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Abstract—The performance of the Distributed Coordination Function (DCF) of the IEEE 802.11 protocol has been shown to heavily

depend on the number of terminals accessing the distributed medium. The DCF uses a carrier sense multiple access scheme with

collision avoidance (CSMA/CA), where the backoff parameters are fixed and determined by the standard. While those parameters

were chosen to provide a good protocol performance, they fail to provide an optimum utilization of the channel in many scenarios. In

particular, under heavy load scenarios, the utilization of the medium can drop tenfold. Most of the optimization mechanisms proposed

in the literature are based on adapting the DCF backoff parameters to the estimate of the number of competing terminals in the

network. However, existing estimation algorithms are either inaccurate or too complex. In this paper, we propose an enhanced version

of the IEEE 802.11 DCF that employs an adaptive estimator of the number of competing terminals based on sequential Monte Carlo

methods. The algorithm uses a Bayesian approach, optimizing the backoff parameters of the DCF based on the predictive distribution

of the number of competing terminals. We show that our algorithm is simple yet highly accurate even at small time scales. We

implement our proposed new DCF in the ns-2 simulator and show that it outperforms existing methods. We also show that its accuracy

can be used to improve the results of the protocol even when the terminals are not in saturation mode. Moreover, we show that there

exists a Nash equilibrium strategy that prevents rogue terminals from changing their parameters for their own benefit, making the

algorithm safely applicable in a complete distributed fashion.

Index Terms— IEEE 802.11 wireless networks, distributed coordination function, sequential Monte Carlo, game theory, Nash

equilibrium.
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1 INTRODUCTION

THE IEEE 802.11 protocol [1] has become the predominant
technology for wireless local area networks (WLAN).

One of the most important elements of the 802.11 in terms of
performance is the medium-access control (MAC). The
MAC protocol is used to provide arbitrated access to a
shared medium, in which several terminals access and
compete for the radio spectrum. The design of the MAC
protocols is often application-dependent and it is closely
linked to the characteristics of the medium in which it
operates. It also determines the performance metrics of the
network, such as throughput, stability, and delay bounds,
that directly affect the quality of service (QoS) offered to the
applications. The IEEE 802.11 wireless networks employ the
distributed coordination function (DCF) as a primary
medium access mechanism. It is based on the carrier-
sensing multiple-access with collision avoidance (CSMA/
CA) protocol and binary exponential backoff [2], [3]. The
performance of an IEEE 802.11 network largely depends on
the operation of this backoff mechanism. Several studies of
802.11 have shown that the DCF is very sensitive to the
number of competing terminals that access the wireless
channel [2], [3], [4], [5], [6], [7]. These works indicate that a

way to optimize the network performance is to make the
parameters of the backoff window depend on the number
of terminals competing for the medium. Several existing
works have proposed solutions based on this premise, but
their estimation algorithms are either inaccurate or too
complex.

In this paper, we propose a dynamic optimization
protocol to optimize the operation of the IEEE 802.11 DCF
based on an online Bayesian estimator of the number of
competing terminals developed by the authors in [8]. The
sequential Monte Carlo (SMC) methodology [9] has been
shown to be extremely powerful in dealing with filtering
problems in non-Gaussian and nonlinear complex dynamic
systems, where conventional approaches fail to work. In [8],
we developed several SMC-based adaptive estimators for
the number of competing terminals in an IEEE 802.11
network that outperform the existing best estimator based
on the extended Kalman filter (EKF) [3]. In particular, we
developed a maximum a posteriori (MAP) estimator whose
computational load and memory requirements are equiva-
lent to those of the well-known Viterbi algorithm. Conse-
quently, our algorithm overcomes both of the problems
mentioned above: It is accurate and easy to implement. In
this paper, we propose an optimization mechanism that is
able to make use of the predictive distribution of the
number of competing terminals to maximize the through-
put of the IEEE 802.11 DCF. We show that the accuracy of
the Bayesian algorithm is particularly good at small time
scales, which makes our proposal attractive to optimize the
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protocol when the terminals are in a nonsaturation regime,
a problem usually not addressed in the literature. Finally,
we propose a modification of the optimal window size
selection that is a subgame perfect Nash equilibrium
strategy, allowing the algorithm to be implemented in a
completely distributed scenario without the arbitrage of a
central entity such as an access point. A conference version
of this work appears in [10].

The remainder of this paper is organized as follows:
Section 2 presents the prior art. Section 3 describes the
operation of the IEEE 802.11 DCF and discusses its
performance. In Section 4, we present the problem of
estimating the number of competing terminals in an IEEE
802.11 network, and we summarize the EKF and SMC
algorithms that we use for comparison. In Section 5, we give
the mathematical formulation for the problem of maximiz-
ing throughput of the IEEE 802.11 DCF based on the
knowledge of the number of active users. Section 6 employs
the game theory tools to analyze the DCF problem and
shows that it has a subgame perfect Nash equilibrium. The
performance of the estimators is evaluated in Section 7 by
using both model-based data and realistic ns-2 simulations.
Finally, Section 8 concludes the paper.

2 EXISTING WORKS AND MOTIVATIONS

The prior art on the optimization of the IEEE 802.11 DCF
can be basically divided in three categories: 1) change the
contention resolution algorithm, 2) adapt the parameters of
the protocol (e.g., backoff parameters) to a rough estimate of
the network status, being the number of competing
terminals, the load of the network, the probability of
collision, etc. (all these performance metrics are linked in
one way or another), and 3) adapt the parameters of the
protocol to an accurate estimate of the network status, often
using advanced filtering mechanisms.

From the first category, a fast collision recovery (FCR)
mechanism is proposed in [11] that dynamically distributes
the backoff timer among all competing terminals, trying to
reduce the unused backoff time. FCR gives more priority to
terminals that have transmitted recently, thus reducing the
collision penalty. This, however, exacerbates the already
existing unfairness of IEEE 802.11 as pointed out in [4]. In
[4], a new collision-resolution mechanism named GDCF is
introduced. This new protocol implements a “gentle”
reduction in the contention window after a successful
transmission, in contrast to the “hard” reduction of the
window to CWmin and, hence, avoiding increasing the
collision probability that is likely to appear subsequent to a
successful transmission. A similar but simpler approach
called “probabilistic” DCF (PDCF) is presented in [12],
where the window size is reset to CWmin with fixed
probability.

The second and third categories are mainly based on the
fact that the performance of the IEEE 802.11 DCF is very
sensitive to the number of competing terminals accessing
the wireless channel [2]. One of the main difficulties in
adjusting the backoff parameters to the number of compet-
ing terminals in the network is that its value is often not
available to the terminals. And, while a terminal could
cache the identity of the past senders in the network, the

number of competing terminals is the number of terminals

that have data to send at any given time, so the list of

neighbors is not sufficient. A distributed algorithm called

IEEE 802.11+ is proposed in [5] and extended in [13]. It

assumes that the backoff interval is sampled from a

geometrical distribution with parameter p and, by estimat-

ing p, the contention window size is adapted to improve the

throughput of the protocol. The parameter p is approxi-

mated using the average contention window of a tagged

terminal. In self-adapt DCF [14], the number of competing

terminals is estimated by monitoring the current load of the

channel. However, the load of the channel is often noisy

and may mislead the estimator under nonaverage transmit-

ting scenarios. Moreover, it requires changes in the RTS/

CTS frame format, making it impossible to adopt in current

networks. Finally, in [15], a simpler scheme is proposed by

estimating only the “range” of number of the terminals

(dynamic optimization on range, or DOOR) and not its

actual value. It is claimed that this approach is more

suitable for implementation than complex filter-based

estimations and leads to similar results. However, the range

estimation inevitably leads to inaccurate results. Belonging

to the last category, an extended Kalman filter (EKF)

algorithm is proposed in [3], assuming a constant number

of users and making use of a cumulative summary

(CUSUM) change detection trigger. The EKF approach

implicitly uses a linear Gaussian model departing from the

discrete nature of the variables of interest in the 802.11

protocol (number of users, number of busy slots, etc.).
The estimation-based mechanisms have a benefit over

their protocol-modification counterparts since they only

involve adjusting the contention window parameters (e.g.,

CWmin and CWmax), while the rest of the protocol (even the

use of the contention window values) remains unchanged.

This is particularly useful in practice, as the code running in

the access points (AP) does not need to be changed. This

allows an easy modification of existing implementations

and ensures the coexistence of enhanced versions with

legacy ones. However, existing methods based on the

estimation of the number of competing terminals exhibit

two problems. First, the number of competing terminals is a

non-Gaussian nonlinear dynamic system that is difficult to

track accurately with conventional filters. Advanced esti-

mators, such as the EKF-based estimator from [3], provide

better results, but they are subject to critics due to their

complexity [15]. Second, the performance of the IEEE 802.11

DCF is extremely sensitive to the number of competing

terminals, particularly in the typical operating point of 1-15

terminals. This makes the simple approximation methods,

such as DOOR, yield a suboptimal operation of the protocol

compared with the theoretical optimum. In our opinion,

there is a need for an accurate estimation algorithm that is

able to efficiently track the number of competing terminals

in an IEEE 802.11 network, and, at the same time, is easy to

implement.
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3 IEEE 802.11 DISTRIBUTED COORDINATION

FUNCTION

3.1 The DCF Protocol

In IEEE 802.11 DCF, the access to the medium is controlled
by the use of interframe space (IFS) times between
transmissions [4]. The IFS interval defines the amount of
time a terminal needs to wait before being able to transmit.
IEEE 802.11 specifies four IFS intervals: the short IFS (SIFS),
the point coordination function IFS (PIFS), the distributed
coordination function IFS (DIFS), and the extended IFS
(EIFS). The IFS intervals have durations related to the
priority of the data being transmitted. The SIFS is usually
assigned to high priority data such as acknowledgements
(ACK), the PIFS is assigned to the point coordinating
function (PCF), the centralized DCF counterpart, in which
some delay bounds are defined, the DIFS is assigned to DCF
data, and, finally, in order of priority, the EIFS is used for
situations in which a terminal has received unknown or
incorrect data and needs to report it. For that reason, they
are defined such as SIFS < PIFS < DIFS < EIFS. The DCF
defines two distinct techniques to access the medium: the
basic access and the RTS/CTS access.

Basic Access: In the basic access, the terminals imple-
ment a two-way handshake mechanism (Fig. 1). A terminal
senses the channel to be idle before starting a transmission.
If the channel is idle for at least a period of distributed
interframe space (DIFS), then the terminal is allowed to
transmit. If during this sensing time the channel appears to
be busy at any time, the terminal defers the transmission
and enters into the collision avoidance (CA) mode. In CA
mode, the terminal generates a random backoff interval
during which it waits before attempting another transmis-
sion. This random backoff is used to minimize the
probability of collision between terminals accessing the
medium. The idle time after waiting for a DIFS interval is
slotted and the terminals are only allowed to transmit at the
beginning of the slot time. The slot time size � accounts for
the time the signal is propagating and is set equal to the
time needed for any terminal to detect the transmission of a
packet from any other terminal [2]. If this time was not
accounted for, a terminal could assess the channel as idle
when the data sent by another terminal has not yet arrived.

The random backoff timer is uniformly chosen between
½0; vÞ, where v is called the contention window, and it is such
that satisfies v 2 ½CWmin; CWmax�, where CWmin and CWmax

are called the minimum and maximum contention window,

respectively. At the first transmission attempt, the value of
the contention window v is set toCWmin. The backoff timer is
decremented while the channel is idle (i.e., it only counts the
idle time). If, at any time, the channel is sensed busy, the
backoff timer is paused until the channels are sensed idle
again after the corresponding DIFS time. When the backoff
timer reaches 0, the terminal is allowed to transmit.
Following the successful reception of the data, the receiving
terminal waits a SIFS interval and transmit an ACK to the
transmit terminal. As the SIFS interval is shorter than the
DIFS interval, the destination terminal has priority in
sending the ACK. Such a two-way handshake-based ACK
is necessary because the CSMA/CA protocol does not
assume the terminals have the capability to detect collisions.
Upon reception of the ACK, the backoff stage is reset to 0 and
v ¼ CWmin. This is referred as a “heavy decrease” in [4]. If
the source terminal does not receive the ACK after a timeout
period (ACK_timeout) or it detects the transmission of any
other frame in the channel (collision), the frame is assumed
to be lost. After each unsuccessful transmission, the value of
v is doubled up to a maximum of CWmax ¼ 2mCWmin, where
m is usually referred to as the maximum backoff stage [4]. The
values of CWmin, CWmax, and slot size � are determined by
the characteristics of the physical layer.

As shown in Fig. 1, when another terminal is transmit-
ting, the rest of terminals set up the network-allocation
network timer (NAV), which acts as a virtual carrier sense.
When hearing a data frame, the rest of the terminals set up
the duration of the NAV to the duration specified in the
header of the transmitted data frame. The NAV vector
includes the SIFS and the duration of the ACK transmission.
All the terminals defer their access to the medium until the
NAV timer expires.

The RTS/CTS access is similar to the basic access but
makes use of a four-way handshake protocol in which, prior
to data transmission, a terminal transmits a special short
request-to-send frame (RTS) to try to “reserve” the
transmission and reduce the cost of collisions. The receive
terminal responds with another short special clear-to-send
(CTS) frame as shown in Fig. 1. In this paper, we focus
primarily on the basic access.

3.2 Analytical Throughput

We consider an IEEE 802.11 network with DCF operating in
the basic access mode as described in Section 3.1. We
assume that the number of terminals using the network at a
given time is finite. Note that, while the IEEE 802.11
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protocol does not specify a mechanism for access control, it

is safe to assume that the number of users is upper

bounded. As the number of users increases, the collisions in

the network would also increase, leading to a saturation of

the network that would eventually lead the utilization of all

the terminals to zero. We also assume that the terminals

transmit in a saturation regime, i.e., they always have

something to send. In this saturation regime, it is shown in

[2] that the normalized throughput of the system can be

analytically derived.

From the point of view of a terminal, the time can be

slotted into variable length slots. Specifically, in the DCF

operation, a time slot will correspond to an idle slot �, a

busy slot which has the duration of a successful transmis-

sion TsðLÞ, or the duration of a collision TcðL�Þ, where L is

the time length of the packet and L� is the time length of the

largest of the packets involved in the collision. The

normalized throughput is then given by

S ¼ IE½L�
Ts � Tc þ Tcþ�ð1�PtrÞ

Ps

; ð1Þ

where Ptr is the probability of a terminal transmitting in the

slot and IE½L�, Ts ¼ TsðIE½L�Þ, Tc ¼ TcðIE½L��Þ, and � are

constants denoting, respectively, the average packet pay-

load length, the average time of a busy slot with successful

transmission, the average time of a busy slot with collision,

and the duration of an empty slot. IE½L�� is the average

length of the longest packet involved in a collision.
Let xt be the number of competing terminals in the

network at time t (discrete). Here, the term competing refers

to a terminal that is either transmitting or backlogged (i.e., it

has data to send). Let q be the probability that a terminal

transmits in a given slot. Then, the probability Ptr that at

least one terminal transmits in a given time slot t is given by

Ptr ¼ 1� ð1� qÞxt : ð2Þ

In [2], it is shown that

q ¼ 2ð1� 2pcÞ
ð1� 2pcÞðCWmin þ 1Þ þ pcCWminð1� ð2pcÞmÞ

; ð3Þ

where CWmin and m are the minimum contention window

and the maximum backoff stage, respectively. Then, the

collision probability pc and the probability of a successful

transmission Ps for a terminal are given by

pc ¼ 1� ð1� qÞxt�1; Ps ¼
xt � qð1� qÞxt�1

1� ð1� qÞxt : ð4Þ

The interesting conclusion of this analysis is that the

throughput is a function of the number of competing

terminals xt and the probability of a terminal transmitting q.

Given xt, CWmin, and m, (3) and (4) can be solved and a

unique solution can be found [2]. Therefore, the normalized

saturation throughput only depends on the number of

competing terminals and the backoff parameters, i.e.,

S ¼ Sðxt; CWmin;mÞ: ð5Þ

Then, once the number of competing terminals xt is
estimated, the optimization problem involves selecting the
other parameters CWmin and m to maximize the system
throughput.

4 ESTIMATION OF THE NUMBER OF COMPETING

TERMINALS

It is shown in [2] that, when the terminals are in saturation
regime, i.e., they always have a packet to send, and when
the system reaches a steady state, then the number of
competing terminals xt can be expressed as a function of the
collision probability pc as

xt ¼ fðpcÞ ¼4 1þ logð1� pcÞ
log 1� 2ð1�2pcÞ

ð1�2pcÞðCWminþ1ÞþpcCWminð1�ð2pcÞmÞ

� � :
ð6Þ

The above function is monotonic increasing in pc and,
hence, an inverse function exists, i.e, pc ¼ hðxtÞ, where
hð�Þ ¼ f�1ð�Þ. The problem of estimating the number of
competing terminals then involves estimating xt based on a
noisy observation of pc, which each terminal can acquire by

monitoring the channel activity.
While there are different ways of estimating the collision

probability in the channel, an easy method proposed in [3]
consists of counting the proportion of busy slots in a given
period. The number of busy slots is an indication of the
collision probability because an attempt of transmission in a
busy slot would result in a sure collision. This process of
counting the slots does not impose any burden to the
normal operation of the DCF, as the terminals are always
monitoring the network and checking the medium state.1

So, our observation variable of the collision probability yt
can be defined at each time step t as

yt ¼
XtB�1

i¼ðt�1ÞB
Ci; ð7Þ

where Ci ¼ 0 if the ith time slot is empty or corresponds to
a successful transmission (i.e., no collision) and Ci ¼ 1 if the
ith basic time slot is busy or corresponds to an unsuccessful

transmission (i.e., would result in collision); B is the
number of slots that compose the observation slot for the
measurement. It is easy to see that yt follows a binomial
distribution BðB; pcÞ with B trials and probability of success
pc, i.e.,

pðyt ¼ bÞ ¼
B

b

� �
pbcð1� pcÞ

B�b; b ¼ 0; 1; 2; . . . ; B: ð8Þ

Therefore, we can see that Var½yt� ¼ Bpcð1� pcÞ and
IE½yt� ¼ Bpc. From the above discussion, we can cast our

problem into the following state-space representation:

xt �Mð��Þ; ð9Þ

yt � BðB; hðxtÞÞ; ð10Þ
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whereMð��Þ denotes a discrete-time Markovian model with
some unknown parameters ��; xt is the state realization of
the Markovian model at time instant t.

In this paper, we consider two advanced methods for
estimating xt based in yt: the extended Kalman Filter with
CUSUM approximation developed in [3] and sequential
Monte Carlo (Bayesian)-based estimators developed in [8].

EKF-based estimator: In [3], the EKF approach implici-

tely simplifies the state-space (9)-(10) into a linear Gaussian

model. The state xt is assumed to fluctuate as xt ¼ xt�1 þ wt,
where wt is the state noise with variance Qt and the

observation is approximated as yt ¼ BhðxtÞ þ ut, where ut
is the observation noise with variance Rt ¼ BhðxtÞð1� hðxtÞÞ.
In order to fit the EKF assumptions, all variables are used as

continuous variables and Qt and Rt are assumed to be

known. Therefore, Rt is approximated by

Rt � B � hðx̂tjt�1Þ � ð1� hðx̂tjt�1ÞÞ
¼ B � hðx̂t�1Þ � ð1� hðx̂t�1ÞÞ;

ð11Þ

where x̂tjt�1 and x̂t are estimates of IE½xtjy1; y2; . . . ; yt�1� and
IE½xtjy1; y2; . . . ; yt�, respectively.

The usual EKF approach provides the following update
procedure:

x̂t ¼ x̂t�1 þKtzt; ð12Þ

where zt ¼ yt �Bhðx̂tjt�1Þ ¼ yt �Bhðx̂t�1Þ is the innovation
given by the tth measure and the Kalman gain Kt is
specified by

Kt ¼
ðPt�1 þQtÞgt

ðPt�1 þQtÞg2
t þRt

; ð13Þ

where gt is the sensitivity of the measurement

gt ¼ B
@hðxÞ
@x

����
x¼x̂t�1

: ð14Þ

It is observed in [3] that Qt, the variance of the process
noise, needs to be adjusted. In [3], the number of competing
terminals is assumed to be constant (Qt ¼ 0) and a “change
detection” filter based on the cumulative summary (CU-
SUM) test is implemented to select a large value (deter-
mined by simulations, e.g., 5) for Qt when the number of
competing terminals is detected to have noticeably changed.
The intuition behind it is that, if the number of competing
terminals does not change too abruptly, the network state
will never be too far from the analyzed steady state.

SMC-based Estimators: In [8], it is assumed that the
number of competing terminals evolves according to a first-
order Markov chain with an unknown transition probability
matrix AA ¼ ½ai;j�, i.e., pðxtþ1 ¼ jjxt ¼ iÞ ¼ ai;j, where ai;j � 0
and

PN
j¼1 ai;j ¼ 1, N is the maximum number of competing

terminals, and initial probability vector �� ¼ ½�1; � � � ; �N �, i.e.,
pðx0 ¼ iÞ ¼ �i. Because the probability that a large number
of users enter or leave the system in two consecutive time
slots is small, the transition matrix AA is assumed to have a
banded structure, i.e., ai;j ¼ 0; for ji� jj > � for some
� < N . Hence, we have the state equation xt �MCð��;AAÞ,
with �� and AA unknown and the observation equation
yt ¼ BðB; pcÞ.

Denote the observation sequence up to time t as

yyt ¼
4
y1; y2; � � � ; yt½ � and the network state sequence up to

time t as xxt ¼4 x1; x2; � � � ; xt½ �, and denote the unknown

parameters as �� ¼ f��;AAg. We are interested in obtaining a

Bayesian estimate of the posterior distributions pðxxtjyytÞ and

pð��tjyytÞ. In this paper, we will present two algorithms

developed in [8], deterministic SMC and approximate

maximum a posteriori (MAP). The basic idea behind the

sequential Monte Carlo (SMC) approach is to recursively

update a set of weighted samples, fxx ðkÞt ; ��
ðkÞ
t ; ww

ðkÞ
t g,

k ¼ 1; 2; . . . ; K, representing the distributions of interest.

For example, we have:

pðxxtjyytÞ �
XK
k¼1

w
ðkÞ
t IIðxxt � xxðkÞt Þ; ð15Þ

where IIðxÞ ¼ 1 if x ¼ 0 and IIðxÞ ¼ 0 otherwise.
The usual SMC approach is not well-suited for para-

meter estimation (here, ��) [9] and the key to the approach

developed in [8] is to see that the complete information

about the transition matrix can be carried over through

some sufficient statistics. A well-known strategy for

Bayesian inference is to choose the prior distributions with

a suitable form so that the posteriors belong to the same

functional family as the prior. By assuming that the prior

distributions of �� ¼ f��;AAg are given by multivariate

Dirichlet distributions, it is shown in [8] that the posterior

distributions of �� given xxt and yyt are also multivariate

Dirichlet distributions:

pð��jxxt; yytÞ ¼ pð��jx1; y1Þ ¼ Dð��i; �1; �2; � � � ; �NÞ; ð16Þ

pðaaijxxt; yytÞ ¼ Dðaai;�i;1;t; �i;2;t; � � � ; �i;N;tÞ; i ¼ 1; � � � ; N; ð17Þ

where Dð:; . . .Þ denotes the Dirichlet probability density

function. We get the following update procedure:

�i;j;t ¼ �i;j;t�1 þ IIðxt�1 � iÞIIðxt � jÞ: ð18Þ

From the Bayes theorem, we have

pðxxtjyytÞ ¼ pðytjxxt; yyt�1Þpðxtjxxt�1; yyt�1Þpðxxt�1jyyt�1Þ: ð19Þ

Thanks to the sufficient statistics framework, (19) can be

updated analytically:

pðxxtjyytÞ ¼ Bðyt;B; hðxtÞÞ
�xt�1;xt;t�1PN
j¼1 �xt�1;j;t�1

pðxxt�1jyyt�1Þ: ð20Þ

We now have all the tools to derive the deterministic

SMC estimator. Suppose a set of weighted samples contain-

ing no duplicate and representing pðxxt�1jyyt�1Þ is available at

time ðt� 1Þ, i.e., (15); based on (20), pðxxtjyytÞ can be

approximated by

pextðxxtjyytÞ /
XK
k¼1

XN
j¼1

w
ðk;iÞ
t IIðxt � iÞIIðxxt�1 � xxðkÞt�1Þ; ð21Þ

where the weight update procedure is given by

w
ðk;iÞ
t / wðkÞt�1Bðyt; iÞ

�
ðkÞ
x
ðkÞ
t�1;i;t�1PN

j¼1 �
ðkÞ
x
ðkÞ
t�1
;j;t�1

: ð22Þ
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A selection step is then performed to retain a fixed number
of samples.

The use of sufficient statistics leads the authors in [8] to a
modification of the well-known Viterbi algorithm to fit the
unknown transition matrix scenario. In this approximate
MAP approach, the objective is to recursively maximize
pðxxtjyytÞ with respect to xxt. With this goal, the Viterbi
algorithm uses

�tðiÞ ¼ max
xxt�1jxt¼i

pðxxtjyytÞ ¼ pðytjxt ¼ iÞ

max
xt�1jxt¼i

max
xxt�2jxt�1;xt¼i

½pðxxt�1jyyt�1Þpðxtjxxt�1; yyt�1Þ�
ð23Þ

that can recursively be computed if the transition matrix is
known by taking pðxtjxxt�1; yyt�1Þ ¼ axt�1;xt out of the inner
max. The estimate of xt at time t is then given by maxi �tðiÞ.
When the transition matrix is unknown, even if the
probability of any path can be analytically computed as in
(20), such a recursion cannot directly be used because
pðxtjxxt�1; yyt�1Þ depends on xxt�2. However, if we make the
approximation that pðxxt�1jyyt�1Þpðxtjxxt�1; yyt�1Þ is maximized
when pðxxt�1jyyt�1Þ is maximized, an approximation �̂tðiÞ of
�tðiÞ can be computed recursively as

�̂tðiÞ ¼ pðytjxt ¼ iÞmax
j

�̂t�1ðjÞpðxt ¼ ijxxðjÞt�1; yyt�1Þ
h i

ð24Þ

¼ Bðyt;B; hðiÞÞmax
j

�̂t�1ðjÞ �
�
ðjÞ
j;i;t�1PN

k¼1 �
ðjÞ
j;k;t�1

" #
; ð25Þ

where xx
ðjÞ
t�1 corresponds to the retained path ending at

xt�1 ¼ j and �
ðjÞ
j;�;t�1 is the corresponding sufficient statistics

updated by (18). For more details of the two SMC-based
estimators discussed above, the readers are referred to [8].

5 OPTIMIZATION OF IEEE 802.11 DCF

5.1 Utility Function

In this section, we propose a novel optimization algorithm

based on the SMC estimators of the number of competing

terminals described in the previous section. We are

interested in optimizing the throughput of the IEEE 802.11

DCF when the number of competing terminals is less than

40. Our simulations in ns-2 shows that the effect of CWmax

greater than 1,024 has no effect on the network performance

for xt 	 40. So, in order to simplify the problem, we impose

m to be fixed such as CWmax ¼ 2mCWmin ¼ 1; 024, i.e., m ¼
log2

1;024
CWmin

� �
and CWmin

2 takes values from a set W. This set

can be fixed or it can be constructed, for example, using the

method in Section 5.3. Then, assuming m is no longer a

variable, a simple formulation of the backoff window choice

is given by

W �
tþ1 ¼ arg max

W2W
IEpðxtþ1jyytÞ

�u

�
Sðxtþ1;W;mÞ � Sðxtþ1;Wt;mÞ

�	 

;

ð26Þ

where �u is a utility function of the difference in throughput
and Sð�Þ is given in (5). �u will typically be a nondecreasing
function and should be convex on the positive part and
concave on the negative part.

Considering the choice of the cost function, we are
interested in studying the case in which a change in CWmin

negatively affects the normal operation of the protocol. Let v
be the actual window size for an IEEE 802.11 terminal.
Then, by the operation of the protocol, we know that vðtÞ 2
½WminðtÞ; 1; 024� and, in the next observation slot,

vðtþ 1Þ ¼ CWminðtÞ; if success in t;
minð2
 vðtÞ; 1;024Þ; if collision in t:

�
ð27Þ

Note that, because the protocol dictates that

vðtÞ 2 ½CWminðtÞ; CWmaxðtÞ�;

a change in CWmin may produce a “jump” in the value of v
if vðtÞ < CWminðtþ 1Þ. Fig. 6a shows the average evolution
of vðtÞ with the number of competing terminals for different
backoff parameters. As x! 20, the optimal CWminðtÞ ¼ 256,
and the average value for vðtÞ � 330. If xðtþ 1Þ > 20, the
optimal value of CWminðtþ 1Þ becomes 512, forcing vðtþ 1Þ
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Fig. 2. Collision probabilities and throughput in ns2. (a) Collision probabilities from ns-2 used in the estimator. (b) Saturation throughput of the

implementation of IEEE 802.11 in ns-2.

2. For ease of notation, we would use the term CWmin and W
interchangeably.



to be at least 512 as indicated by the arrow. If the estimate
xðtþ 1Þ > 20 is spurious and xðtþ 2Þ < 20 (so CWminðtþ 2Þ
is back to 256 again), it would take a terminal an extra
successful transmission to return v to the average correct
level (i.e., 256), incurring an average delay of 128 slots. For
this reason, the utility function �u must penalize oscilla-
tions of CWmin, so the change of window is not made for
small differences.

An interesting note is that our utility function in (26) is
not based on a hard decision on the number of competing
terminals but makes use of its distribution if available. In
[15], [16], a similar optimization scheme was introduced,
but a hard estimate of the number of terminals was used to
make a range estimation. To prevent frequent switching, the
authors proposed using overlapping ranges. We believe
that our Bayesian criterion is more natural to make a soft
decision.

5.2 Predictive Distribution Based on SMC Samples

As shown in our criterion (26), we need to have access to the
predictive distribution pðxtþ1jyytÞ in order to perform an
optimal control of the protocol.

Given a set of samples and weights xx
ðkÞ
t ; w

ðkÞ
t

n oK
k¼1

representing pðxxtjyytÞ at time t, (26) can be approximated as

ŴSMC
tþ1

¼ arg max
W2W

XK
k¼1

XN
i¼1

�uð�Sðxtþ1 ¼ i;WÞÞpðxtþ1 ¼ i; xxðkÞt jyytÞ

¼ arg max
W2W

XK
k¼1

XN
i¼1

�uð�Sði;WÞÞ
�
x
ðkÞ
t ;i;tPN

j¼1 �xðkÞt ;j;t

w
ðkÞ
t

¼ arg max
W2W

XK
k¼1

w
ðkÞ
tPN

j¼1 �xðkÞt ;j;t

XN
i¼1

�uð�Sði;WÞÞ�xðkÞt ;i;t;

ð28Þ

where �Sðxtþ1;WÞ ¼ Sðxtþ1;W;mÞ � Sðxtþ1;Wt;mÞ.
For the case in which we only have access to a hard

estimate of the number of competing terminals, the backoff
window choice (26) is simply approximated by

WMAP
tþ1 ¼ arg max

W2W
�u Sðx̂tþ1jt;W;mÞ � Sðx̂tþ1jt;Wt;mÞ
� �

;

ð29Þ

where

x̂tþ1jt ¼ arg max
xtþ1

pðxtþ1jx̂xt; yytÞ � arg max
xtþ1

pðxtþ1jxxt; yytÞ

is an approximate MAP estimate of xtþ1 with x̂xt being the
current MAP estimate of xxt.

For the EKF algorithm, pðxtjyt; yt�1; . . . ; y1Þ is approxi-
mated by a Gaussian pðxtjyt; yt�1; . . . ; y1Þ � N ðxt;hðxtÞ; PtÞ.
This would involve complex numerical integrations, so we
use the hard estimate of the number of competing terminals
as in (29).

5.3 Choice of Backoff Window Size Set W
Having discussed how to perform an optimal choice of the
backoff window within a given set W, we can now give
some insight on the choice of this set. It will be chosen such
that the optimal throughput can always be approached
and such that its cardinality remains low. Indeed, a small

number of configurations will allow a more stable system
and an easier implementation. Our design criterion can be
written as

8i 2 ½1; � � � ; N�;
j max
W2N�

Sði;W;mÞ � max
W2W

Sði;W;mÞj < �Smax;
ð30Þ

where �Smax is the maximum throughput loss to optimality
we allow. �Smax will typically be chosen small, for instance,
2.5 percent. Within this constraint, we would like to have as
few points in W as possible. Because of the regularity of
Sð:Þ, such a set can be constructed by performing the
following operations:

1. Let imid ¼ 1.
2. Choose the greatest integer jref such that

SoptðimidÞ � Sðimid;WoptðjrefÞ;mÞ < �Smax;

where

WoptðkÞ ¼ arg max
W2IN�

Sðk;W;mÞ

and SoptðkÞ ¼ Sðk;WoptðkÞ;mÞ. Let WoptðjrefÞ be inW.
3. Find the smallest integer imid > jref such that

SoptðimidÞ � Sðimid;WoptðjrefÞ; mÞ > �Smax.
4. If imid < N and jref < N , go back to Step 2.
5. If imid � N and jref � N , remove WoptðjrefÞ from W

and let N be in W.

6 GAME THEORETICAL ANALYSIS OF DISTRIBUTED

IMPLEMENTATIONS

So far, we have considered the scenario in which all the
terminals agree on the observations and adjust to the
window size that optimizes the total throughput of the
network. This can be easily implemented if the estimation
and optimization algorithms are placed in the access point
and the optimal backoff parameters are broadcast to all
terminals periodically. The access point can, for example,
use piggybacking in the ACK frames, and the terminals may
use overhearing to adjust the parameters accordingly. While
this solution ensures that all terminals would use the same
window size and, hence, provides fair results, the problem is
that it requires the modification of the protocol, i.e., the
access point needs to introduce new messages or new fields
in existing frames that have to be understood by the
terminals. A nice feature of the estimation and optimization
algorithms described in this paper is that they are
distributed by nature and they do require minimal changes
in the IEEE 802.11 DCF (namely, the ability to adaptively
change the values of the backoff parameters). In this section,
we consider such a distributed scenario in which every
terminal estimates the number of competing terminals and
optimizes its own network utilization without sharing any
information. While we explore this approach in the context
of our optimization algorithm, the following analysis can be
applied to any optimization scheme.

In such a distributed approach, allowing a terminal to
select its own window may introduce unfairness. Moreover,
a rogue terminal may want to change the backoff parameter
for its own benefit. This kind of economic behavior can
effectively be modeled and analyzed using game theory
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concepts and tools [17]. We will show in the following
analysis that these situations can effectively be avoided and
all the terminals can be enforced to select the appropriate
windows parameters in a totally distributed manner. We
will also show that this strategy is, in fact, the best possible,
i.e., there is no incentive for any terminal to lie in their
estimations for their own benefit, resulting in a stable
optimal operation.

The normal form representation of an n-players game G ¼
fS1; . . . ; Sn;u1; . . . ; ung specifies the players’ strategy spaces
fEig and their payoff functions fuig. In the context of our
problem, we define the game as the following x-player game:

Definition 1. The normal-form definition of the optimization
of the IEEE 802.11 DCF (DCF game) is denoted by
G ¼ fW1; . . . ;Wx; S1; . . . ; Sxg, where x is the number of
competing terminals, Wi is the set of values for CWmin for
terminal i, and Si is the throughput of terminal i.

Note that the throughput Si of terminal i is a function of
x and the strategies of all the x competing terminals (i.e.,
Si ¼ SiðW1; . . . ;WxÞ). A powerful concept in game theory is
the Nash Equilibrium (NE). In the x-player formal game, we
say that a set of strategies is NE if it is the player’s best
response to the strategies selected by the rest of players.

Definition 2. In the DCF game G ¼ fW1; . . . ;Wx; S1; . . . ; Sxg,
the strategies ðW �

1 ; . . . ;W �
x Þ are Nash Equilibrium if

SiðW �
1 ; . . . ;W �

i�1;W
�
i ;W

�
iþ1; . . . ;W �

x Þ
� SiðW �

1 ; . . . ;W �
i�1;Wi;W

�
iþ1; . . . ;W �

x Þ; 8Wi 2 Wi;
ð31Þ

or W �
i ¼ arg max

Wi2Wi

SiðW �
1 ; . . . ;W �

i�1;Wi;W
�
iþ1; . . . ;W �

x Þ:

ð32Þ

The NE is of interest because it is a self-enforcing point from
which the player has no incentive to deviate, and, hence, the
system is stable.

In a real scenario, the terminals face two problems: there
is no global information of the system available (in
particular the number of competing terminals) and the
estimates of the number of competing terminals are noisy.
So, a terminal may attempt to reduce its window size to
increase its transmission probability. This, in turn, will
make the other terminals estimate a higher probability of
collision, hence, increasing their estimate of the terminals
competing in the network which, in turn, increases their
CWmin and reduces their probability of transmission (they
spend more time backlogged). The overall result is that the
rogue terminal would capture most of the network
throughput at the other terminals’ cost. As a terminal has
an incentive to deviate from the optimal strategy for its own
benefit, the conclusion is that, with partial information, the
strategy in (26) is not an NE point in the distributed DCF game.
We need to extend the definition of our game model to an
infinitely repeated game in which the varying strategies
that the terminals take in time are taken into account.

Definition 3. The infinitely repeated DCF game Grð�Þ is a
staged game in which, at any stage t, each player decides which
strategy to use and receives the corresponding payoff. In this
sense, each stage of the game is another game as described in
Definition 1, denoted by GðtÞ. The payoff for player i up to
stage t is defined as

Sri ðtÞ ¼ Sið1Þ þ �Sið2Þ þ �2Sið3Þ þ . . . ¼
Xt
j¼1

�j�1SiðjÞ; ð33Þ

where Sri ðtÞ is the payoff of the repeated game after t stages for
player i, SiðjÞ is the payoff of the jth stage game for player i,
and � 2 ð0; 1Þ is the discount factor.

Infinitely repeated games are often used to analyze
games that will end with probability one, but there is
uncertainty as to when this will happen. So, it is reasonable
to try to maximize Sri ð1Þ instead of a particular (set of)
SiðtÞ. This concept of an infinitely repeated game describes
the DCF problem more accurately. The set of strategies at
every stage of the game depend on the observed behaviors
of the rest of the players in previous stages. This also allows
for the players to implement strategies that enforce some
behavior in other players by threatening with a punishment
strategy that would lower their payoff. The worst punish-
ment strategy for terminal i would be the rest of the
terminals implementing the following strategy

Wi
j ¼ arg min

Wj

max
Wi

SiðtÞ; 8j 6¼ i; ð34Þ

i.e., the strategy that minimizes the maximum payoff of the
terminal i. In our DCF case, the worst punishment is given
when the rest of the terminals select their strategies to be
Wi

j ¼ minfWg, i.e., the minimum of the set of available
window sizes (this would correspond to the “all cheat” data
in Fig. 3b). We now recall a well-known theorem in game
theory called the Folk Theorem, which states that any
combined strategy that gives each player a better payoff
than the worst punishment can be implemented as an NE
[17] as long as the players stick to it. The rationale behind
the theorem is that, when a terminal is detected to be
deviating from the agreed strategy (to have a temporal
better payoff), the rest of terminals may implement a
punishment strategy long enough so that the rogue terminal
will eventually obtain less payoff over time than if it would
have not deviated from the agreed strategy in the first place.
It is obvious that the strategy we want to agree on with all
the terminals is the one given in (26).

To make Folk Theorem applicable, though, the terminals
must be able to tell when a rogue terminal is deviating from
the agreed strategy. We argue that the detection of a rogue
terminal is still possible with some probability. For a given
number of terminals, and assuming no hidden terminal or
capture effects, it is easy to see that all the terminals will
have, on average, an equal share of the channel3 and that
share is known by the terminals as they use it for their
optimal decisions. However, if a terminal is cheating, the
expected throughput of the noncheating terminals will be
reduced and the noncheating terminals can identify the
presence rogue terminals in the network. This detection is
not straightforward and it is indeed very difficult to
guarantee with total accuracy because, if a terminal reduces
the window size, it will inject more packets into the network,
affecting, in turn, the estimation of the number of competing
terminals. However, as Fig. 3a shows, the effect of one
cheater terminal does not match the expected behavior even
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for the new observed “artificial” collision probability. In the
figure, the rogue terminal is using the CWmin ¼ CWmax¼8

window instead of the regular 32-1,024 window. If we
assume that the estimate of the number of terminals is
within some error, we can also estimate the deviation from
the expected utilization and identify the existence of rogue
terminals (especially for small number of terminals). This
technique, however, does not work if the rogue terminal
reduces the window size one step at a time, so the overall
contribution of this decrement in the collision probability is
below the estimation noise. On the other hand, if more than
one terminal reduces the window size at the same time, then
the probability of being detected increases. If we assume the
above is true, then the we can say that there is a nonzero
probability for the detection of a rogue terminal and we can
make use of the punishment strategy to achieve the NE
equilibrium.

Another problem with the punishment strategy is that it
usually has a cost for the terminals that implement it in
response to a rogue terminal. Fig. 3b shows that the
utilization of all the terminals is reduced from the regular
operation point (“no cheats”) to the point in which everyone
is implementing the punishment (“all cheat”). The idea of
punishment strategy is to act as a “threat” to a potential
cheating, but nothing prevents the rogue terminal from
cheating if the punishment is not credible. To avoid this
concept of incredible threat, it is important to show that a
strategy is not only NE, but subgame perfect Nash equilibrium,
in which the players’ strategies in every subgame (subset of
stages in the game) are also an NE. This means that not only
is the agreed strategy NE, but the punishment strategy is
also NE (the best that a cheated terminal can do). We claim,
however, that, in the DCF game, the punishment strategy is
credible. It is reasonable to assume that the relation between
the throughput of each strategy as shown in Fig. 3b holds for
small deviations. Then, we can get the final result in the
following theorem:

Theorem 1. Assume that the relation from Fig. 3b holds for all
variations in window size, i.e., Sr > So > Sa > Sc, where Sr
and Sc are the payoff vector (throughput) for the rogue
terminal and the cheated terminals, respectively, when the
rogue terminal is cheating; So is the payoff vector for all the

terminals when none of them is cheating, and Sa is the payoff
vector for all the terminals when everyone implements the
punishment strategy. Then, the following punishment strategy
W � is a subgame perfect Nash equilibrium for the DCF game
for an infinite-lived network:

At stage t,

1. select W � ¼Wopt
t in (26) if every terminal selects their

optimal Wopt, i.e., there are no rogue terminals
detected;

2. otherwise, select the punishment strategy W � ¼
minfWg forever.

Proof. The punishment strategy from the cheated terminals
produces a reduction in the payoff vector for the rogue
terminal (Sa < Sr) that at the same time is worse than the
payoff vector for all the terminals if none of them had
cheated (Sa < So). Then, by the Folk Theorem, there exists
a discount factor �, such that the strategy W � is Nash
equilibrium for G1ð�Þ. Moreover, the punishment strat-
egy is the best strategy for a cheated terminal as Sc < Sa.
And, once the punishment strategy is in place, there is no
incentive for any terminal to modify the window
selection, as any other W 6¼ minWfWg would produce a
payoff vector S0 such that S0 	 Sa. So, the punishment
strategy is also NE and W � is subgame perfect Nash
equilibrium for the infinity repeated DCF game. tu
The interesting result here is that the strategy defined in

Theorem 1 is subgame perfect Nash equilibrium, meaning
that for an infinite-lived network, there is no incentive for a
rogue terminal to cheat, assuming that there exists a
nonzero probability of a rogue terminal being detected.
Moreover it also shows that the punishment strategy is not
only a credible threat, but it is the best response a cheated
terminal can have if a rogue terminal is detected. Finally,
we can show that the punishment strategy described above
is also optimal in terms of throughput.

Corollary 1. The strategy W � defined in Theorem 1 is optimal.

Proof. Because W � is subgame perfect Nash equilibrium,
the optimal strategy for all the terminals is to follow
Step 1 of the strategy and avoid entering into the
punishment mode. As Step 1 selects an optimal W , the
payoff vector for all terminals is also optimal. tu
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Coexistence of regular IEEE 802.11 DCF terminals
with optimized terminals implementing the punishment
strategy. The previous result applies to scenarios in which it
is assumed that the terminals can decide the value of
CWmin. The coexistence regular IEEE 802.11 DCF terminals
with terminals applying the optimization algorithm is
worth discussing. Fig. 4a shows a scenario in which
50 percent of the terminals are regular 802.11 and 50 percent
are using the optimization algorithm. The presence of
optimized terminals always benefit the overall network
throughput. The optimized terminals will observe a higher
probability of collision and will increase their window sizes,
reducing the overall collision probability by reducing their
transmission probabilities (Fig. 4b). This creates an inter-
esting situation from the Nash Equilibrium point of view: If
the optimized terminals do not implement the punishment
strategy, they “sacrifice” themselves at the cost of a better
network throughput. This is not fair for the optimized
terminals. However, if they implement the punishment
strategy, they would reduce the performance of the regular
terminals considerably, which, in turn, is not fair for the
regular terminals. The optimized terminals would see the
regular terminals as “cheaters,” when, in fact, they can’t
select any window size at all. The Nash Equilibrium in this
scenario occurs when all the terminals have the same
window selection, i.e., optimized terminals revert to a
standard IEEE 802.11 DCF operation, without optimiza-
tions. But it is impossible by simple observation of the
medium to distinguish a vanilla IEEE 802.11 DCF terminal
from a rogue node pretending to be one. A possible solution
is to inform all the terminals of the presence of regular IEEE
802.11 DCF terminals, so all of them can fall into regular
IEEE 802.11 DCF operation. This “backward compatibility
mode” can be informed either by the BS or by identification
of the protocol (for example, by a field in the frames).

7 SIMULATION RESULTS

7.1 Simulation Setup

For the simulations, we use the ns-2 network simulator
version 2.27 [18]. We modified the 802.11 implementation so
the terminals measure the observation slots as in (7) for the

estimates of the collision probability. The parameters used in
the simulation are classical for a 1 Mbps WLAN and are
taken after [3] for a fair comparison. No packet fragmenta-
tion occur, and the terminals are located close to each other to
avoid capture or hidden terminal problems. The propagation
delay is 1 �s. The packet size is fixed with a payload of
1;024 bytes. The MAC and PHY headers use respectively 272
and 128 bits. The PHY preamble takes 144 bits. The ACK
length is 112 bits with an ACK timeout of 300 �s. The Rx/Tx
turnaround time is 20 �s and the busy detect time 29 �s. The
short retry limit and long retry limit are set to 7 and 4,
respectively. Finally, the slot time is 50 �s, the SIFS is 28 �s,
and the DIFS is 130 �s. The RTS/CTS threshold was
increased so that only the basic access was used.

For the cases in which an analytical model is not
available, empirical models can also be used. Fig. 2a shows
the collision probability versus the number of competing
terminals obtained empirically in the ns-2 simulator. Each
point was obtained by simulating a fixed number of
terminals transmitting under saturation conditions and
measuring the total probability of collision. The simulation
time for this empirical measurement lasted 3,000 seconds to
provide better accuracy. To avoid including ARP packets in
the measurement, an initial 20 seconds transmission was
used to ensure all the terminals had updated ARQ tables.
Finally, an additional 100 seconds transmission was added
before measurements to allow the system to reach the
steady state.

We assume that 40 is a reasonable upper limit for the
number of competing terminals. To select the appropriate
set W of backoff parameters, we measured the utilization
of the IEEE 802.11 for different values of xt. Our
simulations showed that there is almost no impact in
performance for CWmax > 1;024, so we fixed m such that
m ¼ log2 1;024=Wminð Þ. As the number of parameters need
to be finite, we selected for CWmin the powers of 2 lower
than 1,024, i.e.,

W ¼ ð8; 7Þ; ð16; 6Þ; ð32; 5Þ; ð64; 4Þ; ð128; 3Þ; ð256; 2Þ; ð512; 1Þf g:

For the EKF estimator, we used the parameters sug-
gested in [3]: The state variance Qt is set to 0 except when a
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change is detected where Qt is set to Qmax ¼ 10. The initial
error variance P0 ¼ 100. Rt is known and given by the
observation model. For the change detection filter, we used
v ¼ 0:5 and h ¼ 10. These parameters were used by the
authors in [3] for both the saturation and nonsaturation
schemes and, thus, we used the same values in our
simulations.

Our simulation scenario is composed of a variable
number of competing terminals xt transmitting in satura-
tion conditions. Each ns-2 simulation run lasts between 300
and 1,000 seconds. The arrival and departure of competing
terminals to the network (to attach to the corresponding
access point) follows an on-off exponential process in
continuous time.

7.2 Effect of the Adaptive Choice of Parameters on
the DCF Optimization

As discussed in Section 1, the optimization of the IEEE
802.11 DCF based on the estimation of the number of
competing terminals often trades off accuracy for complex-
ity. However, we believe that given the sensitivity of the
throughput to the number of competing terminals, as shown
in Fig. 2b, especially in the 1-15 range, both the speed and
accuracy of the estimator are crucial in order to rapidly
select the optimal parameters to increase the network
utilization. In this section, we evaluate the effect on the
performance of the IEEE 802.11 DCF when the optimization
scheme described in Section 5 is used. Fig. 2b shows the
saturation throughput for our backoff parameters set W.

In ns-2, we implemented the optimization algorithm
described in Section 5 using the estimation algorithms
described in Section 4. For comparison purposes, we also
implemented an optimized version of PDCF [12], where the
reset of the window toCWmin after successful transmission is
0.5 (on average, the best option for the 1-40 terminals range).
Fig. 5a shows the normalized throughput of the optimization
DCF with respect to the standard DCF ofW ¼ 32;m ¼ 5 and
the PDCF implementation. As the figure shows the increase
in efficiency is dramatic, the benefit of the optimized
algorithm with respect to the regular IEEE 802.11 is as high
as 40 percent for large values of x. The PDCF version is an

example of a protocol that falls into the DCF-modification
category discussed in Section 2. While a nonadaptive
protocol can never outperform an adaptive one, it is
interesting to see how simple modification of the existing
vanilla DCF protocol results in a considerable throughput
benefit. The actual average evolution of the actual window
size v is shown in Fig. 6a and the normalized throughput of
the network wasted in collisions is shown in Fig. 6b.

7.3 Instantaneous Network Utilization

In this section, we compare the performance of the
estimation algorithms described in Section 4. Fig. 7a shows
the instantaneous network utilization of the optimization
protocols when the terminals follow the step arrival shown
in Fig. 7b. Fig. 7b also shows the actual estimates for both
the approximate MAP and the EKF algorithms. The
estimation window size B is 100. Note that the accuracy
of the estimate of the probability of collision is directly
related to the value of B: A large B means more accuracy
but also greater delay in the estimation. A smaller B
provides a noisy measurement of yt but a faster reactive
estimation. The speed of the estimator may be crucial when
the number of competing terminals oscillates in the 1–15
range, as the decision regions for the optimal contention
window size are narrower, and the estimator may miss the
optimal points. In the step case, the algorithms have time to
detect and estimate the number of competing terminals. The
expected results is a flat line of maximum throughput as the
one shown in the perfect estimator, where the algorithm is
fed with the actual number of competing terminals and not
an estimate. The nonadaptive algorithms fall in throughput
after the increment in the number of terminals. The
approximate MAP algorithm outperforms the EKF algo-
rithm in the estimates and, hence, the positive effect in the
network performance.

On the other hand, Fig. 8a shows the instantaneous
utilization of the protocols when the terminals follow an
exponential on-off activation with parameter 10 seconds.
A terminal is active for an exponential time with
	 ¼ 10 seconds and then deactivates for an exponential
time of 	 ¼ 10 seconds. The evolution of the number of
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Fig. 5. Performance of the optimized algorithm with respect to the standard DCF. (a) Total throughput of the network. (b) Observed probability of

collision.



competing terminals and the estimates of both the

approximate MAP and EKF algorithms are shown in

Fig. 8b. The fast and accurate tracking capabilities of the

approximate MAP are evident and its MSE is 14.1483

while the MSE of the EKF algorithm is 28.3253. We want

to compare the effect of the estimation in time for B ¼ 50,

to keep the estimation within the granularity of the

change in the number of terminals. We used an

optimized version of the PDCF protocol for the range of

1-10 terminals (reset probability is 0.9). Note that the
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Fig. 6. Performance of the optimized algorithm. (a)Evolution of the instantaneous backoff window versus number of computing terminals for fixed

backoff parameters. (b) Normalized throughput wasted in collisions.

Fig. 7. Instantaneous utilization when terminals arrival has a step form. (a) Instantaneous utilization. (b) Evolution of the number of competing

terminals.

Fig. 8. Instantaneous utilization when terminals arrive exponentially. (a) Instantaneous utilization. (b) Evolution of the number of competing terminals.



estimation algorithms never outperform the perfect
estimation at any point. This is an indication of the
benefit of the accurate estimation when optimizing the
DCF. A protocol that simplifies the estimations will
necessarily fall apart from the perfect curve. Moreover,
the estimation protocols take some time to converge to
their optimal operation. At time t ¼ 100s, the optimization
algorithms start their operation and take between 10 and
20 seconds to converge. Note that the approximate MAP
algorithm outperforms both the EKF and the modified
PDCF algorithm at all times, which is an indication of the
benefits of its accuracy in the IEEE 802.11 operation.

7.4 Results under Nonsaturated Network
Conditions

A common problem of the estimation mechanisms de-
scribed in Section 2 is that they base their estimations on the
fact that the network is in saturation mode, i.e., at any given
time, the terminals always have something to transmit. As
[3] shows, the number of competing terminals fluctuates
heavily under nonsaturation conditions. As a rude approx-
imation, and intuitively, we can think of n terminals in
nonsaturation regime as a process of xðtÞ saturating
terminals (those that have something to transmit in the
allowed slots) that fluctuates very fast. In this scenario, the
effect of a highly accurate and fast estimate of the number of
competing terminals may be crucial to the optimal operation

of the protocol. We tested the accuracy of both the EKF and
our approximate MAP estimator in a very simple scenario:
The number of competing terminals is fixed to 15, all of them
saturating, and we reduced the observation slot B ¼ 10.
Note that B ¼ 10 means that the average time for which the
terminals measure the channel before estimation averages
less than 300ms. Fig. 9 shows that our estimator is not only
more accurate than the EKF estimator at very low time
scales, it is also potentially able to better track fast
fluctuations. Figs. 10a and 10b show the instantaneous
utilization and the evolution of the number of competing
terminals when 20 terminals are not in saturation regime.
Each terminal randomly picked a throughput between 70-
100 percent of 1/20th of the network saturation throughput.
As we see in Fig. 10b, both estimators have problems in
tracking the small fluctuations in the number of competing
terminals. However, our estimator clearly does a better job,
with an MSE of 154.4874 against an MSE value of 322.4615
for the EKF estimator. This difference makes our algorithm
clearly superior in the nonsaturation regime.

8 CONCLUSIONS

In this paper, we have proposed a new scheme for
optimizing the operation of the IEEE 802.11 DCF by
adjusting the contention window parameters based on
estimating the number of competing terminals in the
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Fig. 9. Accuracy of the estimation algorithms for the extreme case of very noisy measurements (B ¼ 10). The number of competing terminals is 15.

Fig. 10. Instantaneous utilization. (a) Evolution of the number of competing terminals. (b) Instantaneous utilization when terminals do not saturate.



network. We have employed a powerful yet computation-
ally simple online algorithm to estimate the number of
competing terminals based on the sequential Monte Carlo
method. Moreover, its low computational requirements
make it a good candidate for its introduction in an actual
IEEE 802.11 network. We have provided extensive ns-2
simulation results and have shown that the proposed
technique outperforms existing state-of-the-art approaches
in all cases. Finally, we have shown a subgame perfect Nash
equilibrium strategy for the completely distributed version
of the protocol that prevents rogue terminals from changing
their parameters for their own benefit.

As a main result, we have shown that the accuracy of the
estimation of the number of competing terminals in an
802.11 network has a significant impact on the network
performance: in terms of overall network utilization and in
terms of observed delay due to collisions. This accuracy is
shown to be extremely important when the number of
competing terminals fluctuates heavily in small time scales
as in the case when the network is in a nonsaturation
regime. Consequently, a fast and accurate estimation of the
number of competing terminals offers a great benefit
toward optimizing the operation of an IEEE 802.11 DCF
by adjusting the contention window parameters to the
existing network conditions.
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