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Abstract—We address the problem of jointly tracking and clas-
sifying several targets within a sensor network where false detec-
tions are present. In order to meet the requirements inherent to
sensor networks such as distributed processing and low-power con-
sumption, a collaborative signal processing algorithm is presented.
At any time, for a given tracked target, only one sensor is active.
This leader node is focused on a single target but takes into ac-
count the possible existence of other targets. It is assumed that the
motion model of a given target belongs to one of several classes.
This class-target dynamic association is the basis of our classifica-
tion criterion. We propose an algorithm based on the sequential
Monte Carlo (SMC) filtering of jump Markov systems to track the
dynamic of the system and make the corresponding estimates. A
novel class-based resampling scheme is developed in order to get a
robust classification of the targets. Furthermore, an optimal sensor
selection scheme based on the maximization of the expected mutual
information is integrated naturally within the SMC target tracking
framework. Simulation results are presented to illustrate the excel-
lent performance of the proposed multitarget tracking and classi-
fication scheme in a collaborative sensor network.

Index Terms—Collaborative signal processing, multitarget
tracking, sensor networks, sequential Monte Carlo (SMC).

I. INTRODUCTION

THE CONVERGENCE of recent developments in micro-
electromechanical systems (MEMS), microprocessors

and ad hoc networking protocols have enabled low-power and
low-cost sensor nodes endowed with sensing and processing
capabilities to collaborate and achieve large tasks [1]. Typical
applications of such sensor networks are event detection, event
identification, and location sensing [2]. This paper focuses on
the problem of jointly tracking and classifying several targets
evolving within densely scattered sensor nodes. On the one
hand, multiple target tracking tackles the issue of sequentially
estimating the state of a possibly varying number of objects;
and on the other hand, classification deals with the identification
of those objects down to a given class. Because the number of
targets can vary, we are handling three closely coupled subjects:
target detection, tracking, and classification. Considering the
strong interrelations existing between those, it is natural to
address them jointly. Indeed, the class of a target defines its
motion characteristics which are essential for accurate tracking.
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Besides, the observed target dynamic can be used to distinguish
the type of the tracked object, and naturally, a change in the
number of targets implies a modification of the tracking and
classification procedures. In this paper, classification is based
solely on the motion model of the targets (as opposed to the
case in which two targets may differ in other characteristics, say
audio spectrum, rather than their dynamical characteristics).

Typical algorithms dealing with multitarget tracking are very
computationally complex and generally require a centralized
computation based on the measurements available from all sen-
sors [3], [4]. An important characteristic of sensor networks is
their ability to cooperate among densely and randomly deployed
sensor nodes [5]. Another significant feature is the low-power
consumption requirement [1]. Sensor nodes carry limited, gen-
erally irreplaceable, power sources. It is, thus, of great impor-
tance to develop localized algorithms, where only a subset of the
nodes are activated and are responsible for data fusion, instead
of sending their raw measurements to an information fusion
node. These requirements led us to use a leader-based tracking
scheme [2], [5], where for each tracked target only one sensor,
the leader-node, is active.

Sensor nodes can typically only sense objects in their close
neighborhood. We, thus, make the reasonable assumption that
no more than two targets can be at the same time in the field cov-
ered by a sensor. From the point of view of a leader, the problem
becomes that of tracking and classifying a single target with a
possible interfering target. The complex problem of multitarget
tracking can, thus, be tackled through sensor collaboration by
dividing it into several easier, localized tasks.

In this paper, the problem of information fusion and
sensor selection is solved within the Bayesian framework. No
closed-form solution for the posterior distribution of the target
states is available and, therefore, sequential Monte Carlo (SMC)
methods are employed to approximate the filtering density. In
order to model the varying number of targets, we will make use
of a jump Markov system (JMS) [6], [7].

The focus of this work is on the processing of the measure-
ments to perform the joint tracking and classification as well as
sensor management. The communication aspects are out of the
scope of this paper. We, therefore, assume that the network has
been initialized so that each node has the knowledge of its own
position, its neighbors’ identities and their positions.

The first contribution of this paper is to extend the (single
target) leader-based tracking scheme proposed in [2] and [5] to
the multiple target scenario by introducing a lower complexity
version of the SMC filtering of JMS proposed in [6]. The second
contribution is a class-based resampling procedure to avoid the
loss of plausible classification hypotheses during the early stage
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of the tracking. The third contribution is a SMC implementation
of an optimal sensor selection scheme.

The remainder of this paper is organized as follows. In
Section II, we provide a framework for multiple target tracking
and classification in a collaborative sensor network. The gen-
eral principle of sequential Monte Carlo inference is briefly
reviewed in Section III. The issue of classification is discussed
in Section IV, where we present the joint tracking and clas-
sification SMC algorithm for a single target. The multitarget
tracking and classification algorithm is developed in Section V.
In Section VI, we discuss the sensor selection scheme. Simula-
tion results are presented in Section VII. Section VIII concludes
the paper.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

We assume that in a sensor network, the randomly deployed
sensor nodes are able to collect data, process it, and route infor-
mation back to the sink that dispatches the data to the end user.
One of the main concern of any signal processing algorithm for
sensor networks is to make efficient use of the limited available
power resources. Each node should remain idle unless queried
to perform a specific task [1].

A. Leader-Based Tracking in Sensor Networks

We consider a leader-based tracking scheme—also denoted
as information-driven sensor querying (IDSQ) [2], [5]. For each
tracked target and at each time step, only one sensor is active.
The information is passed from node to node so that a single
sensor, the leader node, is responsible for the tracking of a given
target. Even if a leader is focused on a single target, unless the
other targets are far away, it cannot consider them as noise be-
cause the statistical properties of the measurements arising from
those other targets are identical to those of the tracked target
(as opposed to spurious measurements) [3]. Therefore, a leader
node needs to take into account other targets as soon as they ap-
pear in its covered field. As mentioned previously, it is assumed
that in the limited range covered by a sensor, no more than two
targets can be present. We further assume that the primary target
is always within the range of its leader node. Each leader will,
thus, have to deal with the simplest nontrivial multiple target
tracking and classification problem. From now on, we can focus
on the point of view of a single leader node.

An interesting problem in this setting is that of track initiation
and track maintenance which is not covered in this work. We
refer to [8] for a possible solution to these problems. In this
paper, we assume that priori information is given to initiate the
leader-based tracking scheme.

Each current leader node performs the following operations
at each time instant.

Step 1) The measurements are retrieved.
Step 2) The posterior density (state and class of the two tar-

gets and probability of being in the field for the in-
terfering target) is updated (cf. Sections IV and V).

Step 3) A next leader node (for the the primary target) is
chosen (cf. Section VI).

Step 4) The belief state is handed over to this chosen node,
which becomes the current leader node.

Step 5) The node gets back to an idle state.

Such a leader-based scheme has several advantages that are
particularly attractive for collaborative sensor network applica-
tions: only local computations are involved, no global knowl-
edge is assumed, there is no need for centralized control, and it
is perfectly scalable.

B. Multiple Target Tracking and Classification

When performing joint tracking and classification, we aim at
giving a good estimate of the state of a target (position, velocity,
and class). We consider a model-based target tracking method
[9], where the target motions and the observations can be rep-
resented by state-space models. The state of the system is the
concatenation of the states of the targets.

We consider class-dependent motion models where each
target is considered as a point-object moving according to its
dynamic in a two-dimensional plane. Those motion models are
essential to any model-based tracking algorithm and, thus, need
to be well fit to the tracked targets.

Let denotes the number of targets at time within the field
of the considered leader node. Let be the set of active targets
at time . From our assumptions, if
if . The first target is always the tracked target and the
second a generic interfering one. If , it is as-
sumed that the second target remains the same (i.e., the case
where the second target disappears, while a new target appears
during the same time step is not considered). We denote by

the state of the targets at time , where
stands for the state (position, velocity, and class) of

the target. The system at time is, thus, characterized by
the vector ( , ), where is introduced to emphasize the de-
pendence of on the number of targets. Conditioned on the
number of targets at time and , the system dynamic model
is described by .

We make the common assumption that each target moves in-
dependently from the other according to a Markovian transition
dynamic. This dynamic depends on the class of the th target.
The dynamic of the system (conditioned on the number of tar-
gets at time and ) can, thus, be decomposed as

(1)

(2)

If the terms referring to in (1) and (2) correspond
to a given prior information. The noise terms are assumed
to be white and pairwise independent.

We assume that the evolution of the number of targets is
independent of the previous state of the targets . The state
transition dynamic is, thus, given by (1), (2), and

(3)

We denote by (birth) the probability of switching from
to , and by (vanishing) the probability of

switching from to . With these assump-
tions, we eliminate the problem of the ordering ambiguity found
in [6], [7], and [10].

Sensor nodes are usually prone to errors and the measure-
ments available can either arise from the targets of interest when
they are detected or be spurious clutter noise (e.g., returns from
nearby objects or electromagnetic interferences). One of the
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major problems in such a system arises from the generally un-
known association between the available measurements and the
targets of interest. Traditionally, data association is handled by
methods such as the nearest neighbor or the joint probabilistic
data association algorithm (JPDA) [3]. When dealing with non-
linear models and unknown number of targets, none of these
methods can be applied directly. In this work, a statistical data
association scheme is used.

Let be the number and be the vector
of available measurements at time . We assume that at most
one measurement can arise from each target, and that several
measurements can arise from the clutter. The data association
vector is denoted by , which is, thus, a vector of length
whose components take values in . Note that
means that the th measurement has been generated by the th
target, whereas means that it is a spurious one. Con-
ditioned upon the data association and the state of the system,
the measurements are assumed to be independent. The general
model for the measurements is, thus, as follows:

(4)

(5)

i.e., a measurement is given by the measurement function
(depending on the state of the target and a noise term) if it arises
from a target and is specified by some probability distribution

if it arises from the clutter. The noise terms are assumed
to be white and pairwise independent.

C. Specific Target Dynamics

In this work, two different motion models were considered:
the constant velocity and the coordinated turn rate models. We
refer to [9] for an up-to-date survey of motion models. de-
notes the length of a time step.

1) Constant Velocity Model: This model is the most com-
monly used. The target is assumed to move with a constant ve-
locity. For notational simplicity, refers to the state (coordi-
nates and the velocities) of a single target following this motion
model and is the corresponding motion noise. We denote with

and the coordinates:

(6)

where .
2) Coordinated Turn Rate Model: This model assumes that

the target moves with a constant speed (norm of the velocity
vector) and a constant known turn rate . Again, we denote

as the state of a single target from this class and as the
corresponding motion noise. We have

(7)

where has the same Gaussian distribution as in (6).

D. Specific Sensing Model

Each sensor provides a set of measurements which can be
divided into two distinct sets: the first one consists of the mea-
surements generated by the detected targets and the second one
is composed of the false detections from the clutter.

1) Target-Originated Measurements: Many types of sensors
provide measurements which are a function of the relative dis-
tance between the sensor and the sensed object (e.g., radar, ultra-
sound, sonar, etc.). Again, we denote by
the state of a single target. The index will refer to the sensor
of interest whose position is . The distance between the
sensor and the target is then

(8)

A common example is given by measurements of the power
of a radio signal emitted by the object. The received power typ-
ically exponentially decays with the relative distance. In a log-
arithmic scale, the measurements are modeled by

(9)

(10)

where the measurement noise is assumed to be a zero-mean
independent identically distributed (i.i.d.) Gaussian, i.e.,

; is the transmission power and is the path
loss exponent. These parameters depend on the radio environ-
ment, antenna characteristics, terrain, etc. Note that corre-
sponds to the free space transmission and serves as a lower limit.
Furthermore, a sensor can provide measurements of a target
only within a certain range. Therefore, a target could be detected
only if . In that case, we will denote by

the probability of detection which is assumed known.
2) Clutter Noise Model: The false detections are spurious

measurements assumed to be uniformly distributed in the mea-
surement area whose volume is
denoted as . The number of false
detections is typically generated by a Poisson distribution
with parameter , where is the number of clutter mea-
surements per unit volume and per time step. Hence, we have

(11)

(12)

E. Conditional Distribution of the Measurements

The main issue when computing the conditional distribution
of a set of measurements resides in the uncertainty in the origin
of the measurements. We consider a statistical data association
conditioned on the number of targets in the field related to the
JPDA method [3]. Because of the arbitrariness in the ordering of
the measurements, we assume that (without any knowledge of
the value of the measurements) the associations are independent
of the current state. The conditional distribution of the measure-
ments can be expanded as

(13)

In (13), all possible data associations are enumerated, this is
often a major problem when dealing with multiple targets. When
a nonlocal sensor is used, the measurements can arise from the
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entire field of interest. In order to reduce the complexity of the
procedure, it is common to use only a subset of all possible
data associations. An association would only be
allowed if the measurement is close to the estimate
of the expected value . This idea is referred to as
the gating procedure [3]. In our problem, the sensors can only
provide local information and, thus, a natural gating is made.
The total number of measurements and targets for a leader node
will be small and, thus, the number of possible data associations
remains small.

The prior probability of a data association (given the number
of targets, the number of measurements and the probability of
detection ) only depends on the set of detected targets and
not on the order within the data association vector. The number
of data associations in which the same set of targets is detected is
given by (we choose
the measurements from the clutter out of the measure-
ments, and then order the measurements from the tar-
gets). After some simple calculations, the prior probability of a
data association is given by

(14)
The other term in (13) is computed by assuming
that the measurements are conditionally independent

(15)
Within the framework described above, we aim at performing

an on-line estimation of the a posteriori distributions of the
target positions, number, and class affiliations at
time based on the measurements at densely deployed
sensor nodes. The exact solution to this problem involves a very
high dimensional integration, which is infeasible in practice.
We will employ the SMC techniques to solve this problem. The
basic principle of SMC is discussed next.

III. SEQUENTIAL MONTE CARLO (SMC) METHODS

We consider a generic dynamic model described by

initial state model (16)

state transitions model (17)

measurement model (18)

The cumulative sets of states and measurements are denoted by
and . Suppose an

on-line inference of is of interest. That is, at current time ,
we wish to make an estimate of a function of the state variable,
say , based on the currently available observations .
The optimal solution to this problem in the sense of minimum
mean-square error is

(19)

In most cases, an exact evaluation of this expectation is analyti-
cally intractable. SMC methods [11]–[14] are simulation-based

techniques, making use of sequential importance sampling
(SIS), that provide a reliable approximation of this solution.

Let be an arbitrary proposal distribution from
which we can easily draw samples. Provided that the support of

includes the support of , we have the following
identity:

(20)

where is denoted as
the importance weight. Thus, by drawing random samples

from the proposal distribution , it is pos-
sible to obtain an estimate of (19) as

(21)

where and . The set,

, of random draws and weights is said to
be properly weighted with respect to the target distribution

. One such sample together with its weight is
commonly denoted as a particle.

A. Sequential Importance Sampling (SIS)

The posterior distribution can be expressed by Bayes’ rule
as . Therefore, we
get the following recursive formula:

(22)
This motivates us to adopt a recursive importance sampling
strategy by choosing a proposal density which can be factorized
as . It is
then possible to sequentially draw from by keeping
the past simulated streams unmodified, and
then drawing from . The weights in
(21) are also recursively updated and become

(23)

B. Resampling Procedure

A common problem with the SIS algorithm is known as the
degeneracy phenomenon. In [12], it is shown that the variance
of the importance weights can only increase over time which
makes the degeneracy problem ineluctable. After a few itera-
tions, some particles will have very small weights. Such sam-
ples are said to be ineffective. If there are too many ineffective
samples, the Monte Carlo procedure becomes inefficient.

Two options are possible to tackle this problem. The first
one involves a good choice for the proposal density (which can
be difficult to implement). The second, called resampling, is a
useful method for reducing ineffective samples and enhancing
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effective ones. One simple resampling scheme can be described
as follows (cf. [11] for other schemes).

• Draw sample streams from

with probabilities proportional to the weights .
• Assign equal weights to each stream, .

It is shown in [15] that samples drawn by the above resam-
pling procedure are indeed properly weighted with respect to

, provided that is sufficiently large.
The degeneracy of the particles can be measured by the ef-

fective sample size defined as

(24)

It can be approximated by [14].

Heuristically, reflects the equivalent size of a set of i.i.d.
samples for the set of weighted ones. It is suggested in [11]
and [14] that resampling should be performed whenever the
effective sample size becomes small, e.g., .

IV. JOINT SINGLE TARGET TRACKING AND CLASSIFICATION

The class of a target is an important information as such.
Furthermore, when tracking a target whose maneuvering capa-
bilities are unknown, the use of a very general motion model
can lead to very poor estimates. This uncertainty is often due
to the lack of knowledge about the type of the tracked object
and only a finite set of types is of interest. Another approach
when dealing with such an uncertainty is to compare several
classes of dynamic models such as those presented in Section II.
In this section, we propose an algorithm for jointly tracking and
classifying a single target evolving within a sensor network. A
class-based resampling scheme is developed.

A. Related Work

In [16], the authors introduced a Bayesian target classifica-
tion method based on the estimate of kinematics only. Their
major contribution was to point out the dependence between the
target state and the target class, and then to integrate this depen-
dence into a joint tracking and classification algorithm. Within
this framework, the estimations are provided by a grid-based
algorithm, which is known to be very difficult to implement, es-
pecially in high dimensional spaces.

In [17], the multitarget tracking and classification problem
is addressed (for a fixed number of targets). Their implementa-
tion is based on a nearest-neighbor data association. Moreover,
the class estimate always settles on a fixed value. This is prob-
lematic when two classes appear similar during a certain pe-
riod of time, since the class estimation might lock on the wrong
class. To solve this problem, it is proposed in [18] (for a single
target) to use a separate particle filter for each possible class and
a method for comparing different filters is given.

The problem of joint tracking and classification can be seen
as that of simultaneously dealing with both a fixed model pa-
rameter (class) and state variables (position and velocity). Sev-
eral works have proposed algorithms for dealing with static pa-
rameters within an SMC framework [19], [20]. However, the

parameters considered were continuous which is fundamentally
different from our classification problem.

Our approach combines the advantages of the previous works.
We use the SMC framework, but we make sure to always be
able to recover information related to a specific class, and in
order to devote more (but not all) computational load to the more
likely classes, our approach will compound the different class
information into a single filter.

B. Class-Based Resampling Scheme

Our algorithm relies on the framework presented in Section II
but for the sake of clarity, here, we focus on the case of a single
target. Extension to the multiple target case will be presented
in Section V. In order to simplify the notations, we will here
consider as the joint state and class of the target
of interest.

The simplest way of dealing with the class is to include it in
the state vector and then to use a simple particle filter for this
augmented state. This makes use of the static evolution model
(2) of the class parameter. Because of this absence of dynamic,
the number of particles from each class will not change during
the updating step. A change will only occur during the resam-
pling stage. Sometimes, and especially during the initial steps,
the particle filter may lock on the wrong class. This situation can
sometimes last for quite a while. Then, all particles might even-
tually settle in a wrong class. To avoid this situation, one idea
is to assume an artificial evolution (usually a Markov chain) of
the class parameter (2). This results in a model mismatch and,
because only the recent observations still have an influence on
the class estimation, this also leads to a loss of information as
argued in [20].

Because of the finite number of available classes, it is pos-
sible to keep particles for each of those. If we assume that a
sufficient number of particles from each class remains available
at each time, then it would always be possible to recover from
a misclassification. Subsequently, our aim is to keep a sufficient
number of particles per class. Since a change in the number of
particles arise only during the resampling, this suggests modi-
fying the resampling algorithm.

1) The Algorithm: The resampling scheme is essentially a
way of eliminating trajectories with small weights and ampli-
fying those with large weights. This can be applied within the set
of particles belonging to the same class. It is indeed clear that the
usual resampling scheme can be done by first setting the number
of particles for each class according to a multinomial dis-
tribution with parameters the posterior class probabilities, and
then by drawing streams within the particles with class
according to their weights. Here, we introduce a threshold step
to keep a sufficient number of particles for each class and keep
a constant total number of particles. Due to the threshold oper-
ation, all particles will not be assigned equal weights. The re-
sampling scheme should not change the class probabilities and,
thus, the total weight corresponding to a given class should not
change. Furthermore, within a class, we draw the indexes ac-
cording to the weights, all particles within a class should then
have equal weights. Similar ideas can be found in the stratified
sampling theory and future work on these connections will cer-
tainly be profitable.
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We denote as the set of all possible classes. The class-based
resampling scheme can be summarized as follows.

• Choose the number of particles for each class ac-
cording to a multinomial distribution with parameters

.
• , if , set .
• Reduce the number of particles from the class with the

most particles until .
• , draw sample streams with proba-

bility proportional to the weights
from .

• Assign equal weight to each new sample within a class i.e.
.

For a sufficiently large , it is possible to show [15]
that if the set of samples representing is prop-
erly weighted, then it is also properly weighted after resampling
within a class. Therefore, by using the expansion

our complete set of samples will
remain properly weighted with respect to . Just as
no rigorous scheme exists in the literature to select the optimal
number of particles, remains a tuning parameter.

V. MULTIPLE TARGET TRACKING AND CLASSIFICATION

As stated in Section II, we make use of the SMC techniques
within a leader-based tracking scheme. In this framework, it is
possible to consider each target independently, as long as the
other one are far away. It is subsequently compulsory to deal
with a varying number of targets. Indeed, as we mentioned ear-
lier, a target perturbing the measurements available to a sensor
cannot be considered as noise. In this section, we will describe
the main body of the general algorithm.

A. Related Work

In order to deal with an unknown or varying number of targets
, several alternatives are available. A classical approach is to

estimate separately from the rest of the state-space by using
a hypothesis test for instance, and then to treat the estimated

as the true number of targets for the estimation of the other
variables [4]. Another possibility is to compare several tracking
hypotheses with different number of targets. In [10], random
sets and finite-set statistics are employed to achieve this objec-
tive. In order to estimate the state of the system, it is then neces-
sary to find the peaks in the probability hypothesis density (the
equivalent of the probability density function for random sets)
using, e.g., the EM algorithm. In [6] and [7], it is proposed to
cast the multiple target tracking problem into that of filtering a
JMS, where the number of targets and, thus, the dimensionality
of the state, follows a Markov chain.

Our approach also makes use of the JMS in modeling the
varying number of targets. However, in order to meet the
requirements of the sensor networks, we will focus on main-
taining the computational complexity as low as possible. We
will also incorporate the class-based resampling scheme de-
scribed in Section IV so as to tackle the issue of jointly tracking
and classifying the targets.

B. SMC Solution

Our state becomes ( , ) with , and
where we recall that is the set of active targets. Our goal
remains to sequentially estimate . Because we
are given a dynamic model, the SMC methods presented in
Section III are well fit to solve this problem.

Optimal Sampling Density: The first issue encountered
in this approach resides in the choice of the sampling den-
sity. In fact, the optimal choice for the sampling density is

[12]. Clearly, it is impossible to sample directly from this
distribution and even if we could, the weight update would also
require the evaluation of , which does not admit a
closed-form expression.

For the above reasons, using the prior distribution as the sam-
pling density is often a reasonable choice (for instance, in the
single target scenario). When dealing with , the problem is
more subtle. If the probability of a new target appearance is
small, only a few particles will increase their dimension and,
thus, become accurate, when a new target enters the field. After
the resampling stage, only a few number of particles will be
kept, which will result in a loss of diversity within the particles
and could lead to loosing track of the target of interest. On the
other hand, assuming a large probability of appearance would
lead to drawing many inaccurate samples and overestimating the
probability of having a second target in the field. It is, therefore,
imperative to include the current observation in the proposal dis-
tribution of . The optimal sampling density can be written as

(25)

where .
The first term expands as

(26)

Finally, the computation of (26) requires

(27)

Choice of the Sampling Density: The quantity in (27) can be
approximated by an unscented transform [21], as proposed in
[6] and [7], or simpler by using the mean or mode of this distri-
bution. This choice is also used in the auxiliary particle filter to
compute the auxiliary weights [22]. In our simulations, this ap-
proximation appeared sufficient for the previously existing tar-
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gets. Since is linear in and is zero-mean, our ap-
proximation of (27) is

(28)

(29)

For the newly appeared targets, there is no available ,
and in that case, (28) is not accurate. Therefore, we need to
compute (i.e., (27) for new targets).
If no prior information on the position of the newly appeared
target is available, it is common to consider

as uniform in the sensed volume. When the sensing
model is given by (4), can then
easily be computed analytically. (It is an exponential of
times a difference between two Gaussian cumulative distribu-
tion functions (CDFs) omitted here for the sake of brevity).
Alternatively, if a specific prior on the position is used, it is
possible to sample particles for the newly appeared target,
and approximate by Monte Carlo
integration. The same samples can afterwards be used when
drawing . We now have an approximation of (26) denoted
as .

In (25),
could be approximated by performing a local linearization
of the dynamic model similar to the extended Kalman filter
[12], [14], but this would result in a heavier computational
load and, thus, consumes more power, whereas sampling from
the prior is sufficient once the number of targets is given.
Nevertheless, for the newly appeared targets, sampling from
the prior distribution can be inefficient if we assume a uniform
distribution of the position within the entire area covered by the
leader node. It is, however, possible here to get an analytical
expression of . It is easily shown that
with our choice of follows
a lognormal distribution (omitted here for the sake of brevity).

Subsequently, the following proposal density is used:

(30)

Extension of the Class-Based Resampling Scheme: In
Section IV, we proposed a particle filter approach for dealing
with the classification. As the number of targets is now greater
than one, a direct generalization of the proposed algorithm
would be to keep a sufficient number of particles per class
association vector. However, this would result in a substantial
increase in the minimum number of particles we should keep.
Since we use a leader-based tracking scheme, our attention is
mainly focused on the first target. Hence, for the other targets,
we chose to depart from the real static evolution of the class
and allow a small probability of switching between classes so
as not to settle in the wrong class. The robust classification for
those targets is actually made by the leader node responsible
for them.

VI. SENSOR SELECTION

Because our tracking scheme relies on a leader-based algo-
rithm, the sensor selection step is essential. In this section, we
consider an information driven sensor selection algorithm. The
choice of the sensor will determine the efficiency of the tracking
(and, thus, of the classification) and the resource consumption of
the nodes (e.g., power use). Depending on the cost of a handoff
to different node, it could be necessary to penalize such an oper-
ation. A tradeoff is typically to be made between the information
gain and the total cost [5]. A simple formulation of the sensor
selection scheme can be given as that of maximizing the expec-
tation of an objective function. We denote by the leader node
selected at time and emphasize the dependence of the various
densities on this variable. This selection can be written as

(31)
where is the information gain by fusion of a set of measure-
ments from the sensor , is the cost of choosing the sensor,
and is the relative weight between those quantities.

The function is characterized by link bandwidth, trans-
mission latency, node battery power reserve, etc. In our case,
this is the cost of handing the current belief state off to sensor ,
acquiring data at sensor , and combining the data with the cur-
rent belief. This quantity is typically deterministic (e.g., func-
tion of the distance between the sensors) and the selection cri-
terion becomes an immediate extension of the most informative
selection scheme. In this section, we will, therefore, focus on the
expected information gain . As evidenced
by the presence of the expectation, such a selection criterion
is based on the current belief only and does not use any new
measurements.

In order to measure the information gain in choosing sensor ,
we will make use of the notion of mutual information, which is
a common criterion to measure the reduction of uncertainty in a
random variable due to the knowledge of another one [23]. This
criterion is also advocated in [2], where its approximation relies
on a grid-based method. Another commonly used criterion for
sensor management is the -divergence (or Renyi divergence)
[24], which reduces to our choice as . Our algorithm
can be straightforwardly extended to use the -divergence. In
[25], the author deals the issue of sensor management when the
multitarget problem is addressed within the finite-set statistics.

Let , , and be random variables
having a conditional density . Conditioned on a single
realization of (and not on the random variable ), the
mutual information between and is given by

(32)

Let and be two probability densities, the Kullback–Leibler
(KL) divergence between and is defined by

(33)

Expected Information Gain: As mentioned earlier, within
our tracking framework, we are mainly concerned about the
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first target of each leader node. We will consequently consider
the information conveyed about this target only. We have

(34)

where the conditioning is on the observed realization of
and the sensors of interest are in a specified neighborhood of

(e.g., the three closest sensors to the predicted position of the
first target). is a random variable denoting the measurement
at sensor that would arise from the first target. There is indeed
no need to consider a data association problem.

From the definition (32) of the mutual information and after
some simple calculations, we have

(35)

Our selection criterion can, thus, also be seen as that of
maximizing the average KL distance between the one-step
ahead filtering density and the predictive density. The latter
being performed with respect to the predictive density of the
measurements.

This quantity will be computed as proposed in [6] by a Monte
Carlo method. From (32), we get

(36)

In order to estimate (36), it is possible to use sam-
ples properly weighted with respect
to and get

(37)

We will first approximate . Using the trial
distribution , we can draw sam-

ples with the importance weight given

by . Based

on the importance sampling principle,
is easily shown to be properly weighted with respect to the
distribution . These samples are not sensor
dependent and can, thus, be kept for all considered sensors.
We can now sample . By composition
it can also be shown that the set of samples and weights,

, is properly weighted with re-
spect to . We now need to approximate

, which is not directly available with those sam-
ples. However, by expanding this term as

(38)

Fig. 1. Actual and estimated trajectories for two targets, one sample run.

and using the set of samples and weights ,
we get the following approximation:

(39)

Finally, the expected information gain can be approximated by

(40)

The complexity of this scheme is which can appear com-
putationally intensive. Therefore, solutions might be needed to
reduce its complexity. Our goal here is not to approximate accu-
rately the aforementioned expectation but only to find the index

maximizing it. Hence, a rough approximation should be suf-
ficient. One option would be to select (with ) ini-
tial samples by a usual resampling stage, and then perform this
scheme with equal weights. We could also think of inserting this
step every steps or dynamically performing this scheme when,
for instance, the Monte Carlo variance of the particles gets above
a given threshold. Another issue in the sensor selection is that a
given sensor can already be assigned a task. In such a case, the
belief would be handed off to the second best node and so on.

VII. SIMULATION RESULTS

To illustrate the performance of the proposed algorithm,
simulations are performed. The scenario under consideration
presents a crossing of two targets from different classes. Both
targets are given a leader node at time . Fig. 1 gives a
picture of the considered scenario. The first target (starting at
the lower left corner of Fig. 1) is chosen to belong to the second
class, i.e., the coordinated turn rate model (7)), while the second
target (starting at the upper left corner of Fig. 1) belongs to
the first class, i.e., the constant velocity model (6). The true
trajectories of both targets are represented in Fig. 1 with dotted
lines. The arrows indicate the direction of the motion.

The parameters of the simulations are shown in Table I.
For the second target of each leader node, the probability of
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TABLE I
PARAMETERS OF THE SIMULATIONS

Fig. 2. Mean-square error on the position for 20 runs.

changing the class is chosen as 0.01. The prior for the target
class is assumed to be uniform. The prior for the initial state
is Gaussian with the true mean and the covariance matrix

10 10 0.005 0.005 . For the possibly ap-
pearing target, the prior on the position is taken as uniform in
the field cover by a leader node, while the prior for the velocity
is taken as Gaussian with the mean and variance of the true
velocities of the other target on the entire track. We, therefore,
assume that we have a very limited information about the other
target. Indeed our nodes only have observation related to the
distance of the objects which makes the initialization a very
hard problem without any a priori knowledge. This information
on the velocity could for example be transmitted once in a while
to a broad neighborhood of nodes.

To evaluate the performance of the proposed algorithm, we
have performed 20 consecutive runs of the scenario. The true
trajectories are kept identical to those shown in Fig. 1 but inde-
pendent measurements are simulated for each run. We show in
Fig. 2 the mean-square error on the position over those 20 runs.
Our algorithm is able to accurately track each of the targets. The
mean width of the three sigma ellipsoid on the position is 5.08
and 5.01 m for the primary target of the first- and second-leader
node, respectively.

The performance of the classification and target detection are
shown in Fig. 3. We can see that for both leader nodes, the prob-
ability of having two targets in the field jumps as the target en-
ters the field. It does not happen at the same instant for the two
leader nodes because it depends on the specific chosen node. For
the classification, we can see that during the initial steps, the
first-leader node misclassifies its target, but is able to recover

Fig. 3. (a) Probabilities of having two targets in the field. (b) Probabilities that
the first target of the leader node is from the first class. 20 runs average.

and correctly classifies the target after some time. This shows
the ability to recover from a misclassification.

VIII. CONCLUSION

In this paper, we have considered the application of the SMC
methodology to the problem of jointly tracking several targets
and identifying them down to a specific class related to their mo-
tion model. The scenario under consideration is a collaborative
sensor network, where a nonlinear sensing model is assumed.
The requirements of such networks (e.g., low-power consump-
tion, distributed processing, etc.) have led us to the use of a scal-
able leader-based scheme so as to solve this complex problem
through collaboration among the sensors and by dividing the
task into several easier, localized ones. Each leader node faces
the simplest nontrivial multitarget scenario. The computational
burden of multitarget tracking is, thus, mitigated. It is reasonable
to imagine that future sensor networks (in which communica-
tion is the bottleneck as opposed to computation) will be able
to cope with SMC filtering in this setting. Our first contribution
is the extension of the leader-based tracking scheme to a multi-
target case by using a low computational complexity version of
the filtering of JMSs to deal with the varying number of targets.
The second contribution resides in the design of a class-based
resampling scheme leading to a robust classification of the tar-
gets, while allowing more computational load where needed.
Finally, we have presented an SMC method to solve the problem
of information-driven sensor selection. Our algorithm is able to
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detect an appearing target and simulations have shown that the
targets are tracked and classified accurately.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: A survey,” Comput. Netw., vol. 38, no. 4, pp. 393–422,
2002.

[2] J. Liu, J. Reich, and F. Zhao, “Collaborative in-network processing for
target tracking,” EURASIP J. Appl. Signal. Process., no. 4, pp. 378–391,
Mar. 2003.

[3] Y. Bar-Shalom and T. E. Fortmann, Tracking and Data Associa-
tion. New York: Academic, 1988.

[4] C. Hue, J.-P. L. Cadre, and P. Perez, “Sequential Monte Carlo methods
for multiple target tracking and data fusion,” IEEE Trans. Signal
Process., vol. 50, no. 2, pp. 309–325, Feb. 2002.

[5] M. Chu, H. Haussecker, and F. Zhao, “Scalable information-driven
sensor querying and routing for ad hoc heterogeneous sensor network,”
Int. J. High Perform. Comput. Appl., vol. 16, no. 3, pp. 293–314, Mar.
2002.

[6] A. Doucet, B. Vo, C. Andrieu, and M. Davy, “Particle filtering for mul-
titarget tracking and sensor management,” in Proc. Int. Conf. Inform.
Fusion, vol. 1, 2002, pp. 474–481.

[7] C. Andrieu, M. Davy, and A. Doucet, “Efficient particle filtering for
jump Markov systems: Application to time-varying autoregressions,”
IEEE Trans. Signal Process., vol. 51, no. 7, pp. 1762–1770, Jul. 2003.

[8] J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao, “Distributed group man-
agement for track initiation and maintenance in target localization ap-
plications,” in Proc. Inf. Process. Sensor Netwo.: Second Int. Workshop,
IPSN03, vol. 2634, F. Zhao and L. Guibas, Eds., Palo Alto, CA, Apr.
2003, pp. 113–128.

[9] X. Li and V. Jilkov, “A survey of maneuvering target tracking: Dynamic
models,” in Proc. SPIE: Signal Data Process. Small Targets 2000, vol.
4048-22, Apr. 2000, pp. 212–235.

[10] H. Sidenbladh and S. Wirkander, “Particle filtering for random sets,”
IEEE Trans. Aerosp. Electron. Syst., to be published.

[11] J. Liu and R. Chen, “Sequential Monte Carlo methods for dynamic sys-
tems,” J. Amer. Statist. Assoc., vol. 93, no. 443, pp. 1032–1044, 1998.

[12] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo sam-
pling methods for Bayesian filtering,” Statist. Comput., vol. 10, no. 3, pp.
197–208, 2000.

[13] A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential Monte Carlo
Methods in Practice. New York: Springer-Verlag, 2001.

[14] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on
particle filters for on-line nonlinear/non-Gaussian Bayesian tracking,”
IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, Feb. 2002.

[15] D. Crisan and A. Doucet, “Convergence of sequential Monte Carlo
methods,” CUED-F-INFENG, Tech. Rep. 381, 2000.

[16] S. Challa and G. W. Pulford, “Joint target tracking and classification
using radar and ESM sensors,” IEEE Trans. Aerosp. Electron. Syst., vol.
37, no. 3, pp. 1039–1055, Jul. 2001.

[17] S. Herman and P. Moulin, “A particle filtering approach to FM-band
passive radar tracking and automatic target recognition,” in Proc. IEEE
Aerosp. Conf., vol. 4, 2002, pp. 1789–1808.

[18] N. Gordon, S. Maskell, and T. Kirubarajan, “Efficient particle filters for
joint tracking and classification,” in Proc. SPIE: Signal Data Process.
Small Targets, vol. 4728, 2002, pp. 439–449.

[19] G. Storvik, “Particle filters for state-space models with the presence of
unknown static parameters,” IEEE Trans. Signal Process., vol. 50, no.
2, pp. 281–289, Feb. 2002.

[20] J. Liu and M. West, “Combined parameter and state estimation in simu-
lation-based filtering,” in Sequential Monte Carlo Methods in Practice,
A. Doucet, N. de Freitas, and N. Gordon, Eds. New York: Springer-
Verlag, 2001.

[21] S. J. Julier and J. K. Uhlmann, “The scaled unscented transformation,”
in Proc. IEEE Amer. Control Conf., May 2002, pp. 4555–4559.

[22] M. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle
filters,” J. Amer. Statist. Assoc., vol. 94, no. 446, pp. 590–599, 1999.

[23] T. Cover and J. Thomas, Elements of Information Theory. New York:
Wiley, 1990.

[24] C. Kreucher, K. Kastella, and A. Hero, “A Bayesian method for inte-
grated multitarget tracking and sensor management,” in Proc. IEEE In-
form. Fusion, vol. 1, 2003, pp. 704–711.

[25] R. Mahler, “Objective functions for Bayesian control-theoretic sensor
management, 1: Multitarget first-moment approximation,” in Proc.
IEEE Aerosp. Conf., vol. 4, Mar. 2003, pp. 1905–1923.

Tom Vercauteren (S’05) received the Ingénieur
degree from Ecole Polytechnique, Paris, France, in
2003 and the M.S. degree in electrical engineering
from Columbia University, New York, in 2004. He is
now working towards the Ph.D. degree from INRIA,
Sophia-Antipolis, France.

His research interests are in the area of statistical
signal processing.

Dong Guo received the B.S. degree in geophysics
and computer science from the China University of
Mining and Technology (CUMT), Xuzhou, China,
in 1993, the M.S. degree in geophysics from the
Research Institute of Petroleum Exploration and
Development (RIPED), Beijing, China, in 1996,
the Ph.D. degree in applied mathematics from
Beijing University, Beijing, China, in 1999, and the
second Ph.D. degree in electrical engineering from
Columbia University, New York, in 2004.

His research interests are in the area of statistical
signal processing and communications.

Xiaodong Wang (S’98–M’98–SM’04) received the
B.S. degree in electrical engineering and applied
mathematics (with the highest honor) from Shanghai
Jiao Tong University, Shanghai, China, in 1992, the
M.S. degree in electrical and computer engineering
from Purdue University, West Lafayette, IN, in 1995,
and the Ph.D. degree in electrical engineering from
Princeton University, Princeton, NJ, in 1998.

From July 1998 to December 2001, he was an
Assistant Professor in the Department of Electrical
Engineering, Texas A&M University, College

Station. In January 2002, he joined the Department of Electrical Engineering,
Columbia University, New York, where he is currently an Associate Professor.
Among his publications is a recent book entitled Wireless Communication
Systems: Advanced Techniques for Signal Reception (Englewood Cliffs:
Prentice-Hall, 2003). His research interests fall in the general areas of com-
puting, signal processing, and communications. He has worked in the areas of
digital communications, digital signal processing, parallel and distributed com-
puting, nanoelectronics, and quantum computing. He has published extensively
in these areas. His current research focuses include Bayesian Monte Carlo
signal processing, wireless communications, and genomic signal processing.

Dr. Wang received the 1999 National Science Foundation (NSF) CAREER
Award, and the 2001 IEEE Communications Society and Information
Theory Society Joint Paper Award. He currently serves as an Associate
Editor for the IEEE TRANSACTIONS ON COMMUNICATIONS, the IEEE
TRANSACTIONS ON SIGNAL PROCESSING, the IEEE TRANSACTIONS ON

WIRELESS COMMUNICATIONS, and the IEEE TRANSACTIONS ON INFORMATION

THEORY.


	toc
	Joint Multiple Target Tracking and Classification in Collaborati
	Tom Vercauteren, Student Member, IEEE, Dong Guo, and Xiaodong Wa
	I. I NTRODUCTION
	II. S YSTEM D ESCRIPTION AND P ROBLEM F ORMULATION
	A. Leader-Based Tracking in Sensor Networks
	B. Multiple Target Tracking and Classification
	C. Specific Target Dynamics
	1) Constant Velocity Model: This model is the most commonly used
	2) Coordinated Turn Rate Model: This model assumes that the targ

	D. Specific Sensing Model
	1) Target-Originated Measurements: Many types of sensors provide
	2) Clutter Noise Model: The false detections are spurious measur

	E. Conditional Distribution of the Measurements

	III. S EQUENTIAL M ONTE C ARLO (SMC) M ETHODS
	A. Sequential Importance Sampling (SIS)
	B. Resampling Procedure

	IV. J OINT S INGLE T ARGET T RACKING AND C LASSIFICATION
	A. Related Work
	B. Class-Based Resampling Scheme
	1) The Algorithm: The resampling scheme is essentially a way of 


	V. M ULTIPLE T ARGET T RACKING AND C LASSIFICATION
	A. Related Work
	B. SMC Solution
	Optimal Sampling Density: The first issue encountered in this ap
	Choice of the Sampling Density: The quantity in (27) can be appr
	Extension of the Class-Based Resampling Scheme: In Section€IV, w


	VI. S ENSOR S ELECTION
	Expected Information Gain: As mentioned earlier, within our trac


	Fig.€1. Actual and estimated trajectories for two targets, one s
	VII. S IMULATION R ESULTS

	TABLE€I P ARAMETERS OF THE S IMULATIONS
	Fig.€2. Mean-square error on the position for 20 runs.
	Fig.€3. (a) Probabilities of having two targets in the field. (b
	VIII. C ONCLUSION
	I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, Wirel
	J. Liu, J. Reich, and F. Zhao, Collaborative in-network processi
	Y. Bar-Shalom and T. E. Fortmann, Tracking and Data Association 
	C. Hue, J.-P. L. Cadre, and P. Perez, Sequential Monte Carlo met
	M. Chu, H. Haussecker, and F. Zhao, Scalable information-driven 
	A. Doucet, B. Vo, C. Andrieu, and M. Davy, Particle filtering fo
	C. Andrieu, M. Davy, and A. Doucet, Efficient particle filtering
	J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao, Distributed gr
	X. Li and V. Jilkov, A survey of maneuvering target tracking: Dy
	H. Sidenbladh and S. Wirkander, Particle filtering for random se
	J. Liu and R. Chen, Sequential Monte Carlo methods for dynamic s
	A. Doucet, S. Godsill, and C. Andrieu, On sequential Monte Carlo

	A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential Monte 
	S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, A tutorial 
	D. Crisan and A. Doucet, Convergence of sequential Monte Carlo m
	S. Challa and G. W. Pulford, Joint target tracking and classific
	S. Herman and P. Moulin, A particle filtering approach to FM-ban
	N. Gordon, S. Maskell, and T. Kirubarajan, Efficient particle fi
	G. Storvik, Particle filters for state-space models with the pre
	J. Liu and M. West, Combined parameter and state estimation in s
	S. J. Julier and J. K. Uhlmann, The scaled unscented transformat
	M. Pitt and N. Shephard, Filtering via simulation: Auxiliary par
	T. Cover and J. Thomas, Elements of Information Theory . New Yor
	C. Kreucher, K. Kastella, and A. Hero, A Bayesian method for int
	R. Mahler, Objective functions for Bayesian control-theoretic se



