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ABSTRACT
We propose a solution to the web server load prediction
problem based on a hierarchical framework with multiple
time scales. This framework leads to adaptive procedures
that provide both long-term (in days) and short-term (in
minutes) predictions with simultaneous confidence bands
which accommodate not only serial correlation but also
heavy-tailedness, and non-stationarity of the data. The long-
term load is modeled as a dynamic harmonic regression
(DHR), the coefficients of which evolve according to a ran-
dom walk, and are tracked using sequential Monte Carlo
(SMC) algorithms; whereas, the short-term load is predicted
using an autoregressive model, whose parameters are also
estimated using SMC techniques. We evaluate our method
using real world web workload data.

1. INTRODUCTION

A web server farm is a cluster of servers shared by several
web applications and services, and maintained by a host
service provider. Usually the owner of the web applica-
tions pays the host service provider for the computing re-
sources, and in return gets a quality-of-service (QoS) guar-
antee, which promises a certain minimum level of resources
and performance. Static allocation of resources at the server
farm is not efficient, therefore, the server farm allocates the
computing resources dynamically among the competing ap-
plications to meet the quality-of-service for different classes
of service requests. The requirement for dynamic allocation
of resources makes it necessary for the server farm to be
able to predict the workload accurately, with a sufficiently
long time horizon to ensure that adequate resources are al-
located to the services in-need in atimely manner [1, 2].

The server workload is usually measured in terms of the
amount of services request per unit time. A time series of
such a workload is quite challenging to predict accurately.
In particular, the bursty nature and the non-stationarity of
the server workload impose inherent limits on the accu-
racy of the prediction. Such a time series can, for exam-
ple, be stationary but self-similar, and/or heavy-tailed over

small duration (seconds or minutes) at a fine time granular-
ity [3, 4]; it can also exhibit strong daily and weekly pat-
terns (seasonality), which change randomly over different
times of the day and different days of the week, and can
also show calendar effects (different patterns on weekends)
[4]. It is this second type of data with seasonal variations
which is key to the designing of dynamic resource alloca-
tion schemes, and is the focus of the current paper.

The traditional linear-regression-based methods can
give predictions with a limited accuracy, since the model
can become inefficient in the presence of correlated error.
In this paper, we follow the hierarchical approach proposed
in [5, 6] in which the time series prediction is decomposed
into two steps: first a prediction of the long-term compo-
nent, which primarily captures the non-stationarity of the
data, is performed and then the residual short-term process,
which captures both the long-term prediction error and the
short-term component of the time series, is processed. In
this work, the long-term component is modeled as a linear
combination of certain basis functions with random ampli-
tudes evolving with time, while the residual short-term pro-
cess is modeled as a traditional AR process. The parame-
ters for both the short-term model and the long-term model
are estimated using sequential Monte Carlo (SMC) meth-
ods (see [7, 8] and the references therein). The proposed
method, in addition to providing predictions, can also be
used to compute confidence bands simultaneously. This is
of major interest in this setting since quantiles, as opposed
to a simple prediction of the time series, can be used to sup-
port flexible (probability based) service-level agreements.
Further, the proposed model allows the model parameters
to change with time, thereby making itself capable of han-
dling the non-stationarity in the data.

2. THE HIERARCHICAL FRAMEWORK

We consider a typical web-server farm, which records the
number of requests at each server and aggregates them over
small time intervals of length� > 0 to obtain a time series.
The data is non-stationary in that the mean changes with



time-of-day and day-of-week. It is also observed that the
time series shows predominant daily patterns, varying ran-
domly. Letp denote the sampling frequency for the daily
pattern. For the example shown in Fig. 1, for� = 5 min-
utes,p = 288. Although, several methods exist for model-
ing such a time series, we follow the hierarchical approach
developed in [6]. Fig. 1 shows the hierarchical structure
of the time-series, where the data is decomposed into a
periodic long-term component and a randomly fluctuating
short-term component.
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Fig. 1. The decomposition of the web-server data into a
long-term pattern and a short-term random components.

Let y(t) denote the observed load (after taking loga-
rithm) at a server at timet. In order to capture the sea-
sonality in the data, we use the dynamic harmonic regres-
sion (DHR) model of [9]. Stochastic time-varying parame-
ters are used to characterize the various components of the
DHR thus allowing for non-stationarity in the resulting time
series. In practice, not all components of the DHR are nec-
essary and in this paper we focus on the seasonal compo-
nent. In our hierarchical framework, the time series is first
modeled as a combination of a periodic long-term patternp(t), and a more irregular short-term componente(t):y(t) = p(t) + e(t): (1)

The periodic long-term patternp(t) is represented as a
weighted sum of somep-periodic basis functions�j(t) asp(t) = Xj2Pt aj(t)�j(t); (2)

where aj(t) are stochastic time-varying parameters andf�j ; j 2 Ptg forms a subset of some linearly independent
basis functionf�j ; j 2 Pg. To filter out the long-term com-
ponent in (1), we choose the periodic basis functions to be

sinusoidal waves whose frequencies are chosen based on the
spectral properties of the time series (more on this in Sec-
tion 3.1.1), giving us a harmonic regression (HR) on the
long-term component.

Once the long-term estimation̂yL has been performed,
our hierarchical framework focuses on making an accurated-step forecast of the residual time series,z(t) = y(t)� ŷL(tjt): (3)

Thisd-step forecast process is modeled as an AR process,z(t+ d) = qtXi=1 bi(t) � z(t� i+ 1) + "(t); (4)

the parameters of which (order, coefficients, and noise char-
acteristics) being stochastic time-varying parameters asin
[10]. Furthermore, in order to accommodate for the shot
noises in the data, we use heavy-tailed distributions for
the noise term"(t). The observation models (1), and (4),
together with their dynamically varying coefficients form
two dynamic state-spaces, both are tracked using the SMC
methods.

For the time series of service requests, it is typical to
have weekday patterns behaving significantly differently
from the weekend patterns. In this paper, a multiple regime
approach is employed, in which data belonging to differ-
ent regimes are modeled separately to take advantage of the
within-regime resemblance. The data belonging to the same
regime is cascaded to obtain a set of new time series, one for
each regime. Each time series is then modeled by (2) and
(4), each regime having its own set of parameters.

3. LONG-TERM MODELING AND PREDICTION

Selection of the basis setP reduces the dimensionality of
the problem, hence reducing the computational complex-
ity as well as storage requirement associated with the train-
ing, modeling and prediction. Indeed, the higher is the di-
mension, the greater is the number of parameters to be es-
timated. We will see in Section 3.1.1 that only the first few
frequencies (including the zero-frequency term) affect the
seasonal variations to any significant extent, and that only
a fixed number of sinusoids need to be inP . It turns out
that usually even within this fixed subset, only a few among
those chosen frequency components are significant in rep-
resenting the model at a particular timet, while the remain-
ing ones can be discarded without significant loss in per-
formance. However, the important subset ofP can change
with time. Therefore, instead of accommodating all of them
in our model, we can reduce the dimensionality further by
dynamically selecting the frequencies from the setP , as the
system evolves. We follow the jump Markov framework
of [10], which is close to the resampling-based shrinkage



method, proposed in [11] in the context of blind detection
in fading channels.

Let us now write down the state-space form we use for
the long-term model:y(t) = Xj2Pt aj(t)�j(t) + e(t);aj(t) = aj(t� 1) + vj(t); 8j 2 P ; (5)

wherev(t) = fvj(t); j 2 Pg is the process noise ande(t)
is the measurement noise, andy(t) is the observed data.
The second equation in (5) represents the first-order Markov
transition process, which is assumed to generate the coef-
ficients vectora(t) = faj(t); j 2 Pg. The vectorv(t)
represents temporally uncorrelated Gaussian disturbances
with zero mean, and covariance matrixQv . The zero-mean
noise in the state equation stems from the assumption that
the long-term behavior is periodic with slow variations, for
which, the incremental mean of the coefficients is close to
zero. The first equation in (5) represents the measurement
equation, wheree(t) is the temporally uncorrelated Gaus-
sian disturbance with zero mean and variance�2e . The initial
state vectora(0) is assumed to be Gaussian distributed with
mean�a(0) and covariance matrixP (0), which are com-
puted as the respective mean and covariance of the coeffi-
cients of the harmonics included in the regression, obtained
from the training data.

3.1. Determination of the Fixed Parameters

We use the analysis filterbank approach proposed in [12] to
predetermine the basis setP and guide our choice of fixed
parameters (priors, variances). The aim is to decompose
the time series into seasonal components, and consider only
those components which are highly coherent across the pe-
riod, as well as have high energy, hence are important to
modeling and prediction. In order to do this, we consider, at
each time step, a single time period ending at the given time
step and pass it through a filterbank. The resulting series of
coefficients can then be analyzed.

Lety(t) = [y(t�p+1); y(t�p+2); � � �; y(t)℄T be the
data at hand. Then, from (2), using the ‘complete’ basis, we
can write afil (t) = ��1y(t); t = 1; � � � ; n; (6)

whereafilj (t) are the coefficients associated with the com-
plete basis decomposition,� = ��1; � � � ;�p� is the matrix
of all the basis functions, and its inverse has an analysis
filterbank interpretation. In other words, denoting thej-th
row of��1 by	Tj = [ j(p� 1); � � � ;  j(0)℄, (6) can be
written asafilj (t) = p�1Xi=0  j(i)y(t� i); j = 1; � � �; p; (7)

which is nothing but the output obtained on passingy(t) through a filterbank consisting ofp FIR filters;[ j(p� 1); � � �;  j(0)℄ being the impulse response of thej-
th filter. After having obtained the analysis filterbank outputafilj (t) defined in (7), the datay(t) can be reconstructed ac-
cording toy(�) = pXj=1 afilj (t)�j(�); � = t� p+ 1; � � �; t; (8)

which can be considered as the decomposition ofy into p
component waveforms, whose shapes are determined by the
basis functions�j .
3.1.1. Choice of Basis Set

Clearly, withp being very large (p = 288 for our example),
we aim to reduce the dimensions of the filterbank and choseP by analyzingafilj (t). In [6], two measures on the compo-
nent waveforms are suggested to quantify the behavior ofafilj (t) to aid in the selection ofP , namely, thecoherence
measure and theenergy measure. Thecoherence measure is
defined as 
̂j = �̂2j�̂2j + �̂2j ; (9)

where �̂2j is the sample mean and̂�2j is the sample vari-

ance of
�afilj (t)	nt=1. We seek to include highly coherent

waveforms (waveforms with high values of
̂j) in P as they
have long lasting effects, making them good candidates for
long-term forecasting. Theenergy measure of the compo-
nent waveforms is defined asÊj = 1n nXt=1 �afilj (t)�2 = �̂2j + �̂2j : (10)

High energy components along with high coherence com-
ponent are crucial to effective modeling ofy(t), and are in-
cluded inP . For future reference, let the number of basis
functions included inP beK.

In this paper, we take sinusoids as the basis functions,
and thus perform the short-term Fourier transform (STFT)
on the weekday datay(t) of our example. From the anal-
ysis of the STFT output, we note that only the fundamen-
tal frequency term (!0 = 2�p ), its first few harmonics, and
the zero-frequency term have sufficiently high coherence as
well as energy measure, while the rest of them appear to be
insignificant in comparison. We select the first five frequen-
cies (the fundamental frequency and its first four harmonics)
together with DC (zero-frequency) to formP . Since each
frequency corresponds to two waveforms (a sine and a co-
sine), the dimension ofP isK = 11. Thus we achieve our
goal of reducing the dimensionality of the model, by bring-
ing it down fromp = 288 to 11.



3.1.2. Choice of Fixed Parameters

The initial state vectora(0), mean�a(0), and covariance ma-
trix P a(0) are computed as the respective mean and covari-
ance of the output of the analysis filterbank on the training
data.

For the dynamic selection of the basis setPt in (5), it
is assumed to follow a first order discrete Markov model
given byPr (Pt+1 = �j jPt = �i) , �ij , where the set�i
are some subsets ofP . The introduction of these transi-
tion probabilities offers flexibility in changing the harmonic
regression order, thus allowing the algorithm to adaptively
adjust according to the data.

The noise variances can be estimated by looking at
the residuals. We choose a larger variance for the zero-
frequency term as compared to the variance of the residual
time series to be able to accommodate the outliners.

3.2. Online Estimation and Prediction by SMC

We track the model based on the set of available histori-
cal data using the sequential Monte Carlo (SMC) technique
[7, 10]. Our aim is to obtain an online Monte Carlo approx-
imation of the target distributionp (a(0 : t);P0:tjy(1 : t)).
With this goal, the SMC method keepsM sample streams�a(m)(0 : t);P(m)0:t �, together with the associated impor-

tance weight!(m)t ;m = 1 � ��;M; such that,p (a(0 : t);P0:tjy(1 : t)) � MXm=1!(m)t Æ[a(m)(0 : t);P(m)0:t ℄;
(11)

whereÆ[�℄ is a Dirac function (written with brackets instead
of the conventional subscript to ease the reading).

We progress sequentially through each
stream by extending at timet, the past particles�a(m)(0 : t� 1);P(m)0:t�1�, by sampling

�a(m)(t);P(m)t �
according to a so-called trial distribution,q �a(t);Ptja(m)(0 : t� 1);P(m)t�1 ; y(1 : t)� : (12)

The importance weight!(m)t associated with each stream
can then be recursively updated as!(m)t = p�a(m)(0 : t);P(m)0:t jy(1 : t)�q �a(m)(0 : t);P(m)0:t jy(1 : t)� / !(m)t�1�p�y(t)ja(m)(t);P(m)t � p�a(m)(t);P(m)t ja(m)(t� 1);P(m)t�1�q �a(m)(t);P(m)t ja(m)(0 : t� 1);P(m)t�1 ; y(1 : t)� :

(13)

The simplest choice for the trial distribution is to
take the transition probability. With this choice,

the weight update equation (13) reduces to!(m)t =!(m)t�1 :p�y(t)ja(m)(t);P(m)t �
.

The estimated long-term component at timet is then
given byŷL(tjt) = MXm=10B� Xj2P(m)t a(m)j (t)�j(t)1CA � ~!(m)t ; (14)

where ~!(m)t = !(m)tPMm=1 !(m)t is the normalized importance

weight corresponding to them-th stream. Thed-step pre-
dicted value using the long-term model is then given byŷL(t+ djt) = MXm=10B� Xj2P(m)t a(m)j (t)�j(t+ d)1CA � ~!(m)t :

(15)

3.3. Resampling-based Adaptive Shrinkage of the Basis
Functions

The importance weights measure the quality of the Monte
Carlo samples. As we proceed with the algorithm, the
weights progressively get smaller and smaller, and after a
while, only a few of the streams carry significant weights,
while the rest of the samples become ineffective. To avoid
this problem, resampling [7] is performed when the variance
of the importance weights exceeds a certain predetermined
threshold.

At the beginning of the SMC procedure, for each of the
Monte Carlo sample, the sinusoids to be included are ran-
domly drawn with probability proportional to their respec-
tive coherence values. At time(t�1), letP(m)t�1 � P denote
the set of sinusoids being used by them-th sample stream.
At time t, the setS of m samples can be divided into three
subsets:S0, whose harmonic regression order is left un-
changed,S+1, whose harmonic regression order is incre-
mented by unity (up to a maximum ofK), andS�1, whose
order is decreased by unity (down to a minimum of0). A
particular sample finds place in the subsetsS+1;S�1 andS0 with probabilitiesPi; Pd, and(1�Pi�Pd) respectively.
Thus, we obtain new set of basis functionsP(m)t � P , asso-
ciated with them-th Monte Carlo stream, at timet. Follow-
ing this step, the samples and the importance weights are
updated using (12), and (13) respectively. We then check
for the resampling condition, and if required, perform re-
sampling.

4. SHORT-TERM MODELING AND PREDICTION

The long-term estimation errorz(t) = y(t) � ŷL(tjt) is
employed as the raw data for thed-step prediction of the



short-term component, that covers both the short-term fluc-
tuations and the long-term prediction error. We employ an
autoregressive (AR) model, which is simple and effective in
time series modeling for such data. Our short-term model
can be cast into the following state-space model:z(t) = qtXi=1 bi(t) � z(t� d� i+ 1) + "(t);bi(t) = bi(t� 1) + wi(t); 8i 2 Q (16)

where "(t) is the observation noise term, andw(t) =fwi(t); i 2 Qg is the process noise. In order to model the
bursts in the data, we use a heavy-tail distribution, such asa
t-distribution, to model the observation noise density.

As was done in the long-term model case, the orderqt
and the coefficientsb(t) in the regression are tracked us-
ing SMC. To obtain an accurate prediction of the short-term
model, here we also track the variance�2" (t) of "(t). This
is done as in [10], by modeling the evolution of the log-
variance, log�2" (t) = log�2" (t� 1) + u(t); (17)

wherew(t) andu(t) are zero-mean and have covariancesQw and� respectively.
The sample streams are initialized by drawing samples

of b(0) from a zero-mean Gaussian distribution with co-
varianceP b(0). Similarly, the initial set of samples for
the noise parameterlog�2" (0) is drawn from the Gaussian
density with mean and variance�n(0), and�2n(0) respec-
tively. The SMC algorithm here finds an estimate of the
coefficientsb(t) of the underlying AR process and the log-
variance parameterlog�2" (t) of the noise, based on the
available short-term processz(1 : t). The target distribu-
tion p �b(0 : t); q0:t; log�2" jz(1 : t)� can be factored as in
Section 3.2 allowing for a recursive weight update.

Under this model, thed-step prediction ofz based on
the knowledge offz(1); � � � ; z(t)g is given byẑ(t+ djt) = MsXm=1 ~!(m)t q(m)tXi=1 b(m)i (tjt) � z(t� i+ 1); (18)

where~!(m)t are the SMC weights similar to (15). Finally,
the short-term prediction can be combined with the long-
term prediction to obtain a completed-step forecast asŷ(t+ djt) = ŷL(t+ djt) + ẑ(t+ djt): (19)

Extending the idea of adaptive shrinkage of the har-
monic regression discussed in Section 3.2, we select the or-
der of the AR process modeling the short-term component
adaptively via resampling, and also keep the provision of in-
creasing or decreasing the order by introducing very small

probabilitiesPin, andPde, which represent the probabil-
ity of increasing and decreasing the order of the regression
respectively. In other words, instead of keeping a fixed re-
gression order, we let it evolve during the SMC procedure,
and allow different streams to have different orders.

4.1. Computation of Confidence Bands

The SMC algorithm described above inherently provides a
way of computing confidence bands since it carries infor-
mation about the complete probability density function of
the variables. Under the assumption that the entire random-
ness (error in the long-term prediction and remaining fluc-
tuations) is carried by the short-term processz(t), it is only
necessary to find the confidence-band associated with this
short-term process.

Let � denote the intended confidence level. We look
for a �-confidence band which is symmetric and centered
around the predicted valuêz(t + djt). This can also be
formulated as finding the smallest radius��(t) such that[ẑ(t + djt) � ��(t); ẑ(t + djt) + ��(t)℄ contains a ratio� of the weights~!(m;n)t = ~!(m)t of theMs � Nn samples.
The final confidence band is then simply obtained by shift-
ing the above confidence-level by the long-term prediction,
giving [ẑ(t+ djt)� ��(t); ẑ(t+ djt) + ��(t)℄.

5. NUMERICAL RESULTS

We use the example introduced in the beginning of this pa-
per and present the performance of the proposed algorithm.
We employM = 500 Monte Carlo samples for both the
long-term as well as short-term prediction. We cascade all
the weekday data together to obtain the weekday regime.

Fig. 2 illustrates the performance of the algorithm for
a 20-minute-ahead prediction horizon. It achieves a confi-
dence level of89:13%, as against an intended level of90%,
with RMSE equal to:0712. We also observed that the aver-
age regression order comes out to be approximately4, while
at the same time, we could actually have the regression or-
der up to8, allowing better modeling. Similarly, the average
order of the harmonic regression comes out to be approxi-
mately7:6, which is significantly below11, and way below
the original288.

6. CONCLUSION

We have proposed a novel scheme for the forecasting of
web-server workload time series which exhibits strong pe-
riodic patterns. A hierarchical framework is used to sep-
arately predict the long-term and the short-term compo-
nents. The long-term forecast is performed using dynamic
harmonic regression, while the residual short-term compo-
nent is tracked as an autoregressive process. The coeffi-
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Fig. 2. 20-minute-ahead prediction for the weekday data,
with 90% confidence band. RMSE of prediction is equal to
0.0712. Actual coverage of the confidence band is equal to
89.13%. Median width of the confidence band is equal to
0.212.

cients of both processes are tracked under a stochastic state-
space setting. Also, the predictions yield simultaneous con-
fidence bands, which can be used to support probability-
based service-level agreements. Modeling the noise in the
short-term model by a heavy-tailed distribution makes the
algorithm robust to outliers in the data.
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