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Abstract—Internet service utilities host multiple server applica-
tions on a shared server cluster (server farm). One of the essential
tasks of the hosting service provider is to allocate servers to each of
the websites to maintain a certain level of quality of service for dif-
ferent classes of incoming requests at each point of time, and opti-
mize the use of server resources, while maximizing its profits. Such
a proactive management of resources requires accurate prediction
of workload, which is generally measured as the amount of service
requests per unit time. As a time series, the workload exhibits not
only short time random fluctuations but also prominent periodic
(daily) patterns that evolve randomly from one period to another.
We propose a solution to the Web server load prediction problem
based on a hierarchical framework with multiple time scales. This
framework leads to adaptive procedures that provide both long-
term (in days) and short-term (in minutes) predictions with si-
multaneous confidence bands which accommodate not only serial
correlation but also heavy-tailedness, and nonstationarity of the
data. The long-term load is modeled as a dynamic harmonic regres-
sion (DHR), the coefficients of which evolve according to a random
walk, and are tracked using sequential Monte Carlo (SMC) algo-
rithms; whereas the short-term load is predicted using an autore-
gressive model, whose parameters are also estimated using SMC
techniques. We evaluate our method using real-world Web work-
load data.

Index Terms—Dynamic harmonic regression, seasonal time se-
ries, sequential Monte Carlo, Web-load prediction.

I. INTRODUCTION

AWEB server farm is a cluster of servers shared by several
Web applications and services and maintained by a host

service provider. Usually, the owner of the Web applications
pays the host service provider for the computing resources
and, in return, gets a quality-of-service (QoS) guarantee, which
promises a certain minimum level of resources and perfor-
mance. Static allocation of resources at the server farm is not
efficient since very often it results in either underutilization of
resources (when the particular Web application is not actively
being sought) or violation of QoS (when, for example, traffic
for a particular website is very high and the allocated sources
are insufficient to cater to the demands). Therefore, the server
farm allocates the computing resources dynamically among
the competing applications to meet the quality-of-service for
different classes of service requests, while at the same time
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striving to maximize its own profits. The requirement for
dynamic allocation of resources makes it necessary for the
server farm to be able to predict the workload accurately, with a
sufficiently long time horizon to ensure that adequate resources
are allocated to the services in-need in a timely manner, while
still achieving certain systemwide performance objective such
as maintaining the QoS requirements of the entire server farm
and maximizing the total revenue of the server farm under the
QoS constraints. In a typical dynamic allocation scheme, each
application is provided a certain minimum share of resources,
and the remaining resources (servers and bandwidth) are dy-
namically allocated to the different active applications based
on their instantaneous requirements and based on predefined
policy in response to the workload changes. The prediction
techniques/models are also helpful in preventing imminent
service disruptions by anticipating potential problems due to
heavy load on a particular website [1]–[5].

The server workload is usually measured in terms of the
amount of services request per unit time (also called the re-
quest arrival rate). It can, for example, be the total number or
size of the files requested per unit time, or it can be the total
number of operations requested per unit time. A time series of
such a workload is known to vary dynamically over multiple
time scales, and therefore it is quite challenging to predict
it accurately. In particular, the bursty nature and the nonsta-
tionarity of the server workload impose inherent limits on the
accuracy of the prediction. Such a time series can, for example,
be stationary but self-similar (i.e., the correlational structure
remains unchanged over a wide range of time scales, resulting
in long-range dependence, or in other words, it exhibits bursts
wherein the workload remains above the mean for an extended
duration at a wide range of time scales) and/or heavy-tailed over
small duration (seconds or minutes) at a fine time granularity
[6]–[9]; it can also exhibit strong daily and weekly patterns
(seasonality), which change randomly over different times of
the day and different days of the week, and can also show
calendar effects (different patterns on weekends) [8]–[10]. It is
this second type of data with seasonal variations that is key to
the designing of dynamic resource allocation schemes and is
the focus of the current paper.

The traditional linear-regression-based methods can give
predictions with a limited accuracy, since the model can be-
come inefficient in the presence of correlated error. In this
paper, we follow the hierarchical approach proposed in [11]
and [12] in which the time-series prediction is decomposed into
two steps: first a prediction of the long-term component, which
primarily captures the nonstationarity of the data, is performed,
and then the residual short-term process, which captures both
the long-term prediction error and the short-term component of
the time series, is processed. As demonstrated by the results,
the two-scale decomposition captures the underlying statistics
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of the data fairly well. Additional components (e.g., weekly or
monthly seasonality) increase the complexity of the algorithm
as we have to estimate more parameters now. Furthermore, they
also require much more training data. One of the main aims of
this paper is to keep the computational complexity low, which
our sequential Monte Carlo (SMC) algorithm-based two-scale
scheme indeed achieves, without compromising the accuracy of
the prediction. For example, the dynamic harmonic regression
(DHR) model in [13] estimates the parameters by first running
a two-step (prediction–correction) Kalman filter, followed
by a fixed-interval smoothing algorithm. As the number of
parameters increases, these steps become highly complex as
they involve multiplication and inversion of high-dimensional
matrices, whereas in the proposed SMC algorithm, the com-
plexity increases only linearly with the number of parameters to
be estimated. Previous literature, e.g., [11]–[13], also strongly
mentions that not all the components of the unobserved com-
ponent (UC) model are required for modeling the Web-server
workload data and that the two-scale modeling is a good com-
promise between accuracy and computational complexity of
the algorithm.

In this paper, the long-term component is modeled as a linear
combination of certain basis functions with random amplitudes
evolving with time, while the residual short-term process is
modeled as a traditional autoregressive (AR) process. The
short-term prediction is useful in predicting abnormalities in
the workload data and to take care of rapid fluctuations, thereby
giving the server farm management system sufficient time to
prevent the possible disruption of services [11]. In this paper,
in addition to the traditional short-term prediction, we also
derive a scheme to predict the long-term component, utilizing
the daily patterns in the workload time series. This not only
provides ample time for advance planning, but also reduces the
magnitude (and hence complexity) of the short-term adjustment
that needs to be made in case of an imminent (potential) disrup-
tion. Moreover, the proposed method, in addition to providing
predictions, can also be used to compute confidence bands
simultaneously. This is of major interest in this setting since
quantiles, as opposed to a simple prediction of the time series,
can be used to support flexible (probability based) service-level
agreements. Further, the proposed model allows the model
parameters to change with time, thereby making itself capable
of handling the nonstationarity in the data.

For the long-term component, we combine the DHR frame-
work of [13] together with the filter bank approach of [14],
to decompose the time series into seasonal components and
only those basis functions that show high coherence across the
periods are selected for long-term modeling and forecasting pur-
pose. The use of highly coherent basis functions not only re-
duces the dimensionality of the problem, but also results in
reliable long-term forecasting by using only the persistent com-
ponents. This, in turn, results in reduction of the amount of
training data required as well as making the model robust to the
impact of noise and occasional corruption of training data. As
mentioned before, the long-term component is represented as
a linear combination of the basis functions, whose amplitudes
are modeled as random processes under the state-space setting,
the dynamic nature of which allows them to efficiently capture
the trends and fluctuations of the data. Moreover, to take care
of the calendar effect (e.g., the weekend data follows different
trends as compared to the weekday data), a multiregime model

Fig. 1. Total file size (in log of bytes of HTTP requests), aggregated over
� = 5-min intervals, received at a Web server of an online retail store over
13 days.

is employed, in which the data belonging to different regimes is
handled separately (using similar scheme nonetheless). The pa-
rameters for both the short-term model and the long-term model
are estimated using the SMC methods, which are very powerful
statistical tools for dealing with online estimation problems in
dynamic systems (see [15]–[17] and references therein) and find
applications in diverse fields.

The remainder of the paper is organized as follows. Section II
discusses the properties of the time series at hand and explains
the hierarchical structure of our model. In Section III, we de-
scribe the dynamic harmonic regression based model for the
long-term components and the long-term prediction using the
SMC methods. Section IV deals with the modeling and predic-
tion of the short-term component. Simulation results are pre-
sented in Section V; and Section VI concludes the paper.

II. HIERARCHICAL FRAMEWORK

We consider a typical Web-server farm, which records the
number of requests at each server and aggregates them over
small time intervals of length to obtain a time series.
For example, Fig. 1 shows the server workload obtained by
aggregating the hypertext transfer protocol (HTTP) service re-
quests for a commercial website over 5-min intervals over
a 13-day period, giving a total of 288 intervals in a day. This is
the same data as used in [12], and we will employ this time series
throughout this paper as a working example to demonstrate the
performance of the proposed algorithm. The time series is first
converted into logarithmic domain to reduce the dependence of
the local variability on the local mean of the untransformed data.

Clearly, the data is nonstationary in that the mean changes
with time of day and day of week. It is also observed that
the time series shows predominant daily patterns, varying
randomly. Let denote the sampling frequency (number of
samples per period) of the daily pattern. For the example shown
in Fig. 1, for 5 min, . Note that for a given , the
time index for the observation in the th time interval in the th
period is given by , and .
Although, several methods exist for modeling such a time se-
ries, we follow the hierarchical approach developed in [12],
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Fig. 2. Decomposition of the Web-server data into a long-term pattern and
short-term random components.

which not only provides point predictions, but also simulta-
neous confidence bands, that can be used to support flexible
(probability-based) service-level agreements. Furthermore, by
allowing the model parameters to change with time, we can
handle nonstationarity in both the long-term patterns as well
as short-term fluctuations. Moreover, the hierarchical approach
allows for easy diagnostic checking of model adequacy. Fig. 2
shows the hierarchical structure of the time series, where the
data is decomposed into a periodic long-term component and a
randomly fluctuating short-term component.

Let denote the observed load (after taking logarithm)
at a server at time . In order to capture the seasonality in the
data, we use the DHR model of [13]. The DHR model is a spe-
cial type of the unobserved component model and can be used
to capture several components such as trend, cyclical compo-
nent, and seasonality. Stochastic time-varying parameters are
used to characterize the various components of the DHR, thus
allowing for nonstationarity in the resulting time series. In prac-
tice, not all components of the DHR are necessary, and in this
paper, we focus on the seasonal component. In our hierarchical
framework, the time series is first modeled as a combination of a
periodic long-term pattern , and a more irregular short-term
component

(1)

The periodic long-term pattern is represented as a
weighted sum of some -periodic basis functions as

(2)

where are stochastic time-varying parameters and
forms a subset of some set of linearly independent

basis functions . In contrast with [13], our model
also deals with a time-varying set of basis functions . At
this point of the model, we are only interested in obtaining an
estimation of the long-term component; the short-term compo-
nent will therefore be roughly modeled as a white noise
term. To filter out the long-term component in (1), we choose
the periodic basis functions to be sinusoidal waves whose

frequencies are chosen based on the spectral properties of the
time series [this is discussed further in Section 3-A-1)], giving
us a harmonic regression (HR) on the long-term component.
Moreover, an extra zero-frequency term is also added that can
be considered as a stochastic time-variable “intercept” in the
DHR.

Once the long-term estimation has been performed, our
hierarchical framework focuses on making an accurate -step
ahead forecast of the residual time series

(3)

This -step-ahead forecast process is modeled as an AR process

(4)

the parameters of which (order, coefficients, and noise charac-
teristics) being stochastic time-varying parameters as in [18].
Furthermore, in order to accommodate for the shot noises in the
data, we use heavy-tailed distributions for the noise term .

The observation models (1), and (4), together with their dy-
namically varying coefficients form two dynamic state spaces,
both are tracked using SMC methods.

For the time series of service requests, it is typical to have
weekday patterns behaving significantly differently from the
weekend patterns. In this paper, a multiple-regime approach
is employed, in which data belonging to different regimes are
modeled separately to take advantage of the within-regime re-
semblance, taking care of the between-regime change at the
same time. The data belonging to the same regime is cascaded
to obtain a set of new time series, one for each regime. For our
example of Fig. 1, all weekday data can be collected together
to form a weekday time series and all weekend data can be col-
lected to form a new weekend series. Each time series is then
modeled by (1) and (4). Each regime has its own set of pa-
rameters and some of them may be shared across the regimes
to ensure smooth transition when the regime shifts. Note that
sometimes, under the assumption that the short-term compo-
nent do not change substantially with regime shifts, it is more
convenient and justifiable to merge the short-term components
in all regimes to obtain a single time series for modeling and
prediction.

The remainder of the paper discusses in detail the modeling,
parameter estimation, and prediction based on the model de-
scribed above.

III. LONG-TERM MODELING AND PREDICTION

Since we deal with different regimes separately, it is sufficient
to consider only a single regime and assume that the statistical
properties do not change abruptly with regime shift. We also
assume that the type of basis functions in (2) are known
a priori (e.g., sinusoids, wavelets, etc.) and that the largest al-
lowed set of basis functions does not change with time.

Selection of the basis set serves a dual purpose. First, it
reduces the dimensionality of the problem, hence reducing the
computational complexity as well as storage requirement asso-
ciated with the training, modeling, and prediction. Indeed, the
higher the dimension is, the greater the number of parameters
to be estimated is. The need for reduction in dimension be-
comes more important in Web-server management as compared
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to, say, economic forecasting [19] or electric utility management
[20]–[22], due to the sheer number of parameters that are to be
estimated, resulting from the much finer time granularity (min-
utes rather than hours or days). For example, for 5 min,
we get a sampling frequency of 288 steps and for 1
min, , as compared with for hourly data with
daily seasonality, and for monthly data with yearly sea-
sonality. The second advantage of selecting lies in the fact
that it makes the modeling and prediction more robust to esti-
mation errors as compared with the model with a large basis
set . Statistical theory of regression analysis [23] asserts that
in the presence of inherent statistical error in parameter estima-
tion, the mean-square error associated with both modeling and
prediction can be reduced by simply dropping the “minor” com-
ponents even if they exist in reality.

We will see in Section 3-A-1) that only the first few frequen-
cies (including the zero-frequency term) affect the seasonal vari-
ations to any significant extent and that only a fixed number of
sinusoids need to be in . It turns out that usually even within
this fixed subset, only a few among those chosen frequency com-
ponents are significant in representing the model at a particular
time , while the remaining ones carry relatively small weights
and, hence, can be discarded without significant loss in perfor-
mance. However, the important subset of can change with
time. Therefore, instead of accommodating all of them in our
model, we can reduce the dimensionality further by dynamically
selecting the frequencies from the set , as the system evolves.
We follow the jump Markov framework of [18], which is close
to the resampling-based shrinkage method proposed in [24] in
the context of blind detection in fading channels.

Let us now write down the state-space form we use for the
long-term model

(5)

where is the process noise, is the
measurement noise, and is the observed data. The second
equation in (5) represents the first-order Markov transition
process, which is assumed to generate the coefficients vector

. The vector represents temporally
uncorrelated Gaussian disturbances with zero mean, and co-
variance matrix , i.e.,

and (6)

The zero-mean noise in the state equation stems from the
assumption that the long-term behavior is periodic with slow
variations, for which, the incremental mean of the coefficients
is close to zero. The first equation in (5) represents the mea-
surement equation, where is the temporally uncorrelated
Gaussian disturbance with zero mean and variance , i.e.,

and (7)

The initial state vector is assumed to be Gaussian dis-
tributed with mean and covariance matrix , i.e.,

and (8)

which are computed as the respective mean and covariance of
the coefficients of the harmonics included in the regression, ob-
tained from the training data. Further, the disturbance and

are assumed to be uncorrelated with each other in all time
periods and uncorrelated with the initial state, i.e.,

for all

and

for all (9)

In (5), we chose to use a dynamic subset of harmonics .
This subset is assumed to follow a first-order discrete Markov
model

(10)

where the are some subsets of .
In what follows, we explain how the fixed parameters of our

model and the set of basis functions are determined from
the historical observations of , and in Section III-B, we
demonstrate how SMC methods can be employed to track this
state-space model and select the subset dynamically.

A. Determination of the Fixed Parameters

We use the analysis filter bank approach proposed in [14] to
predetermine the basis set and guide our choice of fixed pa-
rameters (priors, variances). The aim is to decompose the time
series into seasonal components and consider only those com-
ponents that are highly coherent across the period, as well as
having high energy, and hence are important to modeling and
prediction. In order to do this, we consider, at each time step,
a single time period ending at the given time step and pass it
through a filter bank. The resulting series of coefficients can then
be analyzed.

Let be the data
at hand. Then, from (2), using the full basis, we can write

(11)

where are the coefficients associ-
ated with the complete basis decomposition,
is the matrix of all the basis functions, and its inverse has an
analysis filter bank interpretation. In other words, denoting the
th row of by , (11) can be

written as

(12)

which is nothing but the output obtained on passing through
a filter bank consisting of finite-impulse-response (FIR) filters,
with being the impulse response of the
th filter. After having obtained the analysis filter bank output

defined in (12), the data can be reconstructed ac-
cording to

(13)

which can be considered as the decomposition of into com-
ponent waveforms, whose shapes are determined by the basis
functions .



1290 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 4, APRIL 2007

1) Choice of Basis Set: Clearly, with being very large
( for our example), we aim to reduce the dimensions
of the filter bank and chose by analyzing . In [12], two
measures on the component waveforms are suggested to quan-
tify the behavior of to aid in the selection of , namely,
the coherence measure and the energy measure. The coherence
measure is defined as

(14)

where is the sample mean and is the sample variance of
, obtained as

and

(15)

The th waveform is said to be completely coherent if ,
and incoherent if . We seek to include highly coherent
waveforms (waveforms with high values of ) in as they have
long-lasting effects, making them good candidates for long-term
forecasting. The energy measure of the component waveforms
is defined as

(16)

High-energy components along with high-coherence compo-
nent are crucial to effective modeling of and are included
in . For future reference, let the number of basis functions in-
cluded in be .

In this paper, we take sinusoids as the basis functions and
perform short-term Fourier transform (STFT) on the weekday
data of our example in Fig. 1. We show the coherence mea-
sure and the energy measure for the first 30 frequencies and
the DC (zero-frequency) component in Figs. 3 and 4, respec-
tively. It is clear from the two figures that only the fundamental
frequency term , its first few harmonics, and the
zero-frequency term have sufficiently high coherence as well as
energy measure, while the rest of them appear to be insignificant
in comparison. We select the first five frequencies (the funda-
mental frequency and its first four harmonics) together with DC
(zero-frequency) to form . Since each frequency corresponds
to two waveforms (a sine and a cosine), the dimension of is

. Thus, we achieve our goal of reducing the dimension-
ality of the model, by bringing it down from to .

2) Choice of Fixed Parameters: The initial state vector mean
and covariance matrix are computed as the respec-

tive mean and covariance of the output of the analysis filter bank
on the training data.

For the dynamic selection of the basis set , let and
be the probabilities of increasing and decreasing the order of
the harmonic regression by one, respectively. The introduction
of these probabilities offers flexibility in changing the harmonic
regression order, thus allowing the algorithm to adaptively ad-
just according to the data. We choose some small probabilities
and favor parsimonious models by letting to limit the
increase in dimensionality.

The noise variances can be estimated by looking at the resid-
uals. We choose a larger variance for the zero-frequency term

Fig. 3. Coherence measures for the first 30 frequencies of the cosine and sine
waves and the DC component.

Fig. 4. Energy measures (in decibels) for the first 30 frequencies of the cosine
and sine waves and the DC component.

as compared with the variance of the residual time series to be
able to accommodate the outliers.

Once the model in state-space form has been identified, and
the corresponding parameters assumed accordingly, SMC can
be applied for recursively calculating the optimal estimate of
the state vector , based on the information up to time .

B. Online Estimation and Prediction by SMC

We track the model based on the set of available historical
data using the SMC technique [15], [18], [25], [26]. Let
denote the vector of values of a variable from time to
time . Our aim is to obtain an online Monte Carlo approx-
imation of the target distribution .
With this goal, the SMC method keeps sample streams
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, together with the associated importance
weight , such that

(17)

where is a Dirac function (written with brackets instead of
the conventional subscript to ease the reading).

We progress sequentially through each stream by extending at
time , the past particles , by sampling

according to a so-called trial distribution (the
probability distribution that is employed to draw samples of the
particles by virtue of it being easier to draw samples from as
compared to the actual probability distribution of interest)

(18)

The discrepancy thus induced is corrected by the importance
weight associated with each stream that can then be re-
cursively updated as (19), shown at the bottom of the page. The
simplest choice for the trial distribution is to take the transition
probability. With this choice, the weight update equation (19)
reduces to . It is shown
in [18] that one can actually sample from such a distribution
by first sampling the discrete variable and then sample
the corresponding coefficients . More accurate (but also
more computationally expensive) alternatives for the trial dis-
tribution are shown in [18] using techniques such as the aux-
iliary particle filter and the unscented transform. While these
alternative methods have more computational requirements per
stream, it may also turn out that the number of particles required
with them is lesser as compared to the case of sampling using
simply the transition probability depending on the nature of the
problem. Throughout the rest of the paper, we use the transition
probability as the sampling density to explain the algorithm.

The estimated long-term component at time is then given by

(20)

where is the normalized im-
portance weight corresponding to the th stream. Since the
coefficients are assumed to follow a random walk (5) and

is a white noise, the -step ahead predicted value using the
long-term model is given by

(21)

C. Resampling-Based Adaptive Shrinkage of the
Basis Functions

The importance weights measure the quality of the Monte
Carlo samples. As we proceed with the algorithm, the weights
progressively get smaller and smaller, and after a while, only a
few of the streams carry significant weights, while the rest of the
samples become ineffective. To avoid this problem, resampling
[15], [27] is performed when the effective sample size (ESS)
goes below a certain predetermined threshold. The ESS is a
measure of the overall quality of the samples and is defined as

ESS (22)

where is the coefficient of variation of the importance weights
and is given by

(23)

For a detailed treatment of ESS and resampling, see [15], [17],
[25], [27], and references therein.

At the beginning of the SMC procedure, for each of the
Monte Carlo samples, the sinusoids to be included are ran-
domly drawn with probability proportional to their respective
coherence values. At time , let denote the set
of sinusoids being used by the th sample stream. Since we in-
troduced probabilities and of increasing or decreasing the
order of the harmonic regression, the algorithm will adaptively
adjust according to the data. At time , the set of samples
can be divided into three subsets: , whose harmonic regres-
sion order is left unchanged, , whose harmonic regression
order is incremented by unity (up to a maximum of ), and

, whose order is decreased by unity (down to a minimum of
0). A particular sample finds place in the subsets and

with probabilities , and , respectively.
Thus, we obtain new set of basis functions , associ-
ated with the th Monte Carlo stream, at time . Following this
step, the samples and the importance weights are updated using
(18) and (19), respectively. At time , for the particles in the

(19)
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set , which did not have the corresponding particles at time
, the coefficients are drawn from a zero-mean Gaussian

distribution. We then check for the resampling condition, i.e.,
ESS ( in this paper), and if required, perform

resampling. This resampling step combined with randomly
changing the regression order of the sample stream is the key
step in achieving our goal of adaptive shrinkage of the basis
functions. Using this step, the samples with proper number of
harmonics, effectively modeling the observed data [i.e., sam-
ples with lower least-square error, and thus, having relatively
higher importance weights in (19)] are replicated, and the
samples with improper harmonic regression order (and, hence,
larger least-square error) are discarded. Thus, we observe that
the time series is effectively modeled by a mixture of harmonic
regressions, with different orders, and the mixture distribution
evolves dynamically during the SMC procedure.

IV. SHORT-TERM MODELING AND PREDICTION

The long-term estimation error is em-
ployed as the raw data for the -step-ahead prediction of the
short-term component, which covers both the short-term fluctu-
ations and the long-term prediction error. As mentioned earlier,
it can either be separated into different regimes (weekdays and
weekends for our example) or be considered as a single time se-
ries. We employ an autoregressive (AR) model, which is simple
and effective in time-series modeling for such data. However,
since Web server load time-series structures evolve with time
and show some nonstationarity, we will allow the order to
evolve dynamically within a given range and the coefficients

of the AR model to vary with time.
Since we focus on the -step-ahead prediction, we will employ
a th-order AR model, which is known to provide more accu-
rate and robust estimators [12].

Our short-term model can be cast into the following state-
space model:

(24)

where is the observation noise term, and
is the process noise. Similar models have been proposed in

[28] and [29], using the Markov Chain Monte Carlo (MCMC)
methods. In order to model the bursts in the data, we use a
heavy-tail distribution, such as a t-distribution, to model the ob-
servation noise density.

As was done in the long-term model case, the order and the
coefficients in the regression are tracked using SMC. For
the short-term process, we are particularly interested in having
an accurate prediction. Since the accuracy of the SMC tracking
depends on the use of a good observation noise model, here we
also track the variance of . This is done as in [18], by
modeling the evolution of the log-variance

(25)

where
and

and

and (26)

The sample streams are initialized by drawing samples of
from a zero-mean Gaussian distribution with covariance
. Similarly, the initial set of samples for the noise param-

eter is drawn from the Gaussian density with mean
and variance , and respectively, i.e.,

(27)

The objective of the SMC algorithm here is to find an esti-
mate of the coefficients of the underlying AR process and
the log-variance parameter of the noise, based on the
available short-term process . The target distribution

can be factored as in Sec-
tion III-B, allowing for a recursive weight update.

Under this model, the -step-ahead prediction of , based on
the knowledge of , is given by

(28)

where are the SMC weights similar to (21) but referring,
of course, to the Monte Carlo samples for the short-term state-
space.

Finally, the short-term prediction can be combined with the
long-term prediction to obtain a complete -step-ahead forecast
as

(29)

A. Adaptive AR Order Selection

Extending the idea of adaptive shrinkage of the harmonic re-
gression discussed in Section III-B, we select the order of the AR
process modeling the short-term component adaptively via re-
sampling and also keep the provision of increasing or decreasing
the order by introducing very small probabilities , and ,
which represent the probability of increasing and decreasing the
order of the regression respectively. We again favor parsimo-
nious representations by letting . At the beginning
of the SMC procedure for the short-term component, the order

for the th sample is randomly selected with uniform
probability from a set ( in this paper). Let
and denote the minimum and maximum allowed order,
respectively. At time , let denote the
regression order used by the th sample stream. Then, at time
, as was done in the harmonic regression case in Section III-B,

the set of samples is divided into three subsets: , whose
regression order is left unchanged, , whose regression order
is incremented by unity (up to a maximum of ), and ,
whose order is decreased by unity (down to a minimum of ).
A particular sample finds place in the subsets and
with probabilities , and , respectively.
For the particles in the set at time , which did not have the
corresponding particles at time , a zero-mean Gaussian dis-
tribution is used to draw the coefficients from. The samples and
weights are then updated and resampling condition is checked. If
required, resampling is performed, replicating the samples with
proper regression order, and annihilating the samples with im-
proper order. Thus, instead of keeping a fixed regression order,
we let it evolve during the SMC procedure and allow different
streams to have different orders.
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B. Computation of Confidence Bands

The SMC algorithm described above inherently provides a
way of computing confidence bands since it carries information
about the complete probability density function of the variables.
In our hierarchical framework, the long-term estimation is sub-
tracted to the time series in order to form the short-term process.
Once the long-term estimation is done, the entire randomness
(error in the long-term prediction and remaining fluctuations)
is thus carried by the short-term process . It is therefore
only necessary to find the confidence-band associated with this
short-term process.

The SMC procedure provides the following approximation
of the distribution of the stochastic time-varying parameters at
time

(30)

For a given , it is also possible to approximate the density
of the noise using Monte Carlo technique by sampling
samples from a t-distributed density with variance
and using another Dirac representation

(31)

By plugging (30) and (31) into our observation equation (24),
we obtain an approximation of the -step-ahead predictive dis-
tribution of the server load as

(32)

Using the samples
, and their approximate distribu-

tion obtained in (32), we can extract any measure related to the
-step-ahead predictive distribution of the server load such as

the confidence bands as explained next.
Let denote the intended confidence level. We look for a

-confidence band, which is symmetric and centered around
the predicted value . This can also be formulated
as finding the smallest radius such that

contains a ratio of the weights
of the samples. This can be done simply

by ordering the samples according to their abso-
lute difference with respect to the predicted mean and
iteratively adding the closest sample until we get a total weight
that is above the ratio .

The final confidence band is then simply obtained by shifting
the above confidence-level by the long-term prediction, giving

. This is clearly much sim-
pler in contrast to [12], which requires cumbersome smoothing
and model-fitting procedures to compute the confidence band.
Finally, we summarize the SMC-based hierarchical Web server
workload prediction algorithm in Algorithm 1.

Algorithm 1: SMC-based Hierarchical, -Step-Ahead
Web Server Workload Prediction Algorithm

1: Perform STFT on the training data and select the basis set
using the coherence (14) and energy (16) measures;

2: Initialize the importance weights corresponding to the
long-term and short-term components as , and

respectively;

3: Initialize the long-term state-vector by drawing
samples from the Gaussian distribution with parameters
given in (8);

4: Initialize the short-term state-vector and noise
parameter by drawing samples according
to (27);

5: for do

6: Increase or decrease the DHR order of the th stream
with probability and respectively, to obtain the
basis set ;

7: Draw samples of according to the trial
distribution (18);

8: Update the importance weight according to (19),
;

9: Compute the long-term estimate and the
-step ahead long-term prediction value

according to (20), and (21) respectively;

10: Perform resampling if required by checking for the
resampling condition in (22);

11: end for

12: for do

13: Repeat steps 6–10 to obtain long-term estimate
, and long-term prediction ;

14: Increase or decrease the AR order of the th stream
with probabilities , and respectively to obtain

;
15: Draw samples of and samples of

according to the the model in (24), and
(25) respectively, and update the corresponding
importance weights ;

16: Perform resampling of the samples corresponding to
the short-term model if required;

17: Compute the short-term prediction
according to (28), and add it to the long-term
prediction to obtain the final forecast

according to (29);

18: Compute the confidence band as described in
Section IV-B;

19: end for

V. NUMERICAL RESULTS

We use the example introduced in the beginning of this paper
and present the performance of the proposed algorithm. The data
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Fig. 5. 5-min-ahead prediction for the weekday data, with a 90% confidence
band. RMSE of prediction is equal to 0.0586. Actual coverage of the confidence
band is equal to 89.8%. Median width of the confidence band is equal to 0.1692.

sets are the same as employed in [12] and are taken from actual
Web servers. We employ 500 Monte Carlo samples for
both the long-term as well as short-term prediction. The prob-
abilities to increase ( ) and decrease ( ) the long-term re-
gression order was chosen to be small, with and

, respectively. Similarly, for the short-term model,
we chose and . This is in accor-
dance with our desire to keep the model parsimonious by having
the probability of decreasing the regression order larger than the
probability of increasing the regression order for both the com-
ponents. All the results are obtained by averaging over 20 runs
of the predictor.

As can be seen in Fig. 1, the data not only shows daily
patterns, but also exhibits significant difference in the weekday
and weekend patterns, making multiple-regime analysis suit-
able. We cascade all the weekday data together to obtain the
weekday regime. The daily pattern in the weekday data can be
clearly seen and is accommodated in the long-term component.
The short-term component shows randomness and fluctua-
tions. Fig. 5 shows the 5-min-ahead prediction employing the
proposed algorithm. The root mean-square error (RMSE) is
equal to 0.0586, which is slightly better than 0.0590 obtained
by the algorithm in [12], and a confidence level of 89.8%
is achieved, while the intended level was 90%. The median
width of the confidence band comes out to be 0.1692, whereas
[12] yields a somewhat tighter confidence band with a median
width of 0.1618. The naive forecasting is obtained by repeating
the first observation for the prediction horizon and shifting
the rest of the series forward. As expected, the performance
of naive forecasting is poor. Fig. 6 compares the normal-
ized mean-square error (NMSE) of the final horizon forecast
with the long-term-only forecast, which is obtained from the
long-term prediction model of (21). The mean-square error
(MSE) is normalized by dividing it with the variance of the
observed data . The NMSE of the final forecast is 0.0331,
which turns out to be about half of that of the long-term-only
forecast, which is 0.06042. Fig. 7 shows the smoothed NMSE

Fig. 6. NMSE of the 5-min-ahead prediction compared with the NMSE of the
long-term-only forecast. The final forecast is approximately two times better
than the long-term-only forecast in term of NMSE.

Fig. 7. NMSE of the 5-min-ahead prediction compared with the NMSE of the
naive forecast. The final forecast is approximately 1.3 times better than the naive
forecast in term of NMSE.

performance for naive forecast and final forecast. The final
forecast gives a smoothed NMSE which is approximately 76%
of the smoothed NMSE obtained from naive forecast.

Similarly, Fig. 8 illustrates the performance of the algorithm
for a 20-min-ahead prediction horizon. It achieves a confidence
level of 89.13%, for an intended level of 90%, with RMSE equal
to 0.0712, which is better than the RMSE of 0.726 obtained for
the same prediction horizon in [12]. We also get a tighter con-
fidence band, with its median width level being equal to 0.212,
compared against a median width level of 0.2259 obtained in
[12]. Fig. 9 shows the smoothed NMSE of the final forecast and
the long-term-only forecast. The long-term-only forecast has an
NMSE of 0.0641, as compared with 0.0495 of the final forecast.

We also observed that the adaptive regression order selec-
tion scheme results in reduction in the complexity of the algo-
rithm (as compared with keeping the regression order fixed). For
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Fig. 8. 20-min-ahead prediction for the weekday data, with a 90% confidence
band. RMSE of prediction is equal to 0.0712. Actual coverage of the confidence
band is equal to 89.13%. Median width of the confidence band is equal to 0.212.

Fig. 9. Smoothed NMSE of the 20-min-ahead prediction compared with the
smoothed NMSE of the long-term-only forecast. The final forecast is approxi-
mately 1.3 times better than the long-term-only forecast in term of NMSE.

the short-term component, the average regression order comes
out to be approximately 4 for the 5-min-ahead as well as the
20-min-ahead prediction, while at the same time, we could actu-
ally have the regression order up to 8, allowing better modeling.
Similarly, the average order of the harmonic regression comes
out to be approximately 6 for the 5-min-ahead prediction, and
around 7.6 for the 20-min-ahead prediction, which is well below
11, and way below the original 288. This shows that the adap-
tive selection of regression order indeed reduces the complexity
of the algorithm and makes it suitable for applications involving
fast learning and real-time prediction.

To demonstrate the advantage of selecting the basis subset
adaptively at each instant from a set of high energy and high
coherence waves over keeping the basis set fixed, we ran the
algorithm for a 5-min-ahead prediction with a fixed harmonic

Fig. 10. Another example at a different commercial website. 5-min-ahead pre-
diction for the weekday data, with a 90% confidence band. RMSE of prediction
is equal to 0.0439. Actual coverage of the confidence band is equal to 89.7%.
Median width of the confidence band is equal to 0.1182.

regression of order 41 (first 20 sines, first 20 cosines, and the
DC (zero-frequency) component) for the long-term model, and
suppressed the order-changing moves; the rest of the parameters
remaining same. The RMSE for the 5-min-ahead prediction in
this setting turned out to be 0.0593, which is slightly worse than
0.0586, which was obtained with adaptive order selection. This
clearly implies that any improvement in accuracy by employing
a larger (and fixed) number of harmonics is more than compen-
sated by the estimation errors in the value of the coefficients.
Thus, it is better to have a smaller basis set with harmonics that
contribute significantly to the model (which we determine on
the basis of the energy and the coherence values).

Moreover, the algorithm is quite robust to the parameter
values, and different values of the order-changing parameters
( and ), and different initial regression order for
both the long-term as well as short-term model do
not affect the performance of the algorithm significantly.

Fig. 10 shows simulations on another set of data from a dif-
ferent commercial website, which also shows the superior per-
formance of the proposed algorithm over that of [12]. For a
5-min-ahead prediction, we obtain an RMSE of 0.0439 with the
actual convergence of the confidence band equal to 89.7%, and
median width 0.1292. On the other hand, for the same data, the
algorithm in [12] (Fig. 15) yields an RMSE of 0.0464 and the
actual confidence band coverage equal to 86%, although the me-
dian width is slightly better there at 0.1132 as compared with
0.1182 of the proposed algorithm.

VI. CONCLUSION

We have proposed a novel scheme for the forecasting of
a Web server workload time series which exhibits strong
periodic patterns. A hierarchical framework is used to sepa-
rately predict the long-term and the short-term components.
Separating the time series into two components reduces the
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data history required to train model, thereby reducing the
impact of changes in the trend process. The long-term forecast
is performed using dynamic harmonic regression, while the
residual short-term component is tracked as an autoregressive
process. The coefficients of both processes are tracked under a
stochastic state-space setting, and the order of both regressions
are adaptively selected by the SMC technique via resampling.
Also, the predictions yield simultaneous confidence bands,
which can be used to support probability-based service-level
agreements and for optimal resource allocation. Simulation
results also show that the algorithm is quite robust to the model
parameters. Modeling the noise in the short-term model by a
heavy-tailed distribution makes the algorithm robust to outliers
in the data. Furthermore, the proposed model has the capability
to automatically handle nonstationarity in both the long-term
as well as the short-term data as it allows the model parameters
to change with time.
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