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Chapter 19

Processing of In Vivo Fibered

Confocal Microscopy Video

Sequences

New imaging technologies allow the acquisition of in vivo and in situ microscopic

images at the cellular resolution in any part of the living body. The automated

analysis of these images raises specific issues which require the development of

new image processing techniques. In this work, we present some of these issues,

and describe some recent advances in the field of microscopic image processing,

in particular the automatic construction of very large mosaics from times series of

microscopic images to enlarge the field of view. This is also a step to bridge the

gap between microscopic and higher resolution images like MRI, PET, SPECT

or US. The paper is illustrated with relevant examples for biological or clinical

applications.

19.1 Motivations

Cancer is a group of diseases characterized by uncontrolled growth and spread of

abnormal cells and is the second leading cause of death worldwide. This simple

definition of cancer makes it quite clear that cells play a key role in the different

stages of cancer development. Some ninety percent of cancers are preceded by a

curable, pre-cancerous and non-invasive stage that progresses without symptoms

over a period of years before reaching a cancerous and invasive stage. In the very

first step of epithelial cancer, anomalous cells first appear in the deepest layer
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of the epithelium, directly above the basal membrane. The basal membrane sepa-

rates the epithelium from the deeper layers of the tissue and provides a very strong

and effective protection. It is approximately located at 100 µm deep from the tis-

sue surface for malpighian epithelium, such as cervix epithelium, and 300 µm for

glandular epithelium, i.e. tissue that contains secretion glands such as colon, pan-

creas and thyroid. Because there are no blood vessels in the epithelium, epithelial

cells cannot spread to other parts of the body. It is thus important to detect anoma-

lies at a very early stage before the cancer becomes invasive, i.e. before the basal

membrane is broken.

Since cancer is a disease that affects cells and starts below the surface of the

tissue, its early diagnosis requires a subsurface visualization of the tissue at the

cellular level. Current in vivo imaging technologies such as MRI, CT, PET, cy-

tometrics, bioluminescence, fluorescence tomography, high-resolution ultrasound

or SPECT are only capable of producing images at resolutions between 30 µm

and 3 mm. This range of resolution, while largely acceptable for a vast array of

applications, is insufficient for cellular level imaging. On the other side of the

resolution range, we find several types of microscopy. The vast majority of mi-

croscopes, whether conventional or confocal, are limited for use with cell cultures

or ex vivo tissue samples. The tiny fraction of microscopes that are dedicated to in

vivo use, and that can function inside the living organism, are called intravital mi-

croscopes. These apparatus are cumbersome, difficult to put into use and restricted

to research use on small animals. They also require a very delicate and specific

preparation of the animal which includes installing a window on the animal body

whereby the microscope can look through it into the body.

Since these conventional imaging techniques do not allow for a subsurface

cellular visualization of the tissue during a clinical procedure, standard cancer de-

tection protocols are not straightforward. For epithelial cancers, i.e. most cancers

affecting solid organs, the current medical diagnosis procedure is to take a tissue

sample, or biopsy, and to have it examined under the microscope by a pathologist.

Most of these biopsy procedures are performed via endoscopy. An endoscope al-

lows for the visualization of the tissue’s surface at the macroscopic level. It can

neither see below the surface nor provide a microscopic view of the tissue. Be-

cause of this drawback, biopsies have to be performed without a relevant visual

guide.

Several systems are today under study to help the endoscopist make an in-

formed decision during the diagnostic endoscopic procedure. Fluorescence spec-

troscopy can be used to detect dysplasia and early carcinoma based on the anal-

ysis of fluorescence spectra [1]. Drawbacks of fluorescence spectroscopy lie in
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the lack of morphological information, i.e. no cell architecture is available from

this modality, and the important rate of false positives due to inflammatory pro-

cesses. Chromoendoscopy combined with magnification endoscopy has become

popular as a diagnostic enhancement tool in endoscopy [2]. In particular, in vivo

prediction of histological characteristics by crypt or pit pattern analysis can be

performed using high magnification chromoendoscopy [3]. One drawback of this

technique is that it cannot provide at the same time the macroscopic view for

global localization and the zoomed image. Further innovations for better differ-

entiation and characterization of suspicious lesions, such as autofluorescence en-

doscopy and narrow band imaging are currently under investigation. However for

targeting both biopsies and endoscopic resection and improving patient care, the

ideal situation is to characterize tissues completely in vivo, and thus to visualize

cellular architecture. This implies the availability of microscopic imaging during

endoscopic examination.

A promising tool to fill this gap is given by fibered confocal microscopy

(FCM). The confocal nature of this technology makes it possible to observe sub-

surface cellular structure which is of particular interest for early detection of can-

cer. This technology can serve as a guide during the biopsy and can potentially

perform optical biopsies, that is, a high resolution non invasive optical sectioning

within a thick transparent or translucent tissue [4].

19.2 Principles of Fibered Confocal Microscopy

The ideal characteristics or specifications of a system dedicated to optical biopsies

are numerous. The resolution should not exceed a few microns to make it possi-

ble to distinguish individual cells and possibly sub-cellular structures. Above all,

the system should be easy to operate, in complete adequateness with the current

clinical practice. It should not modify the clinician’s procedure and practice. Fol-

lowing a short learning curve due to the manipulation of a new instrument and

to the interpretation of images never obtained before in such conditions, no more

adaptation should be needed in the clinical setting. In particular, the parts of the

system meant to be in contact with the patient should be easily disinfected, using

standard existing procedures. Such characteristics are crucial for the development

of a system designed to be used in routine practice and not only for clinical re-

search purposes.
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19.2.1 Confocal microscopy

Confocal microscopy enables microscopic imaging of untreated tissue without

previous fixation and preparation of slices and thus meets some of the operational

ease requirements as well as the resolution requirement. The technical principle

is based on point-by-point imaging. In a laser scanning confocal microscope a

laser beam is focused by the objective lens into a small focal volume within the

imaged sample. A mixture of emitted fluorescence light as well as reflected laser

light from the illuminated spot is then recollected by the objective lens. The de-

tector aperture obstructs the light that is not coming from the focal point. This

suppresses the effect of out-of-focus points. Depending on the imaging mode, the

detector either measures the fluorescence light or the reflected light. The measured

signal represents only one pixel in the resulting image. In order to get a complete

image and perform dynamic imaging, the imaged sample has to be scanned in the

horizontal plane for 2D imaging as well as the vertical plane for 3D imaging.

Confocal microscopy can be adapted for in vivo and in situ imaging by, schemat-

ically, inserting a fiber optics link between the laser source and the objective lens.

19.2.2 Distal scanning fibered confocal microscopy

First attempts for developing fibered confocal microscopes (FCM) have histori-

cally been made by teams coming from the world of microscopy. The well known

constraints of confocal microscopy were directly transposed to specific architec-

tures for new endomicroscopes. With a similar technological core, these designs

were in majority based on distal scanning schemes where one fiber serves at the

same time as a point source and a point detector. Different architectures have been

investigated by several academic groups and commercial companies: distal fiber

scanning, distal optical scanning and MEMs distal scanning. The great advantage

of this technology is illustrated by its very good lateral resolution: almost that of

non-fibered systems. The systems developed by Optiscan [5], Olympus [6], Stan-

ford University [7] and others produce very crisp images through only one optical

fiber. These systems have first been driven by technological solutions already ex-

isting in the microscopy field. Their ability to obtain high resolution images is

one of their strengths. However, image quality is just one clinical requirement

among many different needs absolutely necessary for performing in vivo micro-

scopic imaging. Other needs include miniaturization, ease of use and real time

imaging. One can point out that distal scanning solutions are not able to meet

all the demands of a clinical routine examination. Even if they are considered as
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very good imaging solutions, they are often relatively invasive, do not allow for

real-time imaging and are not fully integrated within the current medical routine.

19.2.3 Proximal scanning fibered confocal microscopy

To circumvent the problems of distal scanning FCM, a number of teams have tried

to use a proximal scanning architecture [8, 9]. In this work, we use a second gen-

eration confocal endoscopy system called Cellvizio® developed by Mauna Kea

Technologies (MKT), Paris, France. MKT’s adaptation of a confocal microscope

for in situ and in vivo imaging in the context of endoscopy can be viewed as

replacing the microscope’s objective by a flexible optical microprobe of length

and diameter compatible with the working channel of any flexible endoscope. For

such purpose, a fiber bundle made of tens of thousands of fiber optics is used as the

link between the proximal scanning unit and the microscope objective, remotely

placed at the tip of the flexible optical microprobe. The schematic principle of

fibered confocal microscopy is shown in Fig. 19.1 and typical images are shown

in Fig. 19.2.

Such a choice has many advantages on the applicative side [10, 11]. Decou-

pling the scanning function from the imaging one allows the optimization of both

functions independently. The distal optics can thus be miniaturized down to a

volume much smaller than what distal scanners can reach now, with very little

compromise between optical quality and size. Since the scanner can be allocated

an arbitrary volume, well known and reliable rapid scanning solutions such as res-

onant or galvanometric mirrors can be used. A purely passive optical microprobe

is also more compatible with any cleaning or decontamination procedure that reg-

ular clinical use requires. Last but not least, fiber bundles are already existing

products, available on the market under different designs and specifications, with

no need of specific developments for their use in medical devices. Their associa-

tion with simplified distal ends enable their manufacturing at a relatively low cost,

opening the way to the production of disposable items.

Cellvizio® makes it possible to observe subsurface cellular structures with an

optical section parallel to the tissue surface at a depth between 0 and 100 µm. The

imaging depth cannot be controlled on a single optical microprobe but depends

on the specific optical microprobe used. Therefore, the physician will be using

different optical microprobes, with different technical specifications, for different

applications. Confocal image data is collected at a frame rate of 12 frames per

second. Smallest lateral and axial resolutions are 1 µm and 3 µm respectively.

Fields of view ranging from 130 × 130 µm to 600 × 600 µm can be obtained
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thanks to a set of flexible optical microprobes with diameters varying from 0.16
to 1.5 mm. These microprobes can be inserted through the working channel of

any endoscope. Note that since the FCM is typically used in conjunction with

an endoscope, both macroscopic (endoscope image) and microscopic view (FCM

image) can be obtained at the same time. This is illustrated in Fig. 19.3. This

dual-view facilitates the selection of the area to be biopsied.

Of course, this approach has well known drawbacks. Proper light focusing

and collection at the distal end of the probe is simplified by the absence of dis-

tal scanning means but remains a critical issue. This is particularly true when

reaching very small optics dimensions. Because of the passivity of the fiber optics

bundle, the system also suffers from some loss of resolution and is limited to 2D

imaging. However, the most widely reported problem of this approach is certainly

related to the image itself. It often suffers from artifacts, aliasing effects and, most

importantly, always shows a strongly visible honeycomb pattern.

In the sequel, we show that specific image processing schemes can be de-

signed to cope with these artifacts in real-time. The control and acquisition soft-

ware that comes with the Cellvizio® is thus an inherent part of the imaging device

and helps it move towards a true optical biopsy system. Such a real-time recon-

struction algorithm provides smooth-motion video sequences that can be used for

more advanced image processing tasks. Figure 19.4 illustrates some of the image

processing challenges we address in this chapter. After the presentation of our

real-time fiber pattern rejection scheme in Section 19.3, we will focus on three

advanced image processing tasks. Namely, the measurement of blood flow from

single images, the stabilization of a specific region of interest and the construction

of wide field of view image mosaics.

19.3 Real-time Fiber Pattern Rejection

The specific imaging modality we focus on raises specific image processing prob-

lems. The non-uniform honeycomb pattern and the geometric distortions that

appear on the raw data, makes it impracticable for user interpretation or for auto-

mated analysis if left untreated. Algorithms that take on the image reconstruction

task in real-time have thus been developed. They provide users with high-quality,

smooth-motion video sequences. These are effortlessly interpretable by the pro-

fessionals who rely on them for diagnosis and readily usable for further automated

image processing and analysis. Most of the available methods are only focused on

the removal of the honeycomb pattern [12, 13] and often only imply performing
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a simple low-pass filtering. Our approach in [14] not only removes the honey-

comb pattern but also recovers the true signal that comes back from the tissue and

removes the geometric distortions.

19.3.1 Calibrated raw data acquisition

Proximal implementation of the scanning function enables the use of very robust

and reliable solutions for a fast and accurate scanning. The laser scanning unit

performs a scanning of the proximal surface of the flexible optical microprobe

with the laser source by using two mirrors. Horizontal line scanning is done using

a 4 kHz oscillating mirror while a galvanometric mirror handles frame scanning

at 12 Hz. A custom synchronization hardware controls the mirrors and digitizes,

synchronously with the scanning, the signal coming back from the tissue using

a mono-pixel photodetector. Cellvizio® scanning reproducibility is better than

one half of a fiber diameter. This performance first enables the calibration of

the continuous motion of the illuminating spot. It allows to compensate for the

sine-wave shape of the field distortion due to the resonant mirror (fisheye-like

effect), and permits a comprehensive rectangular mapping of the field of view.

This is mandatory for any further interpretation of the metrics of the images, or

any complex combination of individual frames. Second, the proximal scanning is

associated with optimized optics that guarantees a very good injection of the laser

within the fibers.

When organized according to the scanning, the output of the FCM can be

viewed as a raw image of the surface of the flexible optical microprobe. Scanning

amplitude and signal sampling frequency have been adjusted to perform a spatial

over-sampling of the fiber bundle. This is clearly visible on the raw image in

Fig. 19.5 where one can see the individual fibers composing the bundle. Such

an oversampling is needed to distinguish the signal coming from each individual

fiber. A typical fiber bundle is composed of 30, 000 fiber optics, with a fiber inter-

core distance dic of 3.3 µm, and a fiber core diameter of 1.9 µm. Fiber arrangement

is locally quasi hexagonal, but does not show any particular order at larger scales.

Critical elements in the raw image formation process lie in a correct spatial

sampling of the flexible optical microprobe but also in the adjustment of the point

spread function (PSF) of the system with this spatial sampling. We indeed want

to avoid aliasing on the tissue side. When analyzing the system from the point of

view of the sampling theory, the PSF corresponds to the low pass filter and the

fiber optics bundle to the sampling grid. The Nyquist frequency is then given by

(M/dic)/2 where M is the magnification of the optical head and typically ranges
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from 1.0 to 2.5. The PSF of the system must therefore satisfy this frequency. As

a rule of thumb the PSF width should approximately be the Nyquist period. The

resulting lateral resolution of such a system is then given by 2 ∗ dic/M . For a

user to benefit from the full spatial resolution allowed by the sampling theorem,

an optimal fiber pattern rejection and geometric distortion compensation scheme

is needed.

19.3.2 Real time processing

The task of the on-the-fly image reconstruction module is to restore, at a rate of

12 frames per second, the true physical signal from the raw data by removing the

fiber bundle honeycomb modulation and the scanning distortion. Each fiber of the

bundle provides one and only one sampling point on the tissue. Associated with

these sampling points comes a signal that depends on the imaged tissue and on

the single fiber characteristics. The role of the image processing is first to build a

mapping between the FCM raw image and the fibers composing the flexible op-

tical microprobe. Once this mapping is obtained, characteristics of each fiber are

measured and the effective signal coming back from the tissue is estimated. We

then have non-uniformly sampled frames where each sampling point corresponds

to a center of a fiber in the flexible optical microprobe. An interpolation algorithm

is then used to provide the user with smooth images. Let us now provide some

details for each of these steps.

Calibration – As a preliminary step, we build a mapping between the FCM raw

image and the fibers composing the flexible optical microprobe. This is achieved

by using a segmentation algorithm specifically designed for our fiber optics bun-

dle. Since we now have access to the position of the fibers within the raw image

and to the scanning distortion, it becomes possible to get a point set with the exact,

distortion-free, positions of the fibers in the bundle.

This mapping allow us to compute the signal measured by a single fiber. When

combined and averaged together, the almost 15 to 50 pixels corresponding to one

single fiber lead to a signal I with a much better SNR.

Since the signal that is measured by a single fiber depends on the imaged

biological sample fluorescence αfluo and on the fiber itself, we need to estimate

some characteristics of each single fiber such as its gain and autofluorescence.

For this purpose, we acquire an image of a non-fluorescent sample, αfluo = 0,

and compute the background signal Ib measured by each fiber. We also acquire an
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image of a sample of constant fluorescence, αfluo = cst, and compute the signal

Is associated to each fiber.

Imaging Model – To represent the relationship between the actual biological

sample fluorescence of interest αfluo and the raw signal I measured by each fiber

of the flexible optical microprobe, we use the following model from [14]:

I = I0 ·
(

a · τinj · τcol · αfluo + b · τinj · αautofluo

)

(19.1)

where a and b are constants, τinj and τcol are the injection rate and collection rate

of the fiber, αautofluo is the intrinsic auto-fluorescence of the fiber, and I0 is the

intensity of the laser source.

Given the raw signal and the calibration data, the true physical measure αfluo

we would like to have cannot be directly estimated. It is however possible to

recover it up to a scaling factor with the following equation:

Irestored =
I − Ib

Is − Ib

= K · αfluo, (19.2)

where K is a constant independent of the considered fiber.

Reconstruction – At this step, we have a restored intensity Irestored for each

fiber composing the image bundle. The final process is the interpolation or ap-

proximation of this point set into an image on a square grid. The simplest method

uses a nearest-neighbor scheme where all pixels within the area of one fiber are

assigned a common value. Other usual algorithms for scattered data interpola-

tion or approximation, such as triangulation based methods, kriging methods, ra-

dial basis functions interpolations, B-Spline approximations, natural neighbors or

moving least squares methods (see e.g. [15–17] and references therein) can also

be used depending on the required smoothness, approximation order, efficiency

and other numerical issues. We found that for real time applications, a linear in-

terpolation on triangles provided a good compromise between visual appearance

and computational requirements.

19.4 Blood FlowVelocimetry usingMotion Artifacts

The analysis of the behavior of blood cells and vessels is a very important topic of

physiology research. As such, in vivo measurements made for example by intrav-

ital fluorescence microscopy have proved since the early seventies to be crucial
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to the understanding of the physiology and pathophysiology of microcirculation.

More recently, fibered confocal microscopy has been shown to allow for the ob-

servation and measurement of several characteristics of microcirculation with the

clear benefit of reducing the invasiveness to its bare minimum [18].

However, as for any quantitative measurement from images, the automated

analysis of the data poses a number of new challenges that need to be addressed

with specific solutions. In this section we show an image processing algorithm

proposed in [19] dedicated to the velocimetry of blood flow imaged with FCM.

19.4.1 Imaging of moving objects

An interesting point of scanning imaging devices is that the output image is not a

representation of a given instant, but a juxtaposition of points acquired at different

times [19]. Consequently, if there are objects in the field of view that are moving

with respect to the flexible optical microprobe, what we observe is not a frozen

picture of these objects, but a skewed image of them. Each scan line indeed relates

to a different instant, and the objects move between each scan line.

From the analysis of the laser scanning in Section 19.3.1, it is seen that the

scanning movement can be decomposed into a fast horizontal sinusoidal compo-

nent and a slow linear uniform vertical component. Horizontally, the imaging is

done only on the central part of the trajectory, where the spot velocity is maximal

and nearly constant. Since in this part, the spot horizontal velocity Vx (> 5 m/s)

is several orders of magnitude higher than both the spot vertical velocity Vy (∼ 2
mm/s) and the velocity Vc of observed red blood cells (RBC) (< 50 mm/s), two

approximations can be made: the scan lines are horizontal and the time needed by

the spot to cross the imaged part is negligible, meaning that the objects are consid-

ered motionless during a scan line. This amounts to assuming that the horizontal

spot velocity is infinite.

Let us consider a standard 2D+t volume V (x, y, t). Without scanning, this vol-

ume will be imaged by 2D slices V (x, y, t0) at different instants t0. With scanning,

the process of image formation comes down to imaging the plane V (x, y, t0 +
y/Vy). Figure 19.6a presents what will be observed when imaging a vertical seg-

ment moving horizontally with respect to the flexible optical microprobe.

19.4.2 Velocimetry algorithm

Classical methods for velocity measurements of blood cells in microvessels are

often based on the processing of 2D temporal image sequences obtained in the
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field of intravital microscopy. Line shift diagram, spatio-temporal analysis or

blood cell tracking are used in such setting to process the sequences generated by

CCD-based video microscopes [20].

In contrast, the method presented in [19] uses very specific information about

the imaging device. By the combination of its own movement and the laser scan-

ning, a red blood cell should appear almost as a slanting segment, whose length

and orientation with respect to the scanning and the microvessel are dictated by its

velocity. This specificity can be used to measure the velocity of blood cells in mi-

crovessels from single images. The method exploits the motion artifacts produced

by the laser scanning. Although velocity can be estimated from a single image,

temporal sequences can then be exploited to increase the robustness and accuracy

of the estimation.

To get an idea of how the algorithm works, we model a imaged red blood

cell as a disk of radius R. This assumption is rather realistic since the diameter

of a typical mammal RBC is 5–9 µm and can thus only be seen by a few fibers

in the flexible optical microprobe. Let us assume that the RBC has a linear uni-

form movement described by a velocity Vc and a trajectory angle θ. Let us also

assume that the RBC is imaged by a scanning laser whose horizontal velocity is

infinite and vertical velocity is Vy so that the disk will be distorted by the scanning

imaging.

Let us look at the equation of the distorted envelope, i.e. the intersection be-

tween the disk envelope and the scanning spot. The points (xc, yc) of the envelope

of the disk at the instant t verify the equation:

(xc − Vc · t · cos θ)2

R2
+

(yc − Vc · t · sin θ)2

R2
= 1 (19.3)

The vertical position ys of the spot is given by ys = Vyt. The horizontal spot

velocity is supposed infinite, which is why the intersections of the spot trajectory

and the envelope are the intersections of the envelope with the line of ordinate ys.

Using t = ys/Vy in (19.3), we see that the distorted envelope is in fact an ellipse.

The moving disk will thus appear as an ellipse in the output image. The angle α
(modulo π/2) and length L of the major ellipse axis are given by:

tan 2α =
2 cos θ

Vr − 2 sin θ
, (19.4)

L =
2R

√
2

√

V 2
r − 2Vr · sin θ + 2 − Vr

√

V 2
r − 4Vr · sin θ + 4

, (19.5)

12



with Vr = Vc/Vy.

Equations (19.4) and (19.5) link the velocity and angle θ of the moving disk to

the observed values L and α. Given L and α, the inversion of the relations gives

two possible solutions for Vc and θ. This implies that a single output image only

allows to retrieve the velocity and trajectory angle of the disk with an ambiguity

between two possibilities. The ambiguity could be removed by considering two

scans, one top-down and another bottom-up for example.

One difficulty lies in using L because extracting individual shapes in images

like the ones of figure 19.6b seems unlikely. Only the orientation α can be re-

trieved, which forbids the use of (19.5). The solution is to suppose that the angle

of trajectory θ is known (for example in image 19.6b, the trajectory of the RBCs is

supposed colinear to the edges of the vessel). With this hypothesis, (19.4) allows

for the determination of the disk velocity.

From the images, it is clear that the segmentation of individual traces is not

possible. In fact, in Fig. 19.6b as the plasma is marked by a fluorescent dye,

distorted RBC shapes are expected to appear as dark trails. But what we observe

seem to be bright trails. Our explanation is that there are so many dark trails that it

induces a contrast inversion. Given the RBC blood concentration, i.e. 4–5 million

per microliter of blood, about 1000 RBCs should be in this image. What we see

are thus the bright interstices between the dark trails. It is the slope of these white

ridges that we extract from the images in order to estimate the velocity through the

orientation of the ridges. The extraction algorithm itself is based on a combination

of ridge detection and robust estimators.

Our algorithm assumes that the ridges are tubular-like structures with a Gaus-

sian profile of standard deviation σ0. It proceeds in four steps. First, we enhance

the horizontal edges by computing the vertical gradient component Iy(x, y) of the

image I . Since ridges are composed of points that are at equal distance of a pos-

itive gradient response and a negative gradient response, the medialness response

R(x, y) = Iy(x, y +
√

σ2
0) − Iy(x, y −

√

σ2
0) of [21] should be maximal on the

ridges. Our second step uses a high threshold on R(x, y) to compute regional

maxima on each connected component of the thresholded image. In the third step,

regional maxima are used as seeds to extend the ridges. This extension is done

by following the local maxima of R(x, y) until a low threshold is reached. This

approach is similar to doing a hysteresis thresholding in a privileged direction.

Finally, a line is robustly fitted on each extracted ridge to measure the slope.
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19.4.3 Results and evaluation

In the field of biomedical imaging, the issue of validation for image processing

tasks is essential but is often a difficult problem that needs very specific ap-

proaches in order to be addressed. In this work several experiments have been

conducted to estimate the correctness of the method. First a numerical simulator

was developed. It models the acquisition of the Cellvizio® and simulates a sim-

ple laminar flow of RBC where RBC are represented by a realistic 3D model that

departs from the disk model we used for the theoretical part. RBC velocities are

randomly set according to a normal distribution. Applying the proposed method

and taking the median of the estimated velocities leads to a velocity estimation

within a 6% margin error. Secondly, we applied our method to a sequence of 40
images obtained on real acquisitions of mouse cremaster microvessel. For each

image, we computed the median of estimated velocities. Since the actual veloc-

ity of RBC in the vessel is unknown, we cannot estimate the correctness of the

estimation, nevertheless this allows us to test the stability and robustness of the

method. For the whole sequence, the mean of the median velocity of each image

is 7.18 mm/s and the standard deviation is 0.7 mm/s. This result tends to prove

that our velocity estimation is robust and stable along the sequence. Our most ad-

vanced validation experiment uses an in-house built hydraulic circuit. Water with

fluorescent balls, whose size is comparable to a RBC, flows in this circuit and the

flow velocity is adjustable. This system lets us compare our velocity estimations

with the velocity computed from the rate of flow of the circuit. This serves as a

validation of our method. We do not have access to the precision of the velocity

computed from the rate of flow but both methods agree with a mean relative error

of 16%.

Our velocimetry method has been applied, in Fig. 19.6b, to a real acquisition

of mouse cremaster microvessel. The image is divided into a set of blocks. For

each block, a robust estimation of the velocity is computed. We can see that our

method is able to recover the red blood cell velocity profile within the microvessel.

As expected, the velocity does not change along the direction of the microvessel

and is maximal at the center.

As this approach is based on a line scan interaction between the laser scanning

and the moving cells, higher velocity can be measured than with methods based

on analysis of successive temporal frames. When most systems are limited to

the measurement of red blood cell velocity inferior to 2 or 5 mm/s, the presented

method allows the measurement of velocities up to 30 mm/s.
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19.5 Region Tracking for Kinetic Analysis

The high resolution images provided by Cellvizio® are mostly acquired on liv-

ing organs, therefore specific image processing tools are required to cope with

the natural movements of the tissues being imaged. Moreover, if the images of a

sequence were stabilized, measurements of various image parameters would be-

come possible or easier and could be carried out for many applications such as

gene expression monitoring, drug biodistribution or pharmacokinetics.

Due to the very specific type of images generated by Cellvizio®, classical

image stabilization and registration techniques could not be applied here. As a

result, we have developed a dedicated region of interest (ROI) tracking tool that

takes into account the characteristics of Cellvizio®, and enables an automatic

registration, analysis and quantification on sequences of images [22].

In Section 19.4, we have shown that the motion of the imaged objects with

respect to the optical microprobe led to some motion artifacts. The velocimetry

took advantage of these artifacts to enable blood flow measurement. However in

most cases motion artifacts would simply induce possible misquantifications. A

high frame rate can sometimes compensate for the resulting distortions but when

the frame rate cannot be increased, motion artifacts can in general not be avoided.

We show here that the knowledge we have about the motion distortion can also

be used to get an efficient motion compensation algorithm. We address the case

where a user wants to focus on a small region of the living tissue that is difficult

to stabilize mechanically. For instance, in vivo and in situ acquisition on the liver,

the bladder or even the heart can be unstable. Such organs receive a growing

interest among biologists to assess pharmaco-kinetics parameters of molecules, to

screen the changing morphology of the anatomy, or to measure bio-distribution

parameters.

19.5.1 Motion compensation algorithm

Let us suppose that the motion of the imaged object with respect to the optical

microprobe between two contiguous frames is a simple translation at speed η̃ =
[η̃x, η̃y]. A scanned line with vertical position y, will be sampled at the time t(y) =
t(0) + y

Vy
. During the scanning, a point p = [x, y] ∈ I in the image coordinate

system will be sampled at position pd = [xd, yd] in the object coordinate system.

We note η = η̃

Vy
the normalized speed for the frame scanning. The position pd of
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the imaged object point is given by:

xd = x + (t(x) − t(0))η̃x = x +
y

Vy

η̃x = x + ηxy,

yd = y + (t(y) − t(0))η̃y = y +
y

Vy

η̃y = (1 + ηy)y.

For the kth frame, this linear transformation between the image coordinate system

and the object coordinate system is noted vk. Each point p of a frame Ik is mapped

to a reference space coordinate system by the transformation fk : p → pref such

that

fk(p) = rk ◦ vk(p),

where rk is a rigid body transformation and ◦ denotes the composition of spatial

transformations. Between two frames j and k, the spatial transformation is thus

given by:

fj,k(p) = v−1
j ◦ r−1

j ◦ rk ◦ vk = v−1
j ◦ rj,k ◦ vk. (19.6)

In order to recover the alignment between the images and the motion dis-

tortions, one could try to register the frames using the complete transformation

model above. However, this would imply to ignore the relationship between po-

sitions and velocities and would thus not really be robust. We therefore choose

to compute the velocities using the displacements information only. Using finite

difference equations, we can relate the global positioning and the velocity η. The

estimation of the velocities is done using only the translation part of rj,k. This

velocity is used in the following algorithm to compensate for the scanning distor-

sions. For each contiguous frames the following steps are performed:

1. Estimate the translation using a 2D normalized cross correlation,

2. Estimate the velocity from the translation,

3. Compute the distortion transformation,

4. Optimize the rigid transformation.

19.5.2 Affine registration algorithm

Using Cellvizio®, the handheld optical microprobe can freely glide along the soft

tissue while keeping contact with it. The spatial transformation between two

frames will thus be composed of a translation, a possible rotation, and even a
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little scaling if the tissues are compressed. Another representation of the frame

to frame spatial transformation is thus given by an affine transformation model

which is a generalization of the model in (19.6).

The image registration scheme we use is based on a minimization of the sum

of squared differences between the intensities of the current image Ik and a ref-

erence image I:
∑

p |I(p) − Ik(fk(p))|2, with fk being an affine transformation.

To ensure a fast convergence in the optimization procedure, we initialized each

transformation by the best translation found by a normalized cross correlation and

use a fast and efficient optimizer. The efficient second order minimization (ESM)

scheme of [23] provides excellent results for real time robotic applications. We

have adapted it to use an affine transformation instead of a projective one [24].

The main advantage of this algorithm is to provide a true second order optimiza-

tion scheme with the complexity of a first order optimization scheme such as

Gauss-Newton. Of course, other optimizers could be used.

19.5.3 Application to cell trafficking

In [22], this ROI tracking was used to assess cell trafficking in a capillary. The aim

is to measure a slow blood velocity in a capillary. For this range of blood velocity

and this size of capillary (as small as a single RBC), the previous velocimetry

algorithm could not be used since single RBC can be seen on the images. On the

other hand, more conventional methods using temporal image sequences could

not directly be used because of the unstable nature of many imaged tissue such

as tumoral grafts. This is why we choose to first track a given region of interest

and then use a cross-correlation scheme on the stabilized sequence. The user can

select manually a rectangular ROI on the image. Fig. 19.7a shows the tracking

of this region on a sequence acquired with a hand-held probe on a tumoral skin

xenograft. Vessels were stained using dextran fluorescein from Invitrogen.

On the temporal mean frame of the stabilized sequence, we have segmented

the vessels using a 2D adaptation of the multi-scale tubular vessel detection algo-

rithm of [21]. We used this same adaptation on the same type of images in [25]

to perform morphometric analysis of the vascular network. The upper left image

of Fig. 19.7b shows the result of the detection: the medial axis and the vessel

borders. The medial axis of the vessel in the ROI was used to extract the vessel

intensity in the center line. The normalized cross correlation of these two lines

allows for the estimation of the velocity of the blood in the capillary.

The range of velocities that can be addressed depends on the scanning period,

and amplitude. We here give some typical values for Cellvizio®. The velocity
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precision is given by the minimum translation observable between two frames:

δv = 0.02 mm/s. The velocity interval computed using a maximum detectable

translation of half the horizontal field of view is [0, 7.2] mm/s.

An additional interesting feature of this tracker is that it also enables the re-

construction of images on the region of interest with an enhanced resolution. This

is made possible, when the kinetic of the signal is slow enough, thanks to the

noise reduction provided by the processing of several registered noisy images of

the same region and to a small remaining aliasing of the input images.

19.6 Mosaicing: Bridging the Gap between Micro

and Macroscopic Scales

We showed that fibered confocal microscopy can unveil in real-time the cellular

structure of the observed tissue. However, as interesting as dynamic sequences

may be during the time of the medical procedure or biological experiment, there

is a need for the expert to get an efficient and complete representation of the entire

imaged region. A physician needs, for example, to actually add still images in the

patient’s medical record.

Image sequence mosaicing techniques are used to provide this efficient and

complete representation and widen the field of view (FOV). Several possible ap-

plications are targeted. First of all, the rendering of wide-field micro-architectural

information on a single image will help experts to interpret the acquired data. This

representation will also make quantitative and statistical analysis possible on a

wide field of view. Moreover, mosaicing for microscopic images is a mean of fill-

ing the gap between microscopic and macroscopic scales. It allows multi-modality

and multi-scale information fusion for the positioning of the optical microprobe.

Classical mosaicing algorithms do not take into account the characteristics

of fibered confocal microscopy, namely motion distortions, irregularly sampled

frames and non-rigid deformations of the imaged tissue. In this section, we present

some key points of the algorithms we developed in [26, 27] to address this prob-

lem.

19.6.1 Overview of the algorithm

Our approach in [27] is based on a hierarchical framework that is able to recover

a globally consistent alignment of the input frames onto a reference coordinate
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system, to compensate for the motion-induced distortion of the input frames and

to capture the non-rigid deformations of the tissue. Similarly to the velocimetry

problem and the region of interest tracking problems presented above, we use the

specificity of FCM to model and use the relationship between the motion distor-

tions and the motion of the optical microprobe. As in (19.6), the displacement of

the optical microprobe across the tissue can be described by a rigid shift denoted

by rn. The motion distortion can be modeled by a linear transformation vn. Fi-

nally, due to the interaction of the contact optical microprobe with the soft tissue,

a small non-rigid deformation bn appears. The frame-to-reference mappings are

thus modeled by:

fn(p) = bn ◦ rn ◦ vn(p). (19.7)

The goal of the mosaicing algorithm is to recover these transformations for each

frames.

A typical approach for dealing with the estimation of such complex models is

to have a hierarchical, coarse-to-fine, approach. We therefore focus on a method

that iteratively refines the model while always keeping the global consistency of

the estimated frame-to-reference transformations.

From Local To Global Alignment – We start by assuming that the motion dis-

tortions as well as the non-rigid tissue deformations can be ignored. By making

the reasonable assumption that consecutive frames are overlapping, an initial es-

timate of the global rigid mappings can be obtained by using a rigid registration

technique to estimate the motion between the consecutive frames. Global align-

ment is then obtained by composing the local motions. This initial estimate suffers

from a well-known accumulation of error problem that needs to be taken into ac-

count.

The first loop of our algorithm alternates between three steps. The first step

of this loop assumes that the motion distortions have been correctly estimated and

registers pairs of distortion compensated frames under a rigid body transformation

assumption. The second step of the loop uses these local pairwise registration

results to make a globally consistent estimation of the rigid mappings rn. The third

step uses the relationship between the motion and the motion distortions to provide

an updated and consistent set of rigid mappings and motion compensations.

Let us focus on the second step of the first loop. During this local to global

alignment scheme, we use all available pairwise rigid registration results to esti-

mate a set of globally consistent transformations. A sound choice is to consider a

least-square approach. However the space of rigid body transformations is not a
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vector space but rather a Lie group that can be considered as a Riemannian man-

ifold. Classical notions using distances are therefore not trivial to generalize. In

our work, we propose to cast this problem into an estimation problem on a Lie

group.

By using the log map, we can define the (geodesic) distance between two rigid

body transformations r and s as

dist (r, s) = dist
(

Id, r−1 ◦ s
)

= ‖logId(r
−1 ◦ s)‖ (19.8)

In order to estimate the true rigid body transformations [r1, . . . , rN ], we choose

to minimize the distance between the observations r
(obs)
j,i ∈ Θ and the transforma-

tions r−1
j ◦ ri predicted by our model:

[r∗1, . . . , r
∗

N ] = arg min
[r1,...,rN ]

1

2

∑

(i,j)∈Θ

dist
(

r−1
j ◦ ri, r

(obs)
j,i

)

. (19.9)

Note that further improvements to this formulation can be made. Mahalanobis

distance and robust statistics can be used. It is also possible to weight the different

registration results. An efficient optimization scheme is proposed in [26] to solve

this estimation problem.

Mosaic Construction and Tissue Deformation Compensation – Once a glob-

ally consistent set of transformations is found, the algorithm constructs a point

cloud by mapping all observed sampling points onto a common reference coordi-

nate system. An efficient scattered data fitting technique is then used on this point

cloud to construct an initial mosaic. The residual non-rigid deformations are fi-

nally taken into account by a second loop in our algorithm that iteratively registers

an input frame to the mosaic and updates the mosaic based on the new estimate

of the frame-to-mosaic mapping. The non-rigid registration can typically use the

diffeomorphic registration scheme we present in [28].

Let us now get some insight into the efficient scattered data fitting technique

we developed. Let {(pk, ik) ∈ Ω × R} be the set of sampling points and their

associated signal. Our goal is to get an approximation of the underlying function

on a regular grid Γ defined in Ω. The main idea is to use a method close to

Shepard’s interpolation. The value associated with a point in Γ is a weighted

average of the nearby sampled values,

Î(p) =
∑

k

wk(p)ik =
∑

k

hk(p)
∑

l hl(p)
ik. (19.10)
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The usual choice is to take weights that are the inverse of the distance, hk(p) =
dist(p, pk)

−1. In such a case we get a true interpolation [16]. An approximation is

obtained if a bounded weighting function hk(p) is chosen. We choose a Gaussian

weight hk(p) = G(p − pk) ∝ exp(−||p − pk||2/2σ2
a) and (19.10) can thus be

rewritten as

Î(p) =

∑

k ikG(p − pk)
∑

k G(p − pk)
=

[G ⋆
∑

k ikδpk
](p)

[G ⋆
∑

k δpk
](p)

, (19.11)

where δpk
is a Dirac distribution centered at pk and ⋆ denotes a spatial convolution.

We can see from this formulation that our reconstruction method thus only need

two convolutions (Gaussian smoothing) and one division, which makes it very

efficient.

19.6.2 Results and evaluation

As mentioned earlier, the issue of algorithm validation is critical in the field of

biomedical imaging and usually requires dedicated and sophisticated approaches.

In order to evaluate our global positioning and motion distortion compensation

framework, image sequences of a rigid object were acquired in [27]. The object

needs to have structures that can be seen with the fibered confocal microscope.

For the mosaicing to be of interest, we also need to see shapes whose sizes are

larger than the field of view of our imaging device. We therefore choose to image

a silicon wafer.

A fair evaluation can only be made by comparing the output of the algorithm

with independent information. Apart from simulated data, a ground truth of the

imaged region is very difficult to get. Even with a standard microscope having a

comparable resolution but a greater FOV it is not easy to see on the wafer whether

the exact same region is being imaged or not. However, in addition to the mosaic,

our algorithm also provides an estimation of the motion of the flexible microprobe.

The evaluation framework we designed compares this estimation with a gold stan-

dard given by a computer numerical control (CNC) milling machine. The CNC

milling machine is used to hold the flexible microprobe and prescribe, with re-

spect to the silicon wafer, a motion whose accuracy is of the order of magnitude

of the apparent fiber inter-core distance dic. We find that the motion recovered by

our algorithm agrees with the prescribed one within a 3% error margin.

From the application point of view, mosaicing for fibered confocal microscopy

provides a step to bridge the gap between microscopic and macroscopic scales.

Cellvizio® offers a new way to image and characterize several types of tissue. In

many cases, mosaicing can help move beyond the limitations of FCM by offering
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an extended field of view. Our method has been successfully applied to many

types of sequences acquired in both small animal and human tissue. We provide

some insight of this by showing the result of our algorithm on some typical im-

ages.

Figure 19.8a shows a mosaic constructed from 21 input frames, each with a

FOV of 417 µm by 297 µm. On this figure, we can see mouse tumoral angiogene-

sis. The need for in vivo imaging is urgent in this field. It can indeed help assess

the efficiency of angiogenesis therapy [29]. Mosaicing techniques can further help

in getting objective quantitative measurements. The result shown in figure 19.8b is

of much clinical interest since it proves that obtaining a microscopic images of hu-

man lung tissue without any staining is feasible. Our mosaicing algorithm pushes

this interest one step further by showing multiple alveolar structures in a single

image. The mosaic in figure 19.8c, arising from 31 input frames, shows the tubu-

lar architecture of the kidney. In this setting, mosaicing could help getting trustful

statistical shape measurements. Figure 19.8d shows the ability of Cellvizio® to

image nervous tissue down to the dendritic endings and shows how mosaicing can

help seeing many of those dendritic endings simultaneously. 70 input frames all

with a FOV of 397 µm by 283 µm were used to produce the mosaic.

19.7 Conclusion

New imaging technologies such as fibered confocal microscopy raise several new

image processing and image analysis challenges that cannot readily be addressed

by using classical approaches. In this paper several dedicated tools were pre-

sented. By taking into account the specificity of this imaging modality, the auto-

mated algorithms we developed lead to more physiologically relevant data, easier

interpretation by the experts and provide an important step to bridge the gap be-

tween microscopic and higher resolution images like MRI, PET, SPECT or US.
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19.8 Grayscale Figures
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Figure 19.1: Schematic principle of fibered confocal microscopy.
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19.9 Color Plate
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Figure 19.2: Different types of images from Leica FCM1000 microscope (Cel-

lvizio® technology for small animal distributed by Leica microsystems).
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Figure 19.3: Illustration of a typical Cellvizio®-GI setting. (a) The optical mi-

croprobe fits into the accessory channel of any endoscope. (b) Wide field-of-view

imaging remains available when using Cellvizio®.
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19.10 Grayscale Figures (continued)
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Figure 19.4: Some of the challenges involved in the processing of in vivo fibered

confocal microscopy video sequences.
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Figure 19.5: Autofluorescence FCM images of a Ficus Benjamina leaf. Left: Raw

data. Right: Reconstructed images. Top: Complete images. Bottom: Zoom on

rectangle. Note that the non-uniform honeycomb modulation and the geometric

distortions on the raw data have been corrected in the reconstructed image.
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Figure 19.6: Blood Flow Velocimetry. (a) Imaging of a moving vertical segment

by a scanning laser. The segment has a translation movement from the upper left

corner to the lower right corner of the image. The segment is first intersected by

a scan line at instant t0 (black disks represent imaged points). The following scan

lines image the segment at different positions (dotted segments). The resulting

shape is the slanting segment of angle α. (b) In vivo mouse cremaster microvessel.

The arrows are proportional to the estimated velocities computed on a block in the

image. Note that, as expected, the velocity does not change along the direction of

the microvessel and is maximal at the center.
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(a) (b)

Figure 19.7: (a) ROI tracking using affine transformations: 4 frames (index 1, 51,

101, 151) from the same sequence are displayed with the registered ROI. Com-

plete sequence includes 237 frames. (b) Upper-left: vessel detection on the tem-

poral mean frame after stabilization. Other images: three contiguous frames of

the stabilized sequence (12 Hz). Blood velocity was acquired on the medial axis

segment [AB].
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Figure 19.8: Mosaics using different types of images acquired with Cellvizio®.

(a) In vivo tumoral angiogenesis in mouse with FITC-Dextran high MW (21 in-

put frames, courtesy of A. Duconseille and O. Clément, Université Paris V, Paris,

France). (b) Ex vivo autofluorescence imaging in human lung (15 input frames,

courtesy of Dr P. Validire, Institut Mutualiste Monsouris, Paris, France). (c) Mi-

crocirculation of the peritubular capillaries of a live mouse kidney with FITC-

Dextran high MW (31 input frames). (d) Dendritic receptors in a live Thy1-YFP

mouse (70 input frames, courtesy of I. Charvet, P. Meda, CMU, Geneva, Switzer-

land and L. Stoppini, Biocell Interface, Geneva, Switzerland).
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