ry, (z) = P(L|f(x)) which is the
previously computed posterior probability of the lesion class. The non-lesiona region was modeled by R ni,(z) =
max{P(c|f(z)), c € {GM, WM, CSF}}.

The feature-based deformable model describes the evolution of the interface (or surface in 3D) S of the lesional
region, according to those membership functions and a regularization term. The motion of a point u belonging to
S is defined as: 5

a—ltt = a[RNL(u) — Ry, (u)]n, + €kyny, @
wheren,, istheinward normal to S at point  (directed towardstheinterior of thelesion),  ,, isthe mean curvature
and a and e are weighting coefficients. In the previous equation, o[Rnt,(u) — Ry (u)] is a feature-based term
and ek, is a regularity term producing a smooth surface. If Ry, (u) > Rni(u), meaning that the most probable



Figure 2. Results of FCD segmentation: level set segmentation (A), initialization (B), manua tracing M 5 (C),
manual tracing M, (D).

class for point « is the lesion, the surface S will be expanded, in order to include this point. On the contrary, if
Ry (u) > Ry, (u), meaning that this point should belong to one of the three non-lesional classes, the surface will
be shrunk.

The motion equation was implemented using the level set method [8]. The principle of this method is to define
the surface S as the zero level set of an implicit function ¢: ¢(S(t),t) = 0. Asan implicit function ¢, we chose
the classical signed distance to the surface S, with negative values in the interior of S. Using the derivation from
curve motion to level set evolution [8], the feature-based level set can be described by:
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The previous equation was implemented using the numerical scheme proposed in [8, chap.6]. To reduce the
computational complexity, we made use of the narrow-band method [8].

(u) = a[RnL(u)) — RL(w)]|Vo(u)| + €ky|Vd(u)] @)

3 Experiments and Results

Subjects and Image Preparation We selected 24 patients (13 males, mean age + SD= 24 + 8 ) with MRI-
visible FCD. The Ethics Board of the MNI approved the study, and written informed consent was obtained from all
participants. 3D MR imageswere acquired on a1.5T scanner using a T1-fast field echo sequence with an isotropic
voxel size of 1mm?3. All images underwent automated correction for intensity non-uniformity and intensity stan-
dardization [9], automatic registration into stereotaxic space [10] and brain extraction [11]. Classification of brain
tissuein GM, WM and CSF was done using an histogram-based method with automated threshold [6].

Initialization The FCD classifier is used to initialize the deformable model. It successfully identified the lesion
in 18 (18/24=75%) patients. We assessed the possibility of segmenting the six undetected lesions with a manual
initialization of the procedure. However, the segmentation failed in these cases because their features where not
sufficiently discriminant. The evaluation was thus done on the 18 detected lesions.

Manual segmentation Lesions were delineated independently on 3D MRI by two trained raters (VN and DK).
The corresponding manual labels are further denoted as M, and M. Interrater agreement was assessed using the
Similarity index S = ﬂfﬂg“ (where A and B denote two labels), which is a specia case of kappa statistic [12].
For the 18 manual labels, the mean interrater similarity index was 0.62 + 0.19 (range=0.22 to 0.84).

L evel set segmentation We compared the automated segmentationsto the sets of manual labelsusing the similar-
ity index S presented above. The evaluation was performed using a leave-one-out approach: for the segmentation
of agiven patient, this patient was excluded from the learning set (Section 2.1). This approach avoids the introduc-
tion of bias in the result. Moreover, we computed the similarity obtained with the FCD classifier to evaluate the
added value of the level set. Results are reported in Table 1. Figures 2 and 3 present the segmentations obtained in
two patients with FCD.

Table 1. The table presents the similarity indices for the level set and the FCD classifier with respect to the two
manual tracings, aswell astheinterrater similarity. Results are reported as mean+SD with the rangein parentheses.

M1 M2

Level set 0.62 4+ 0.16 (0.32 t0 0.84) 0.63 £0.12 (0.43t00.79)

Classifier 0.30+0.17 (0.11 t0 0.64) 0.31+0.17 (0.07 t0 0.59)
Interrater (M vs. M3) 0.62 £0.19 (0.22t0 0.84)




Figure 3. Results of FCD segmentation. Left panels. level set segmentation (A), initialization (B), manual tracing
M- (C), manual tracing M; (D). Right panel: 3D rendering of the FCD lesion segmentation together with the
cortical surface.

4 Discussion

In this study, we proposed a method for segmenting FCD lesions on MRI. Thereis no available gold standard for
evaluating the delineation of these lesions. For this reason, we compared the level set segmentation to the manual
tracings of two trained observers. Theinterrater similarity was 0.62 which correspondsto a substantial agreement,
in particular when keeping in mind the difficulty of FCD segmentation. The level set segmentations achieved a
degree of similarity of 0.63 and 0.62 with the two sets of manual 1abels, which again constitutes agood agreement.
The similarities achieved by the level set are also very close to the interrater agreement. A significant portion of
the remaining differences between automated and manual labels is probably due to the interrater variability rather
than to the unability of the level set to recover the full extension of lesions. This can be seen in Figure 3 where the
two raters decided to exclude different parts of the lesion (Panels C and D) while these parts were included in the
automated segmentation (Panel A). Moreover, compared to our previously developed FCD classifier, the present
method achieved a similarity twice as large and therefore constitutes a significant improvement.

In conclusion, this paper demonstrates the effectiveness of a feature-based level set approach for the segmentation
of FCD lesions. It has the potential to reduce user subjectivity and, more importantly, to unveil lesional areas that
could be overlooked by visual inspection. This new method may become a useful tool for surgical planning in

epilepsy.
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