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Abstract—The performance of the IEEE 802.11 protocol based
on the distributed coordination function (DCF) has been shown
to be dependent on the number of competing terminals and the
backoff parameters. Better performance can be expected if the pa-
rameters are adapted to the number of active users. In this paper
we develop both off-line and online Bayesian signal processing al-
gorithms to estimate the number of competing terminals. The esti-
mation is based on the observed use of the channel and the number
of competing terminals is modeled as a Markov chain with un-
known transition matrix. The off-line estimator makes use of the
Gibbs sampler whereas the first online estimator is based on the
sequential Monte Carlo (SMC) technique. A deterministic variant
of the SMC estimator is then developed, which is simpler to im-
plement and offers superior performance. Finally a novel approx-
imate maximum a posteriori (MAP) algorithm for hidden Markov
models (HMM) with unknown transition matrix is proposed. Re-
alistic IEEE 802.11 simulations using the ns-2 network simulator
are provided to demonstrate the excellent performance of the pro-
posed estimators.

Index Terms—Gibbs sampler, hidden Markov model (HMM),
IEEE 802.11 wireless networks, sequential Monte Carlo, unknown
transition matrix.

I. INTRODUCTION

THE performance of the IEEE 802.11 DCF [1] is known to
be very sensitive to the number of users competing to ac-

cess the wireless channel [2], [3]. The problem of estimating the
number of competing terminals has been addressed recently in
[3]. The approach there is based on an extended Kalman filter
assuming a constant number of users, and coupled with a change
detection mechanism. Such an algorithm implicitly uses a linear
Gaussian dynamic model where the variables (number of com-
peting terminals and number of busy slots) are assumed to be
continuous. Such underlying assumptions are unrealistic since
the number of users in the network only takes discrete integer
values and the observations used for the estimation are also in-
teger values. In this paper, it is assumed that the number of users
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in the network evolves according to a Markov chain with un-
known transition probability matrix. Such an assumption can
only be validated through a thorough analysis of real data traffic
and is unlikely to be fully satisfied. However it allows us to use
the fact that both the state and the observations are discrete and
to develop solutions that can be implemented on an IEEE 802.11
wireless card. Our simulations do not strictly make use of the
Markovian assumption. Indeed our ns-2 simulator uses an ex-
ponential On-Off activation process in continuous time which
is not Markovian anymore in the irregular discrete time scale
developed in [2] and used in this work. The active nodes are
saturating and the departures are done according to a realistic
IEEE 802.11 protocol. The estimation is then based on the ob-
served collision probabilities in the shared wireless channel.

Bayesian Monte Carlo signal processing techniques [4], [5]
offer a paradigm for tackling challenging signal processing
problems for which traditional methods are difficult to apply.
Two categories of techniques are available: Markov chain
Monte Carlo (MCMC) methods [4] for batch signal processing
and sequential Monte Carlo (SMC) methods [5], [6] for adap-
tive signal processing. Both MCMC and SMC have been
applied to solve a number of important and challenging signal
processing problems found in wireless communications [7]. In
this paper, we develop both off-line and online Bayesian Monte
Carlo algorithms for estimating the number of users in an IEEE
802.11 wireless network as well as the unknown parameters.
While usual SMC methods are not well suited to parameter
estimation, we show that the complete information about the
transition matrix can be carried over through some sufficient
statistics so that the algorithm developed in [8] can be adapted
to our hidden Markov model (HMM) problem.

A deterministic variant of the SMC estimator is also devel-
oped, which is simpler to implement and offers superior perfor-
mance. The idea of using a set of sufficient statistics to repre-
sent the information we have about the transition matrix is in-
cluded in the deterministic sample filter setting proposed in [9].
The use of sufficient statistics is pushed one step further than
in [8] because this information about the parameters is now in-
tegrated out so that no Monte Carlo approximation needs to be
performed. The exponential increase in complexity is avoided
by discarding the tails of the posterior distributions. For some
applications, this algorithm might still be somewhat too compu-
tationally demanding. Inspired from the deterministic sequen-
tial sampling algorithm, we develop an approximate MAP algo-
rithm that trades accuracy for computational requirement. Both
algorithms can be applied to any HMM with unknown transi-
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tion probabilities (and unknown prior distribution) and these
are main contributions of our work. The online algorithms led
to an approximation of the probability distribution function (or
to a hard estimate for the approximate MAP algorithm) of the
number of competing terminals at a specific time step given the
entire set of observations.

The remainder of this paper is organized as follows. In Sec-
tion II, we give the mathematical formulation for the problem
of estimating the number of active users in an IEEE 802.11 net-
work. In Sections III and IV, we develop the off-line MCMC
and the online SMC estimators, respectively. The deterministic
sequential sampling and the approximate MAP algorithms are
derived in Section V. The performance of the estimators is eval-
uated in Section VI by using both model-based data and realistic
IEEE 802.11 ns-2 simulations. Finally, Section VII concludes
the paper.

II. SYSTEM MODEL

In [3], it is shown that the number of competing terminals
in an IEEE 802.11 wireless network can be expressed as a func-
tion of the packet collision probability in the shared channel.
We briefly review the analysis performed in [2] to provide the
necessary background on IEEE 802.11.

With the basic access mechanism, a station with a new packet
to send monitors the channel. If the medium is idle for at least
a Distributed Inter Frame Space (DIFS), the station transmits.
In the other cases (medium sensed busy or packet not new),
the station waits until the channel is idle for a DIFS and sets
its backoff timer to a discrete value uniformly chosen among

where is the contention window size. The
transmission starts when the timer reaches zero. The idle time
is divided into slots of length . For the first transmission at-
tempt, is set to the minimum contention window . After
each unsuccessful attempt, the contention window is doubled
until , where is the maximum contention
window size. The backoff timer is decremented whenever the
channel is sensed idle and frozen when the channel is busy. The
timer is reactivated as soon as the channel is sensed idle for at
least a DIFS. Since a station cannot sense the channel while it
is transmitting, in case of a collision the transmission is not in-
terrupted before the end of the packet. In case of a successful
transmission, the acknowledgment (ACK) is sent after a Short
Inter Frame Space (SIFS) which is considered as part of the suc-
cessful transmission. From the point of view of a station, the
time can now be slotted into variable length slots. Specifically,
one time slot will either correspond to an idle slot of length
or a busy slot of length for a successful transmission and

for a collision

(1)
where is the packet payload, is the length of the longest
packet involved in a collision, is the
packet header, and is the propagation delay.

It is shown in [2] that if the nodes are in saturating regime,
i.e., they always have a packet to send, and the system reaches

a steady state then the number of competing terminals can be
expressed as a function of the collision probability as

(2)
where and are the exponential backoff parameters. Each
terminal can measure the packet collision probability by moni-
toring the channel activity, and can thus estimate the number of
competing terminals in the network.

The monitoring procedure for estimating the packet collision
probability is as follows. Since in a busy time slot a packet
transmission would eventually fail, information about the packet
collision probability can be obtained by counting the number of
experienced collisions , as well as the number of observed
busy slots within one observation slot composed of
basic time slots in which the measurements are taken:

. More specifically, within each observation time
step , is measured as

(3)

where the indicator is given by if the basic time
slot is empty or corresponds to a successful transmission, and

if the basic time slot is busy or corresponds to an
unsuccessful transmission. We know that

, therefore, follows a binomial distribution

(4)
From now on a time slot will refer to an observation time slot
(composed of basic time slots).

The number of competing terminals at time ,
takes value from the set . In wireless LAN systems, admis-
sion control is always performed to maintain certain quality of
service (QoS) and thus is a finite set. Typically, we have

, with being the maximum number of users,
so that we do not need to differentiate between the index of the
states and the states themselves. We assume that evolves ac-
cording to a first-order Markov chain with a transition proba-
bility matrix , i.e., where

and . We denote the initial probability
vector as , i.e., .

1) The Inference Problem: From the above discussion, we
can cast our problem into a hidden Markov model (HMM) with
unknown parameters

(5)

where denotes a discrete-time Markov chain with
the initial probability distribution and the transition proba-
bility matrix ; is the state realization of the Markov chain
at time instant ; denotes a binomial distribution with

trials and probability of success ; is the observation;
where is given in (2).
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Denote the observation sequence up to time as
and the network state sequence up to

time as . Let the model parameters
be . Given the observations at time , we are
interested in estimating the current state . The computational
complexity of the naive solutions to these problems grows
exponentially as the time index increases. The forward-back-
ward procedure [10], [11] provides a recursive algorithm to
get a linear complexity growth but is not able to cope with
unknown parameters. The expectation-maximization (EM)
algorithm deals with such a problem but only converges to a
local maximum of the likelihood function which can be quite
different from the global maximum [10]. Other techniques for
online identification of HMM based on maximum likelihood
methods, least square methods, prediction error or ensemble
learning can be found in [12]–[16]. In this paper, we resort
to the Monte Carlo signal processing techniques to solve the
above inference problems. We then show that from the Monte
Carlo techniques we are able to derive a deterministic sequen-
tial sampling algorithm and an approximate MAP algorithm.
In both approaches the integrations are done analytically. This
provides two novel and powerful algorithms for the filtering
and estimation of HMM with unknown parameters.

III. THE OFF-LINE ESTIMATOR

We provide the basis of the Bayesian approach and show how
the Gibbs sampler can be used to obtain an off-line approxima-
tion of the joint posterior probability distribution function of the
state sequence and parameters.

A. The Gibbs Sampler

Let , where is either a scalar or a
vector, be the unknown variables to be estimated; and the
available observations. We are interested in the marginal
distribution . Directly evaluating the marginal distribu-
tion involves integrating out the rest of the parameters from
the joint posteriori distribution , which is computa-
tionally infeasible especially when the parameter dimension

is large. The basic idea behind the Gibbs sampler is to
generate Monte Carlo samples from the joint posterior distri-
bution and then to estimate any marginal distribution
using these samples. Given the samples at iteration ,

, at the iteration, the Gibbs
sampler algorithm can be implemented as follows.

• For , draw from the conditional distribution

(6)

It is known that under regularity conditions [17]–[20], the dis-
tributions of the samples drawn by the above Gibbs sam-
pler converge geometrically to , as . Moreover,
we have

as , for any integrable function .

B. The Off-Line Batch Estimation Algorithm

In batch processing, we assume that observations cor-
responding to time slots are avail-
able, based on which we need to estimate the system state

corresponding to these time slots, as well as
the system parameters . For the Gibbs sampler dis-
cussed above, we need to be able to compute and draw samples
from the prior and conditional posterior distributions. Modeling
realistic priors for a particular application is a difficult task. It
is therefore common to choose priors that convey little prior
knowledge and/or ease the calculations. A well-known strategy
for MCMC computation is to choose the prior distributions
with a suitable form so that the posteriors belong to the same
functional family as the priors. The priors and posteriors are
then said to be conjugate [21]. The choice of the functional
family depends on the likelihood. We will use this conjugate
strategy throughout the paper.

1) Prior Distributions: Denote the
row of the state transition probability matrix . It
can be seen here that the discrete states are drawn from multi-
nomial distributions. For this kind of likelihood functions it is
well known that the Dirichlet distribution provides conjugate
priors. We will, therefore, assume multivariate Dirichlet priors
for both the initial probability vector and .

The multivariate Dirichlet distribution with
strictly positive shape parameters has the fol-
lowing density function:

where is the Gamma function and is
such that and . It is easy to draw samples
from such a distribution by using Gamma distributed samples.
The prior distributions for the unknown parameters and network
states are, thus, as follows.

1. The prior distribution for the initial probability vector is
given by

(7)

2. The prior distribution for the row of the transition prob-
ability matrix is given by

(8)

Note that for large , it is common to assume that the
matrix is banded; i.e., for . Cor-
respondingly, with some notational abuse, in the prior
distribution of , we set , if .
The resulting Dirichlet distribution then has a re-
duced dimension, i.e.,

.
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3. Finally, the prior distribution for the network state is
imposed by our choice of (7)–(8). It can be sampled from
its prior distribution by using the samples and of

and

(9)

2) Conditional Posterior Distributions: Based on our model
and our choice of prior distributions, we get the following condi-
tional posterior distributions (using Bayes rules and Markovian
assumptions):

1. The conditional posterior distribution of the initial proba-
bility vector

(10)

where is the probability density function (pdf) of
the Dirichlet distribution with parameters .

2. The conditional posterior distribution of the row of
the transition probability matrix

(11)

where is the number of state transitions from state
to state in and .
Note that if is banded, then, for .

3. The conditional posterior distribution of network state

if
if
if

(12)

where , and
denotes a binomial pdf with trials and probability .

We can now outline the batch algorithm based on the Gibbs
sampler.

Algorithm 1 [Gibbs sampler batch estimator]

• Draw the initial samples from their
prior distributions, given by (7)–(9).

• For ,
— Draw a sample from its conditional posterior

distribution given by (10).
— For , draw a sample

from its
conditional posterior distribution

given by (11).
— For , draw a sample

from the conditional posterior distribution

given by (12).

This Gibbs iteration is usually carried out for iter-
ations with the first as the burn-in period. Only the samples
from the last iterations are used to make the inference. The a
posteriori probabilities of the network states are computed from
the random samples of as

(13)

where is an indicator such that if , and
if . Moreover, the model parameters

can be estimated by

(14)

IV. THE ONLINE SMC ESTIMATOR

In this section we will first briefly review the sequential
Monte Carlo methodology and then show how sufficient statis-
tics can be employed within this framework to deal with static
parameters. We then provide the online SMC estimator of the
number of competing terminals.

A. Background on Sequential Monte Carlo

We consider a generic dynamic model described by

(15)

where and are, respectively, the state and the observa-
tion at time ; are some probability density functions de-
pending on some static parameters assumed known for the
moment. Suppose we want to make online inference of the un-
observed states . That is, at current time
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we wish to make an estimate of a function of the state variable
, say , based on the currently available observations,

. The optimal solution (in terms of any common
criterion) only depends on the conditional pdf (e.g.,
the minimum mean squared error estimator is the conditional
mean).

Monte Carlo methods provide an approximation of this pdf
based on random samples

from the distribution . Since sampling directly from
is often not feasible or computationally too expensive,

the idea of importance sampling can be used to approximate
by employing some trial sampling density

from which we can easily draw samples from. Suppose a set of
random samples

has been drawn according to . By associating the im-
portance weight to the sample

, the posterior distribution of interest is approximated as

(16)

where , and the set

is called a set of properly weighted samples with respect to the
target distribution [5].

Suppose a set of properly weighted samples

with respect to is available at time . The
SMC procedure generates a new set of samples and weights

properly weighted with respect to , from the previous
set. In particular, if we choose the optimal trial distribution

and if can only take
values from a finite set say , assuming
is known, then the SMC procedure is as follows: [5].

• For , compute

up to a normalizing constant

(17)
• Normalize these values: .

• Draw a sample from the trial distribution

and let .

• Update the importance weight

(18)

• Normalize the importance weights for them to sum up
to one.

A common problem with the SMC algorithm is known as the
degeneracy phenomenon. In [5] it is shown that the variance
of the importance weights can only increase over time which
makes the degeneracy problem ineluctable. After a few itera-
tions, some samples will have very small weights. Such sam-
ples are said to be ineffective. If there are too many ineffective
samples, the Monte Carlo procedure becomes inefficient. The
resampling scheme is a useful method for reducing ineffective
samples and enhancing effective ones. One simple resampling
scheme, which we use in this paper, can be described as follows
(cf. [6] for other schemes).

• Draw sample streams from with
probabilities proportional to the weights .

• Assign equal weights to each stream, .

It is shown in [22] that samples drawn by the above resam-
pling procedure are indeed properly weighted with respect to

.
The degeneracy of the samples can be measured by the ef-

fective sample size which is defined and approximated, respec-
tively, by [23]:

(19)

Heuristically, reflects the equivalent size of a set of i.i.d.
samples for the set of weighted ones. It is suggested in [23],
[6] that resampling should be performed whenever the effective
sample size becomes small, e.g., .

B. Sequential Monte Carlo With Unknown Static Parameters

If the parameters are unknown, the usual approach is to in-
clude the parameters into the state vector. Because of the static
evolution of the parameters, the space of parameters is only ex-
plored during initialization which is obviously inefficient. Sev-
eral works have proposed better algorithms for dealing with
static parameters within an SMC framework [24], [25]. Gilks
and Berzuini [26] proposed to use MCMC moves within the
SMC framework. Such a procedure avoids the usual sample de-
pletion problem but requires the storage of the complete path of
the particles and increases the computational load. In [27], the
author showed that sufficient statistics can be used to perform



442 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 2, FEBRUARY 2007

these MCMC steps without the growing storage requirement. In
this work, we make use of the approach developed in [8] which
also uses sufficient statistics. In the model under consideration,
the posterior distribution of given and has been
shown in (10)–(11) to be defined by Dirichlet distributions. It
therefore depends on some sufficient statistics
that can easily be updated.

We consider a generic case where the parameters of the prob-
ability density function depend on some sufficient statistics,

. Since is easily up-
dated we are interested in having a Monte Carlo approximation
of . Suppose a set of properly weighted samples

with respect to is available at time

(20)

The main idea is to get a Monte Carlo approximation of
from (20) and the set of sufficient statistics

The approximation of the marginal distribution is then
simply obtained by discarding the samples . Therefore, only
the samples and the corresponding sufficient statistics
are stored, but samples for are drawn jointly to to sim-
plify the computations. Specifically this approach is based on
the following identity:

(21)

Based on the importance sampling paradigm, a Monte Carlo ap-
proximation of (21) can be obtained by keeping the past simu-
lated streams

unmodified and drawing from a proposal distribu-
tion . The
weights are updated according to the usual rule

(22)

The sufficient statistics are then updated and the samples for
discarded. Estimation of is done through Rao-Blackwelliza-
tion as follows [28]:

(23)

Resampling can be performed as usual.

C. The SMC Estimator

We next outline the SMC algorithm for online estimation of
the number of users when the system parameters are
unknown. The prior distributions (7)–(8) for the parameters will
be used hereafter. At time , the posterior distribution of

given and has been shown in (10)–(11) to be
given by some Dirichlet distributions. Let’s denote and

the parameters of these distributions

(24)

The posterior distribution of the parameters therefore only de-
pends on the sufficient statistics

Furthermore, we have

(25)

(26)

so that is easily updated. It can also be seen that the trial dis-
tribution has no reason to depend on since

is given. Therefore we only need to consider the transition
matrix in the parameters. The initialization step is derived in
a straightforward manner from the present discussion.

We consider the optimal proposal distribution for the number
of terminals

(27)

Sampling is a little bit more involved if we want to include the
latest observation in the proposal distribution. It is shown in the
Appendix that the posterior distribution of given and

is a mixture of Dirichlet distributions which we use as a pro-
posal distribution: see (28) at the bottom of the next page, where

. The weight update formula
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(22) can now be computed and its derivation can be found in the
Appendix

(29)

We can see a very interesting feature coming out here. The
weight update formula does not depend on the actual values
sampled at time . It is therefore possible to compute the weights
before sampling. This is very attractive since we are now able
to perform resampling before sampling which lowers the loss
of diversity occurring during the usual resampling scheme. The
same idea appears in the auxiliary sample filter [29] where a part
of the weight can be computed before sampling and the rest is
roughly estimated. The approximate weights are then used to
perform the resampling as a prior step. The major difference
here is that the complete weights can be precomputed and that
we advocate to use resampling only if necessary, e.g., whenever

. The complete SMC estimator with unknown pa-
rameters is summarized hereafter.

Algorithm 2 [Online SMC estimator]

• Initialization: Draw the initial samples of prior
distributions according to , and
according to . The corresponding weights
are all equal.

• Importance sampling: For
— Compute the new weights according to (29).
— Compute according to (19). If

perform resampling.
— For

a) Sample from (28).
b) Sample from (27).
c) Update the sufficient statistics

.
— If necessary, estimate the posterior probability

distribution of and compute an estimate of
according to (23).

V. ONLINE DETERMINISTIC ESTIMATORS

The previous sequential Monte Carlo algorithm provided the
basis for online Bayesian estimation. The discrete characteristic

of the number of terminals and the fact that a set of sufficient
statistics for the posterior probability of the unknown transition
matrix can easily be updated allowed us to significantly improve
on the basic SMC procedure. In this section we will show that
this can be pushed one step further and we derive a determin-
istic sequential sampling algorithm that outperforms the SMC
estimator both in terms of computational load, robustness and
accuracy. Depending on the specific application in mind even
this estimator can seem somewhat computationally intensive.
We therefore propose a novel approximate maximum a poste-
riori algorithm that trades the accuracy of the deterministic sam-
pling algorithm for computational load. Both algorithms are de-
signed for any HMM with unknown transition matrix and do not
specifically depend on the DCF scenario under consideration.

A. Deterministic Sequential Sampling

The online SMC estimator discussed in Section IV-A ran-
domly generates samples according to for

. Consequently, some information is somehow distorted if the
number of Monte Carlo samples is not sufficiently large. Fur-
thermore, the use of the optimal sampling distribution implic-
itly led us to consider all possible extensions of a sample. The
mixture densities indeed arose from this fact. This was possible
because can only take values from the finite set . An al-
ternative deterministic approach, developed in [30], [9], and ex-
tended here to the case of unknown parameters and Markov state
processes, consists of explicitly considering all possible
extensions of the samples and then perform a selection step
so as to avoid the exponential increase of the number of sam-
ples and keep a constant number of them. Another idea in
this context is that there is no point in keeping different sam-
ples representing the same path. Therefore, the selection step
should not rely on the usual resampling scheme. In this paper,
we rely on the simplest (but effective) idea which is to select
the most likely samples at each time step. Strictly speaking,
we then loose the properly weighted characteristic by cutting
out the tails of the pdf during the selection step. To avoid this, a
more sophisticated scheme is developed in [31] and [32]. Some
of the most likely samples are kept and resampling without re-
placement is performed on the remaining ones.

We consider again the state-space model (15) where the pa-
rameters are assumed known. Suppose a set of weighted sam-

ples representing is available

at time . We assume that this set does not contain any

(28)
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duplicate samples. The posterior distribution of is approx-
imated as

(30)

where . From Bayes theorem we have

(31)

and the state transition distribution can be written as

(32)
The posterior distribution of can be approximated by

(33)

where and

(34)

The initialization steps of the algorithm proceed exactly as
stated earlier except that no selection needs to be done until to
total number of samples exceeds the maximum number allowed

.
We now extend this approach to the case where the system

parameters are unknown but their posterior distribution, given
and , only depends on a set of sufficient statistics that can

easily be updated, such as considered in Section IV-B. Similarly
to (31) we have

(35)

Depending on the specific state-space (15) under considera-
tion, evaluating (35) can be an easy or very difficult task. If no
analytical form is available, it is possible to approximate these
integrals. Monte Carlo sampling or the unscented transform [33]
are some of the options but one could also simply evaluate
where can be the mean, mode or any other likely value of

under and , respectively.
Such an approximation is for example used in the auxiliary par-
ticle filter [29] during the auxiliary weights computation. This
rough approximation should often be sufficient when is
smooth with respect to .

In our case, the emission probabilities
do not depend on the parameters . Thanks to

the Dirichlet prior, the integral with respect to can
be computed analytically

(36)

The recursion (35) can thus be computed analytically. If, at time

represents then, as in

(33), can be approximated by

(37)

where the weight update is given by

(38)

As one can see, such a procedure has many benefits since the
parameters are analytically integrated out, no random sampling
has to be performed and no computation needs to be done twice.
The complete algorithm can now be summarized as follows.

Algorithm 3 [Online deterministic estimator]

• Initialization: Enumerate the possible samples and
compute their weights.

• Update: For
— For

a) Enumerate all possible sample extensions.

b) , compute the weights according to (38)
— If necessary, estimate the posterior probability

distribution of .
— Select and preserve distinct sample streams

with the highest importance weights

from the set .

— , update the sufficient statistics .
— If necessary, compute an estimate of according to

(23).

A more accurate estimate of can easily be obtained by up-
dating the sufficient statistics and estimating before the selec-
tion step. However this would induce a heavier computational
load.



VERCAUTEREN et al.: BATCH AND SEQUENTIAL BAYESIAN ESTIMATORS 445

B. Approximate MAP Algorithm

For HMM with known parameters, the Viterbi algorithm pro-
vides a recursive solution to get the best state sequence estima-
tion in terms of the maximum a posteriori (MAP) [10]. When
the parameters are unknown, the most common procedure is to
use an EM algorithm which only converges to some local max-
imum of the a posteriori density, but above all it is a batch pro-
cedure and thus can not be used in our setting. Online estimation
of the HMM parameters has been studied in [12]–[16]. In this
section, another approach based on the use of sufficient statis-
tics developed here is taken. An approximate MAP algorithm
is presented whose computational load and memory need are
equivalent to a usual Viterbi algorithm.

We are interested in recursively maximizing with
respect to . In order to do that, the Viterbi algorithm makes
use of the quantity

(39)

From (35) we have

(40)

that can recursively be computed by taking
out of the inner max so that

. The estimate of at time is
then given by . When the transition matrix is un-
known, even if the probability of any path can be analytically
computed, such a recursion cannot directly be used because

depends on . However, if we make the
approximation that is maxi-
mized when only is maximized, we then get

(41)

where . This
allows us to derive an approximate MAP algorithm. The ra-
tionale behind the assumption above is that, as time goes, our
estimation of the transition matrix will stabilize. The impact of
the transition probability should therefore be lower than that
of the observation probability. Our simulations showed that
(41) provides rather good results given the low complexity of
the resulting algorithm. Our approximation of can
thus be recursively computed by keeping, for every possible
value , only the best path ending at this particular value

together with the corresponding set of sufficient statistics
. The recursion is then

given by

(42)

Let be our estimate of at time . The approximate MAP
algorithm is now summarized.

Algorithm 4 [Approximate MAP Algorithm]

• Initialization: For , set the weight of each
point to .

• Update: For
— For

a) Set

b) Set

.

c) Set .

d) Update the sufficient statistics:
.

— If necessary, get the approximate ML estimate of
by using the sequence that maximizes .

— If necessary, get an estimate of from

VI. SIMULATION RESULTS

A. Model Data

In this section, we first evaluate the performance of the
estimators with data extracted from the model. We assume an
802.11 network as modeled in [2], where the relation between
the number of competing terminals and the probability of
collision is given by (2). Our scenario is composed of a variable
number of competing stations transmitting in saturation
conditions. As in [2], only DCF basic access is considered,
with no capture or hidden terminals. The arrival and departure
of competing terminals from the network follow a random
Markov chain as in (5). The exponential backoff parameters are

16, 32, and 64 with 4, 5, and 6, respectively,
i.e., .

We generate noisy observations from (5), and each station
monitors the medium and estimates the probability of collision
by counting the number of busy slots as indicated in (3) with

. For each estimator that provide an approximation
of the filtering density, we first make a hard estimate by taking
the mode of the output distribution. The different estimators are
then compared by using this hard estimate. Fig. 1(a)–(d) shows
the performance of our proposed estimators compared to the ex-
tended Kalman filter with cumulative summary change detec-
tion (EKF_CUMSUM) proposed in [3] for the case

, . The effectiveness of the proposed estimators for all
the parameters is summarized in Table I. Several observations
are in order. First, all our proposed algorithms substantially out-
perform the CUSUM-EKF algorithm. Second, as expected, the
off-line Gibbs sampler achieves the best performance among
all estimators. For the on-line estimators, both the deterministic
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TABLE I
AVERAGE MSE OF THE HARD ESTIMATION OBTAINED FROM 100 DATA SETS

Fig. 1. Estimation error: model-based simulation, CW = 32,m = 5. (a) Gibbs sampler. (b) SMC. (c) Deterministic sampling. (d) Approximate MAP.

algorithm and the approximate MAP algorithm performs sim-
ilar than the SMC estimator, approaching the performance of
the Gibbs sampler. Finally, the approximate MAP algorithm ap-
pears as an excellent option for real-time implementation given
its lower complexity and excellent performance.

B. NS-2 Data

The estimators assume that there exist a model that express
the number of terminals as a function of the collision probability,
but it does not specify the nature of the model. For the cases in



VERCAUTEREN et al.: BATCH AND SEQUENTIAL BAYESIAN ESTIMATORS 447

Fig. 2. Estimation error: ns-2 simulation, exponential on-off activation, CW = 32, m = 5. (a) Number of stations versus collision probability in ns-2.
(b) Observed probability of collision. (c) Gibbs sampler. (d) SMC. (e) Deterministic sampling. (f) Approximate MAP.

which an analytical model is not available, empirical models
can also be used. For the real data simulations, we use the ns-2
network simulator version 2.27 [34]. We modified the 802.11
implementation so that the nodes can monitor the channel and

make an estimation of the collision probability based on 3. The
parameters used in the simulation are classical for a 1 Mbps
WLAN. No packet fragmentation occurs, and the nodes are lo-
cated close to each other to avoid capture or hidden terminal
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problems. The propagation delay is 1 . The packet size is fixed
with a payload of 1024 bytes. The MAC and PHY headers use,
respectively, 272 and 128 bits. The PHY preamble takes 144
bits. The ACK length is 112 bits. The Rx/Tx turnaround time
is 20 and the busy detect time 29 . The short retry limit
and long retry limit are set to 7 and 4, respectively. Finally, the
slot time is 50 , the SIFS 28 and the DIFS 130 . The
RTS/CTS threshold was increased so that only the basic access
was used.

Fig. 2 shows the collision probability versus the number of
competing stations obtained empirically in the ns-2 simulator.
Each point was obtained simulating a fixed number of stations
transmitting under saturation conditions and measuring the total
probability of collision. The simulation time for this empirical
measurement lasted 3000 s to provide better accuracy. To avoid
including ARP packets in the measurement an initial 20 s trans-
mission was used to ensure all the nodes had updated ARQ ta-
bles. Finally, an additional 100 s transmission was added before
measurements to allow the system to reach the steady state.

For testing the estimators in a realistic scenario, we used the
curves obtained in Fig. 2 instead of the analytical model in (2).
Our simulation scenario is composed of a variable number of
competing stations transmitting in saturation conditions. The
terminals use for estimating the collision probability.
Note that increasing would result in better estimates but, on
the other side, would increase the delay as the nodes need to
wait more slots to update their estimates. Each ns-2 simulation
run lasts 200 s. The arrival and departure of competing termi-
nals to the network (to attach to the corresponding access point)
follows an On–Off exponential process in continuous time. In
our irregular time grid, this is not Markovian anymore.

Fig. 2(c)–(f) shows the performance of our proposed esti-
mators, again compared to the extended Kalman filter with
cumulative summary change detection (EKF_CUMSUM) for

and . Fig. 2(b) shows the probability of
collision observed by the nodes versus the actual probability of
collision. It is interesting to note that the observed probability
of collision is considerably noisy. Table I shows the average
mean-squared error (mse) for the proposed estimators from
a total of 100 data sets. For comparative purposes, we also
included an ns-2 simulation in which the arrival of the nodes is
according to a Markov chain, as assumed by our model.

Note that for the noisy realistic 802.11 data, the proposed
Bayesian estimators offer superior performance. Again, as ex-
pected, the off-line Gibbs sampler estimator is better, and the
deterministic SMC algorithm offers a better performance than
the SMC estimator, despite being simpler. Finally, our novel ap-
proximate MAP algorithm perform similarly than the SMC al-
gorithm, and still may be considered as the best option from a
practical implementation point of view in terms of the compu-
tational complexity and power consumption.

VII. CONCLUSION

In this paper, we proposed several algorithms for the problem
of estimating the number of competing terminals in an IEEE
802.11 wireless network under the framework of Bayesian

Monte Carlo signal processing. In particular, we developed
a Gibbs sampler algorithm for off-line estimation. We also
developed sequential Monte Carlo-based online algorithms,
including a simpler deterministic variant. Finally, we developed
a novel approximate MAP algorithm that trades accuracy
for computational complexity. Our online estimators can be
applied to any hidden Markov chain with unknown transition
probabilities and unknown prior distributions, which makes
them appropriate for an 802.11 protocol where, from the ter-
minal point of view, there is very little knowledge of the state
of the system.

Simulation results show that these algorithms achieve better
performance compared with the EKF-CUSUM-based estimator
under both an artificial hidden Markov model and a real system
based on IEEE 802.11 simulations performed with ns-2. Fur-
thermore our approximate MAP proposal offers a similar perfor-
mance with considerably less computational requirement (and,
hence, lower power consumption), making it the preferred can-
didate for an actual implementation of the estimator on an IEEE
802.11 card.

APPENDIX

Derivation of (28): See the equation at the top of the next
page. The posterior distribution of given and is, thus,
a mixture of Dirichlet distributions that can be rewritten as

where .
Derivation of (29): From (7), we can see that

if

if

if

if

Therefore, we get
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The rest of the weight update follows from the usual formula

The weight update is thus performed by
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