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ABSTRACT

We develop online Bayesian signal processing algorithms
to estimate the state and parameters of an hidden Markov
model (HMM) with unknown transition matrix. The first
online estimator is based on the sequential Monte Carlo
(SMC) technique and uses a set of sufficient statistics to
carry the information about the transition matrix. A deter-
ministic variant of the SMC estimator is then developed,
which is simpler to implement and offers superior perfor-
mance. Finally a novel approximate maximum a posteri-
ori (MAP) algorithm is proposed. These algorithms offer a
solution to the problem of estimating the number of com-
peting terminals in an IEEE 802.11 network where better
performance can be expected if the backoff parameters are
adapted to the number of active users. Realistic simulations
using the ns-2 network simulator are provided to demon-
strate the excellent performance of the proposed estimators.

1. INTRODUCTION

We consider the following HMM with unknown parameters:

xt ∼ MC(π,A), yt ∼ B(xt), (1)

whereMC(π,A) denotes a Markov chain with initial prob-
ability distribution π and transition probability matrix A; xt

is the state realization of the Markov chain at time instant t;
B(x) denotes the discrete probability distribution of the ob-
servations conditioned on the state realization; and yt is the
observation. For notational ease, xt is assumed to take its
values in the finite set X = [1, · · · , N ].

Denote the observation sequence up to time t as yt �
[y1, y2, · · · , yt] and the network state sequence up to time
t as xt � [x1, x2, · · · , xt]. Let the model parameters be
θ = {π, A}. Given the observations yt at time t, we are
interested in estimating the current state xt. The computa-
tional complexity of the naive solutions to these problems
grows exponentially with the time index t. The forward-
backward procedure [1] provide a recursive algorithm to
get a linear complexity growth but is not able to cope with

unknown parameters. The expectation-maximization (EM)
batch algorithm can be used it only converges to a local
maximum of the likelihood function which can be quite dif-
ferent from the global one [1].

We resort to the Monte Carlo signal processing tech-
niques to solve the above inference problems. While usual
SMC methods are not well suited to parameter estimation,
we show that the complete information about the transition
matrix can be carried over through some sufficient statis-
tics so that the algorithm developed in [2] can be adapted
to our HMM problem. A deterministic variant of the SMC
estimator is also developed, which is simpler to implement
and offers superior performance. The idea of using a set
of sufficient statistics to represent the information about the
transition matrix is included in the deterministic sample fil-
ter setting proposed in [3]. The use of sufficient statistics is
pushed one step further than in [2] because this information
about the parameters is now integrated so that no Monte
Carlo approximation needs to be performed. The expo-
nential increase in complexity is avoided by discarding the
tails of the posterior distributions. For some applications,
this algorithms might still be somewhat too computation-
ally demanding. Inspired from the deterministic sequential
sampling, we develop an approximate MAP algorithm that
trades accuracy for computational requirement. Both algo-
rithms can be applied to any HMM with unknown transition
probabilities (and unknown prior distribution) and these are
main contributions of our work. The online algorithms lead
to an approximation of the probability distribution function
(or to an hard estimate for the approximate MAP algorithm)
of the number of competing terminals at a specific time step
given the entire set of observations.

2. SUFFICIENT STATISTICS

A well-known strategy for Bayesian inference is to choose
the prior distributions with a suitable form so that the pos-
teriors belong to the same functional family as the priors.
The priors and posteriors are then said to be conjugate. The
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choice of the functional family depends on the likelihood.
Here it can be seen that the discrete states xt are drawn from
multinomial distributions. For this kind of likelihood func-
tions it is well known that the Dirichlet distribution provide
conjugate priors. If u has a multivariate Dirichlet distribu-
tion u ∼ D(γ1, · · · , γN ) with γi > 0, then,

p(u) =
Γ

(∑N
i=1 γi

)
∏N

i=1 Γ(γi)

N∏
i=1

uγi−1
i , (2)

with u = [u1, · · · , uN ], ui ≥ 0,
∑N

i=1 ui = 1 and Γ(·) is
the Gamma function. We will assume multivariate Dirichlet
priors for both the initial probability vector π and the ith

row of the transition matrix ai,

π ∼ D(ρ1,0, ρ2,0, · · · , ρN,0) (3)

ai ∼ D(αi,1,0, αi,2,0, · · · , αi,N,0) i = 1, · · · , N. (4)

With this choice the conditional posterior distributions
is also Dirichlet. Let’s denote ρi,t−1 and αi,j,t−1 the pa-
rameters of these distributions at time t − 1

p(π|xt−1, yt−1) = D (π; ρ1,t−1, · · · , ρN,t−1) , (5)

p(ai|xt−1, yt−1) = D (ai; αi,1,t−1, · · · , αi,N,t−1) . (6)

The posterior distribution of the parameters therefore only
depends on the set T t−1 = {αi,j,t−1, ρm,t−1}(i,j,m)∈[1,N ]3

of sufficient statistics. It is then easy to show that

p(π|xt, yt) = p(π|xt−1,yt−1), (7)

p(ai|xt, yt) = p(ai|xt) ∝ p(xt|xt−1, ai)p(ai|xt−1)
= D(ai;αi,1,t, · · · , αi,N,t), (8)

with αi,j,t = αi,j,t−1 + I(xt−1 − i)I(xt − j); I(·) being
an indicator such that I(x) = 1 if x = 0, and I(x) = 0 if
x �= 0. T t is then easily updated.

3. THE ONLINE SMC ESTIMATOR

In the usual SMC methodology with known parameters θ,
the posterior distributions are approximated by a set of ran-
dom samples and weights,

p̂θ(xt|yt) =
1

Wt

K∑
k=1

w
(k)
t I

(
xt − x

(k)
t

)
, (9)

where Wt =
∑K

k=1 w
(k)
t . One single couple (x(k)

t , w
(k)
t )

is commonly referred as a particle and the set is said prop-
erly weighted if the approximation is unbiased [4]. The se-
quential algorithms use the old streams x

(k)
t−1 and draw xt

to obtain a recursive approximation of pθ(xt|yt). In order
to avoid the degeneracy of such an algorithm, it is neces-
sary to insert a resampling step consisting in eliminating the
unlikely samples, and multiplying the very likely ones.

If the parameters θ are unknown, the usual approach is
to include them into the state vector. Because of the static
evolution of the parameters, the space of parameters is only
explored during initialization which is obviously inefficient.
Several works have proposed better algorithms for dealing
with static parameters within an SMC framework [2, 4]. In
this work, we make use of the approach developed in [2].
In the model under consideration, the posterior distribution
of θ = {π, A} given xt and yt has is defined by Dirichlet
distributions depending on some sufficient statistics T t =
T t(xt,yt) that can easily be updated (7)-(8).

Suppose a set of properly weighted samples with respect
to p(xt−1|yt−1) is available at time (t − 1),

p̂(xt−1|yt−1) =
1

Wt−1

K∑
k=1

w
(k)
t−1I

(
xt−1 − x

(k)
t−1

)
. (10)

The main idea is to get a Monte Carlo approximation of
p(xt, θ|yt) from (10) and from the set of sufficient statistics{

T
(k)
t

}K

k=1
=

{
T t(x

(k)
t , yt)

}K

k=1
. The approximation of

the marginal distribution p(xt|yt) is then simply obtained
by discarding the samples θ(k). Therefore, only the sam-
ples x

(k)
t and the corresponding sufficient statistics T

(k)
t are

stored, but samples for θ are drawn jointly to x
(k)
t to sim-

plify the computations. Specifically this approach is based
on the following identity:

p(xt, θ|yt) ∝ p(xt, θ, yt|yt−1) (11)

∝ p(xt−1|yt−1)p(θ|T t−1)p(xt|xt−1, θ)p(yt|xt,θ).

Based on the importance sampling paradigm, a Monte Carlo
approximation of (11) can be obtained by keeping the past

simulated streams
{

x
(k)
t−1, w

(k)
t−1

}K

k=1
unmodified and draw-

ing (θ(k), x
(k)
t ) from a proposal distribution

q(θ, xt|x(k)
t−1, yt) = q1(θ|x(k)

t−1, yt) · q2(xt|x(k)
t−1, yt, θ).

The weights are updated according to the usual rule:

w
(k)
t ∝ w

(k)
t−1

p
(
θ(k)|T (k)

t−1

)
p

(
x

(k)
t |x(k)

t−1, θ
(k)

)
p

(
yt|x(k)

t ,θ(k)
)

q1

(
θ(k)|x(k)

t−1,yt

)
q2

(
x

(k)
t |x(k)

t−1, yt, θ
(k)

) .

(12)
The sufficient statistics are then updated and the samples
for θ discarded. Resampling can be performed as usual
and the estimation of θ is done through the use of Rao-
blackwellization as follows [4],

E{θ|yt} ≈ 1
Wt

K∑
k=1

w
(k)
t E

{
θ|T (k)

t

}
. (13)

In this setting, the use of the optimal proposal distribu-
tions q1(A|x(k)

t−1, yt) =
∏N

i=1 p(ai|x(k)
t−1, yt) for the transi-

tion matrix and q2(xt|x(k)
t−1, yt, θ) = p(xt|x(k)

t−1, yt, θ) for
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the state realization, lead to a weight update formula that
does not depend on the actual values sampled at time t. It is
therefore possible to compute the weights before sampling.
It very attractive since we are now able to perform resam-
pling before sampling and thus lowering the loss of diversity
occurring during the usual resampling scheme. The same
idea appears in the auxiliary sample filter [4] where a part of
the weight can be computed before sampling and the rest is
roughly estimated. The approximate weights are then used
to perform the resampling as a prior step. The major differ-
ence here is that the complete weights can be pre-computed
and that we advocate to use resampling only if necessary as
is commonly done in the usual SMC procedure.

4. DETERMINISTIC SEQUENTIAL SAMPLING

The online SMC estimator randomly generates samples ac-
cording to p(xt|x(k)

t−1, yt) for xt ∈ X . Consequently, some
information is distorted if the number of Monte Carlo sam-
ples is not sufficiently large. Furthermore, the use of the
optimal sampling distribution implicitly led us to consider
all possible extensions of a sample. This was possible be-
cause xt can only take values from the finite set X . An
alternative deterministic approach, developed in [3], and ex-
tended here to the case of unknown parameters and Markov
state processes, consists of explicitly considering all Kext

possible extensions of the K samples and then perform a
selection step so as to avoid the exponential increase of the
number of samples and keep a constant number K of them.
Another idea in this context is that there is no point in keep-
ing different samples representing the same path. Therefore
the selection step should not rely on the usual resampling
scheme. The simplest idea kept in this paper is to select the
K most likely samples at each time step. Strictly speaking,
we then loose the properly weighted characteristic by cut-
ting out the tails of the p.d.f. during the selection step. To
avoid this, a more sophisticated scheme is developed in [5],
some of the most likely samples are kept and resampling
without replacement is performed on the remaining ones.

From Bayes theorem we have

p(xt|yt) ∝ p(yt|xt, yt−1)p(xt|xt−1, yt−1)p(xt−1|yt−1)
(14)

with p(xt|xt−1,yt−1) =
∫

pθ(xt|xt−1)p(θ|T t−1)dθ and
p(yt|xt,yt−1) = B(yt;xt). Thanks to the Dirichlet prior,
the integral can be computed analytically. Based on the
facts that pθ(xt|xt−1) = axt−1,xt and that p(ai|T t−1) =
D (ai; αi,1,t−1, · · · , αi,N,t−1) we can show that

p(xt = i|xt−1,yt−1) = Ep(θ|T t−1)

{
axt−1,i

}
=

αxt−1,i,t−1∑N
j=1 αxt−1,j,t−1

. (15)

The recursion (14) can thus be computed analytically. Sup-

pose a set of weighted samples containing no duplicate and
representing p(xt−1|yt−1) is available at time (t − 1). The
state transition distribution can be written as

p(xt|xt−1, yt−1) =
N∑

i=1

p(xt = i|xt−1,yt−1)I(xt − i).

and thus p(xt|yt) can be approximated by

p̂ext(xt|yt) =
1

W ext
t

K∑
k=1

N∑
i=1

w
(k,i)
t I

(
xt −

[
x

(k)
t−1, i

])
,

(16)
where the weight update is given by

w
(k,i)
t ∝ w

(k)
t−1B(yt; i)α

(k)

x
(k)
t−1,i,t−1

/
N∑

j=1

α
(k)

x
(k)
t−1,j,t−1

. (17)

The selection step is then performed to retain a fixed num-
ber of samples. As one can see such a procedure has many
benefits since the parameters are analytically integrated out,
no computationally expensive random sampling has to be
done and no computation needs to be done twice.

5. APPROXIMATE MAP ALGORITHM

For HMM with known parameters, the Viterbi algorithm
provides a recursive solution to get the best state sequence
estimation in terms of the maximum a posteriori (MAP)
[1]. When the parameters are unknown, the most com-
mon procedure is to use an EM algorithm which only con-
verges to some local maximum of the a posteriori density
but above all it is a batch procedure and thus can not be
used in our setting. In this section another approach, based
on the use of sufficient statistics developed above, is taken.
An approximate MAP algorithm is presented whose com-
putational load and memory need are equivalent to a usual
Viterbi algorithm. We are interested in recursively maxi-
mizing p(xt|yt) with respect to xt. In order to do that,
the Viterbi algorithm uses δt(i) = maxxt−1|xt=i p(xt|yt).
From (14) we have

δt(i) = p(yt|xt = i) max
xt−1|xt=i

max
xt−2|xt−1,xt=i

[p(xt−1|yt−1)p(xt|xt−1, yt−1)],
(18)

that can recursively be computed if the transition matrix is
known by taking p(xt|xt−1, yt−1) = axt−1,xt out of the in-
ner max so that δt(i) = p(yt|xt = i) maxj [δt−1(j) · aj,i].
The estimate x̃t of xt at time t is then given by maxi[δt(i)].
When the transition matrix is unknown, even if the probabil-
ity of any path can be analytically computed, such a recur-
sion cannot directly be used because p(xt|xt−1, yt−1) de-
pends on xt−2. However if we make the approximation that

IV - 15



p(xt−1|yt−1)p(xt|xt−1, yt−1) is maximized when only the
second term p(xt−1|yt−1) is maximized,

max
xt−2|xt=i,xt−1=j

[p(xt−1|yt−1)p(xt|xt−1,yt−1)] =

p(x∗
t−2, xt−1 = j|yt−1)p(xt = i|x∗

t−2, xt−1, yt−1)
(19)

where x∗
t−2 = arg maxxt−2|xt=i,xt−1=j p(xt−1|yt−1), we

can then derive an approximate MAP algorithm. Our simu-
lations showed that (19) provides rather good results given
the low complexity of the resulting algorithm. Our approx-
imation δ̂t(i) of δt(i) can be computed recursively as

δ̂t(i) = p(yt|xt = i) max
j

[
δ̂t−1(j) ·

α
(j)
j,i,t−1∑N

k=1 α
(j)
j,k,t−1

]
,

(20)
where the sufficient statistics T

(j)
t−1 correspond to the re-

tained path ending with xt−1 = j. Our estimate of xt at
time t is the state that maximizes δ̂t(i).

6. NUMBER OF COMPETING TERMINALS IN
IEEE 802.11 NETWORKS

The performance of the IEEE 802.11 DCF is very sensi-
tive to the number of users competing to access the wireless
channel. The problem of estimating the number of compet-
ing terminals in an IEEE 802.11 wireless network with an
extended Kalman filter (EKF) has been addressed recently
in [6]. The estimation is based on the observed collision
probabilities in the shared wireless channel. It is shown
in [7] that if the nodes are in saturating regime and the sys-
tem reaches a steady state then the collision probability pc

can be expressed as a function of the number of competing
terminals x as pc = hW,m(x) where W and m are the ex-
ponential backoff parameters. Each terminal can measure
the packet collision probability by monitoring the channel
activity. By counting the number of experienced collisions
Ccoll, as well as the number of observed busy slots Cbusy

within one observation slot we get a measurement yt of
the collision probability that follows a binomial distribution
yt ∼ P(B, hW,m(x)). With this knowledge, IEEE 802.11
nodes can adapt their window parameters to optimize the
total network throughput.

The EKF approach implicitly uses a linear Gaussian dy-
namic model departing from the discrete nature of the vari-
ables of interest, and the underlying model of IEEE 802.11
networks corresponds then to an HMM with unknown tran-
sition matrix. We applied the algorithms developed in this
paper to a more realistic model, as our simulations do not
strictly make use of the Markovian assumption. Indeed our
ns-2 simulation uses a exponential On-Off activation pro-
cess in continuous time which is not Markovian anymore in
the irregular discrete timescale developed in [7]. The active

750 800 850 900 950
0

0.1

0.2

0.3

0.4

C
ol

lis
io

n 
P

ro
ba

bi
lit

ie
s

Time in seconds

Observed collision probabilities
Analytical collision probabilities

Fig. 1. Observed collision probabilities.

nodes are in saturating mode and the departures happen ac-
cording to a realistic IEEE 802.11 protocol. The terminals
used B = 100 for estimating the collision probability, re-
sulting in noisy estimates of the probability of collision as
shown in Fig. 1 (for W = 32, m = 5). Note that increas-
ing B would result in better estimates but, on the other side,
would increase the delay as the nodes need to wait more
slots to update their estimates.

Estimator model-based ns-2 (W,m)
W=32, m=5 (16,6) (32,5) (64,4)

Gibbs Sampler 0.50 2.2621 1.7616 2.1621
SMC 0.63 2.8542 3.0417 2.5929

Deterministic 0.53 2.4434 2.903 2.2015
EKF+CUMSUM 3.2 3.4396 3.2909 2.8487

Approximate MAP 0.55 2.8822 2.8033 2.0066

Table 1. MSE obtained in our simulations.

Table 1 shows the results of a 300 seconds simulations
with the standard 1Mbps IEEE 802.11 implementation in
ns-2 2.27 for common values of W and m, as well as for
data extracted from the Bianchi’s model. Both model-based
and ns-2 results show that our estimators outperform the
EKF based estimator of [6] and approach that of a Batch
estimator based on the Gibbs sampler.
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