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Abstract

We present a general method to study the dissymmetry
of anatomical structures such as the human brain. Our
method relies on the estimate of 3D dissymmetry fields, the
use of 3D vector field operators, andT 2 statistics to com-
pute significance maps. We also present a fully automated
implementation of this method which relies mainly on the
intensive use of a 3D non-rigid inter-patient matching tool.
Such a tool is applied successively between the images and
their symmetric versions with respect to an arbitrary plane,
both to realign the images with respect to the mid-plane of
the subject and to compute a dense 3D dissymmetry map.
Inter-patient matching is also used to fuse the data of a pop-
ulation of subjects. We then describe three main application
fields: the study of the normal dissymmetry within a given
population, the comparison of the dissymmetry between two
populations, and the detection of the significant abnormal
dissymmetries of a patient with respect to a reference pop-
ulation. Finally, we present preliminary results illustrating
these three applications for the case of the human brain.

Keywords: Asymmetry, Dissymmetry, Brain, Medical Im-
age Processing, Handedness

1. Introduction

The Bauplanor organizational scheme of many animal
species is based on bilateral symmetry. Some organs ap-
pear in pairs in the body, “symmetrical” with respect to the
mid-plane (limbs, eyes, ears, antennas, etc.). Other organs
are placed near the mid-plane and are also approximately
symmetrical (nose, tail, etc.). Such a symmetry is rather
general for the human head, including the brain and its two
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hemispheres, but not for organs such as the liver, that has no
corresponding symmetrical structure and isasymmetrical.

Symmetrical anatomical structures, or paired structures,
are sometimes alsodissymmetrical1 which means that they
are roughly symmetrical but each of the two organs in a pair
can present a specialization and therefore a slightly different
morphology. For the human brain, some normal morpho-
logical [6] and functional (described in the early work of
Paul Broca) asymmetries are well known. However, due to
the lack of precise morphometric tools it is still a controver-
sial question to know to what extent functional asymmetries
translate into measurable morphological dissymmetries.

The quantification of abnormal dissymmetry can also be
a powerful tool to detect abnormalities. This is an alterna-
tive to the comparison of an individual to the average and
standard deviation values measured in a population of nor-
mal specimens. Sometimes, the inter-individual variations
in the normal population are so high (for example, brain
ventricle volume variations) that they prevent a clear detec-
tion of abnormalities. In that case, comparing the relative
dissymmetry measures of a patient to a population can give
more relevant information than comparing absolute sizes
(for example, comparing the ratio of the volumes of the
two lateral ventricles instead of comparing directly the ab-
solute ventricle volumes). However, the normal and abnor-
mal components of the dissymmetry must still be identified
in order to detect and quantify the abnormality itself. Hence
population studies are also strongly needed in the analysis
of the dissymmetry in a single patient to find statistically
significant relative differences rather than absolute differ-
ences.

In the following, we present a new method to evaluate
the normal and abnormal dissymmetry of symmetrical or-
gans such as the human brain. Our method allows for the

1Dissymmetry (Merriam-Webster) means a deficiency of the symmetry
whereas asymmetry means a lack of symmetry (“a-”= without). We make
this important semantic distinction in this paper.



automatic detection of the mid-plane in the 3D images and
the realignment of the image with respect to a fixed direc-
tion. We show how to compute and fuse the dissymmetry
information of a population and also how to determine the
regions which are significantly dissymmetrical (i.e., with
respect to perfect symmetry). Then we show that the dis-
symmetry field of several populations can be measured and
compared, and that the regions with significantly different
dissymmetry can be outlined. Lastly, we present experi-
mental results for a variety of questions such as the normal
dissymmetry of human brains, the comparison of brains of
left and right handed people, or the comparison of a patient
presenting a focal aphasia with a normal population.

2. Existing work about dissymmetry

Asymmetry and dissymmetry have already been exten-
sively studied in the medical field (see for example [8] for
a review of some of these studies). There is for example
a number of works dealing with abnormal dissymmetry of
the human brain in the case of schizophrenia [9]. Here, we
will not discuss the medical outcome of these studies but
the geometrical aspects in these methods.

In general, the definition of homologous features be-
tween both sides of the anatomical structure is generally
performed manually, which is a time consuming and te-
dious task, and creates a sensitivity with respect to the oper-
ator. Moreover, the geometric representations are often only
based on the “lengths”, or “widths”, of anatomical struc-
tures viewed in projection, such as the ventricles lengths
in the case of air encephalographic studies [13]. In other
cases, structures are studied independently slice by slice in
MR images or in cryogenic sections, with the underlying
assumption that the slices are exactly perpendicular to the
mid-plane, and that there is no difference in symmetry ac-
cording to the axial direction.

Our method is new in that we attempt to use the geomet-
ric information present in the entire 3D image. We apply
3D elastic matching to match both sides of the object and
3D vector field analysis techniques to perform the statisti-
cal analysis. This is different from methods where segmen-
tation tools are used independently to process both sides of
the object before the two sets of shapes are finally com-
pared. In our method, segmentation is optionally used and
only at the end of the process in order to present or syn-
thesize the dissymmetry information into a few number of
parameters (for example volume variation measures of or-
gans [19]).

There are some similarities between our work and [16].
In the latter, the mid-plane is automatically detected from
the brain images using 2D snakes which are propagating
through the slices to obtain a set of 2D mid-lines. A 3D
plane is fitted to the set of mid-lines by a least squares tech-

nique and the 3D image is realigned with respect to it. The
cortical surface is also extracted using a propagation of 2D
snakes, and the perpendicular distance from the mid-plane
to the cortical surface is measured for both sides, leading
to a pictorial representation of the mid-plane, colored with
dissymmetry values. Finally, the information of several sub-
jects are fused, using a surface to surface matching tech-
nique based on the cortical surface.

Our method is comparable to to [16] in that the mid-
plane is computed first, then the images are realigned and
non-rigid matching is used to perform inter-patients data
fusion. However, several other aspects are very different:
we are using a volumetric matching technique instead of
surface segmentation and surface matching. In particular,
we determine the symmetry plane by a least squares fitting
from features matched in both object sides instead of try-
ing to detect the inter-hemispheric fissure of a brain. Our
symmetry plane has therefore a different definition, much
less sensitive to the flatness of the inter-hemispheric fissure
and, in fact, not at all specific to brain images. Another as-
pect is that our dissymmetry map is defined everywhere in
the 3D volume (3D image) whereas it is only defined in the
mid-plane in [16] (2D image). Accordingly, inter-patients
data fusion is really volumetric, allowing for local analysis
of the differences. Lastly, we will see that we are able to in-
dicate effects such as relative local expansions or atrophies,
whereas only brain width differences can be measured in
[16].

3. The computation of dissymmetry maps

3.1. Symmetry, chirality and mid-plane

Chirality is associated with symmetry: more precisely,
two chiral objects are symmetrical with respect to a plane
butup to a rigid transform.

For example, two hands are chiral which means that af-
ter a proper rigid placement (i.e., by joining them), they are
approximately symmetrical with respect to a plane. Such
anatomical structures have no symmetry planeper se, but
we will see that their dissymmetry can be studied anyway,
thanks to the 3D deformation field obtained between the im-
age of one structure and a symmetric version of the corre-
sponding chiral structure.

For some other structures, such as the brain, we can rea-
sonably assume the existence of a symmetry plane that we
call themid-plane. As we will see, this constraint can be
taken into account explicitly in the matching process that
determines the correspondence between the two sides of a
symmetrical object. Besides, the image of a symmetrical
object can be realigned, that is, the mid-plane of this object
can be placed according to a given arbitrary plane.
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3.2. Automatic realignment of a symmetrical object

Our realignment method is based on the extensive use
of non-rigid matching tools developed to perform 3D inter-
patient matching. Examples of such tools can be found in
[11, 4, 18]. For a given imageI1, we assume that the object
is roughly symmetrical and that a direction approximately
perpendicular to the mid-plane is known, which is a rea-
sonable assumption for medical images such as 3D brain
images.(x; y; z) being the principal axes of the 3D space,
we assume for example that this is thex axis.
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Figure 1. Basic principal of the mid-plane de-
termination: the image I1 is transformed into
a symmetrical image K(I1) with respect to an
arbitrary plane P 0. Then a point to point cor-
respondance F1;2 is computed between both
images, leading to pairs (pi; p

0

i). Applying K
to the p0i points gives couples (pi; p

00

i ) of corre-
sponding points with respect to the mid-plane
P , which are used to compute the final sym-
metry S or equivalently the mid-plane P itself.

The first step is to choose an arbitrary planeP 0 in the
original image to compute a chiral imageK(I1) (see figure
1). If tx is the number of voxels in thex direction, this plane
can be:

P 0 : x = tx=2 (1)

A non-rigid technique, applied betweenI1 andK(I1),
gives couplesf(pi; p0i)g of corresponding points (fpig �
I1 and fp0ig � K(I1)). The couplesf(pi; p00i ))g where
p00i = K(p0i) represents therefore corresponding points be-
tween both sides of the object (for example between the
brain hemispheres).

The second step is to compute a symmetryS, character-
ized by its planeP (which means 3 parameters), that mini-
mizes a criterionC:

C =
X
i

(S(p00i )� pi)
2 =
X
i

(S �K(p0i)� pi)
2 (2)

It can be demonstrated (see proof in the annex) thatP
is going through the barycenterG of the two sets of points
fpi; p

00

i g and that its normaln is the eigenvector associated
to the smallest eigenvalue of the following matrixI :

I =
X
i

(pi �G)(p00i �G)> (3)

In particular, this planeP is not the plane which interpo-
latesfpi; p00i g. If we noteR = S � K, thenR is an affine
rotation whose rotation axis is the intersection of planesP
andP 0.

DeterminingS (3 parameters) is therefore equivalent to
evaluating the affine rotation2 R, having a rotation axis in
P 0, that minimizes the least squares distance betweenfpig
andfp0ig or, in other words, that maximizes the similarity
betweenI1 andK(I1). This gives other practical ways to
evaluateS: for example,R can be evaluated directly by
using mutual information minimization techniques (see [22,
15]) adapted to affine rotations with axes inP 0 and applied
betweenI1 andK(I1). The symmetry planeP is the mid-
plane of the object inI1.

Figure 2. This image presents the result of the
application of our automatic 3D realignment
tool. On the left: coronal and axial view on the
same patient of the original image I1. On the
right: the chiral image K(I1). On the middle:
the realigned image R�1=2(I1). The vertical
white line is plane P 0 : x = tx=2.

We can then demonstrate thatR1=2, the affine rotation
having the same axis thanR but half the rotation angle, is

2An affine rotation is defined by 5 parameters: the rotation axis, which
is a 3D line (4 parameters) and a rotation angle. The constraint that this
rotation axis has to be within a given planeP 0 reduces the number of free
parameters to 3 only, exactly as it is the case for the symmetryS.
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a rigid transform whose inverse (R�1=2) can be used to re-
align the mid-plan with the arbitrary planeP 0 (see proof in
the annex, and also figure 3). An example of realignment of
a real image is shown in figure 2.

� if R is evaluated directly (image based minimiza-
tion techniques),R1=2 is conveniently determined by
decomposingR into a translationt and a vectorial
rotation represented by its rotation vectorr. The
rotation in R1=2 is thenr=2 and the translation is
(r=2 + Id)�1(t).

� if the symmetry planeP is evaluated directly (corre-
sponding points techniques), it is more convenient to
determineR1=2 from the intersection of the symme-
try planesP of S andP 0 of K, and also from the
angle between these two planes.

Then a re-sampling method such as tri-linear interpola-
tion can be applied to transform imageI1 into the realigned
imageI 01 = R�1=2(I1).

P

P’

I1 K(I1)

K

K

R R2

1-1

2

Figure 3. The transform R�1=2, where R = S �
K and R1=2 � R1=2 = R can be used to realign
the mid-plane P with the arbitrary plane P 0.

3.3. Dissymmetry field computation

A practical feature of most non-rigid inter-patient match-
ing techniques is that the final result is sensitive to the orig-
inal relative position of the two objects to match. To reduce
this distance in the case of a symmetrical object, we propose
to compute the dissymmetry field by applying the non-rigid
matching technique between the realigned imageI 01 and its
chiral versionI 02 = K(I 01) instead of directly betweenI1
andK(I1).

If the objects to compare are chiral but not symmetrical
(hands for example) and imaged separately (Ileft for the
left hand andIright for the right hand), we propose to com-
pute first the non-rigid correspondence betweenIleft and
K(Iright). From these corresponding points, we deduce a
rigid transformR by a conventional least squares method
(using for example a quaternion representation of the rota-
tions or a rotation vector representation and Kalman filter-
ing to reject outliers, see [2]). At last we re-sample one of
the two images withR: I 01 = R�1(Ileft) is made superim-
posable toI 02 = K(Iright) or, more symmetrically, we can

re-sample both left and right imagesI 01 = R�1=2(Ileft) and
I 02 = R1=2(K(Iright)). If R : (r; t) then we have still:

R1=2 : (r=2; (r=2 + Id)�1(t)) (4)

andR1=2 �R1=2 = R. We note that we have exactly the
same formulation as in the case of a symmetrical object, ex-
cept thatR is no longer constrained to be an affine rotation
but is a general rigid displacement (6 parameters). After the
realignment step, and for both cases (symmetrical or simply
chiral), adissymmetry fieldis computed betweenI 01 andI 02.

3.4. Implementation

For our experiments and for both the realignment and the
dissymmetry field computation, we have used a non-rigid
matching method based on “demons” (see [18]), whose out-
put is a dense 3D deformation fieldF1;2 between the two
images, that is, for each voxelpi : (x; y; z) in imageI 01, we
have three offsets(dx; dy; dz) which give the correspond-
ing pointp0i : (x + dx; y + dy; z + dz) in K(I 0i). A nice
feature of this algorithm is that it provides a “bijective” de-
formation field in the sense that it also computes an inverse
deformation fieldF2;1, whereF2;1 � F1;2 is very close to
identity (not exactly equal because we are processing dis-
crete vector fields).

4. The analysis of dissymmetry fields

We now discuss multiple ways to perform the analysis
of dissymmetry fields. We first concentrate on the type of
information which can be obtained from a single patient’s
image and then on how statistical analyses can be performed
with respect to one or several populations.

4.1. The case of a single specimen

Several different vector field operators can be applied to
a dissymmetry field in order to obtain a 3D scalar image,
which can then be visualized. A simple one is the norm of
the vector fieldjjF jj, which emphasizes indistinctly many
types of dissymmetry, displaced structures as well as shear-
ings, expansions, or atrophies.

To be more specific, dedicated operators can be used (see
for example [7], [5]): for expansions or atrophies, we found
in the case of temporal evolution studies of lesions that an
interesting operator isjjF jjdiv(F ), that is, the norm times
the divergence of the vector field (see [19]). The idea is that
the norm characterizes the magnitude of the deformation,
which holds also for large translations, while the divergence
characterizes its radial aspect which can also be important
in noisy regions. The feature high divergence, high magni-
tude is very characteristic of atrophies or expansions due,
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for example, to lesions or cancer growths. Our operator
gives a very high response to such phenomena. We have
also developed very precise stereologic methods to evalu-
ate quantitatively the volume variation, again for time series
(also in [19]), that can be applied almost directly to the case
of dissymmetry field analysis to evaluate quantitatively the
relative sizes of symmetrical structures. Figure 4 presents
the result of the dissymmetry field andjjF jjdiv(F ) opera-
tor applied to a real patient.

We have selected the region of the temporal lobes for the
display (but the dissymmetry field is really 3D) because this
region is very dissymmetrical in this subject (a young right
handed healthy man) and, as we will see, in the majority
of the subjects. In thejjF jjdiv(F ) image, white represents
an expansion, which means a larger structure while black
represents a smaller structure and grey a symmetrical struc-
ture. Hence the subject has a right temporal lobe (on the left
in the image) larger than his left temporal lobe, which is a
known normal dissymmetry in this population (see for ex-
ample [3]). This doesn’t mean that some sub-structures of
the temporal lobe are not larger on the left than on the right,
as it was said previously (see also [6]), but the total volume
seems to be larger on the right side. Also, the dissymmetry
seems to be located mainly in the white matter.

However, as stated in the introduction, one has to estab-
lish precisely the normal and abnormal components of the
dissymmetry in order to provide a useful diagnosis. This
means comparing a subject to a reference population. For
example, we will see later on that the dissymmetry of the
temporal lobes that we observe for this particular subject
is confirmed to be normal thanks to a comparison with a
database of 10 right handed healthy men.

4.2. Inter-patient fusion

Again, non-rigid inter-patient matching is used to per-
form data fusion between different subjects, using the same
scheme as presented in [20]. A reference specimen’s image
Ir is chosen and realigned, and the deformation fieldsFi;r

from all the realigned imagesIi of specimensi to the refer-
ence imageIr are computed. The dissymmetry fields of the
realigned images are then computed and an operator may
be applied to this field before the result is projected onto the
reference specimen’s image (see figure 5). Once more, we
have used the non-rigid matching method described in [18]
to fuse the different specimens, and we have studied either
the averaged dissymmetry vector field or the averaged result
of thejjF jjdiv(F ) operator.

The first and second order statistical parameters are com-
puted for each voxel of the reference image, using the pro-
jected values of the whole population (mean and variance
for jjF jjdiv(F ), or mean and covariance matrix forF ).

Finally, individual specimens or other population speci-

Figure 4. This figure illustrates the dissymme-
try field computation (left, norm of the field)
and the application of the jjF jjdiv(F ) operator
(right) on the realigned image of a real subject
(middle). Note that the dissymmetry field is
a 3D image (here, only a coronal and an axial
section of the same 3D image are presented).

 dissymmetry 

Realignment

||F|| div(F)

Subject 1

Dissymetry field
computation

Subject n

Data fusion

Average

Realignment

Reference image

Reference subject

Significance map

Figure 5. Fusion of the data: the images of all
patients are realigned, and the dissymmetry
field and norm-times-divergence operator are
computed. Then all the dissymmetry maps
are projected onto the realign image of a refer-
ence specimen. Lastly, the dissymmetry field
and the significance map can be compared
point by point to the reference image in or-
der to determine which anatomical structure
is significantly dissymmetrical.

mens can be projected onto the reference patient and com-
pared with the reference population statistics to determine
significant differences.
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4.3. Statistical maps and statistical tests

Different types of questions can be addressed, leading to
different statistical maps and tests. The principal questions
are:

� what regions in a given population are significantly
dissymmetrical ?

� what regions in a given population have a signifi-
cantly different dissymmetry than similar regions in
another given population ?

� what regions of a given specimen are significantly
different from the normal dissymmetry of a popula-
tion ?

In each case, a probability map can be computed via
the application of the inverse of the Fisher-Snedecor or F-
function to a Mahalanobis distance orT 2-value (see for
example [1, 21]). We consider here the multivariate case
where the samples are random vectors of dimensionp and
are supposed to have a Gaussian distribution. When deal-
ing with 3D dissymmetry fields, we havep = 3 and if the
jjF jjdiv(F ) operator is used thenp = 1 (univariate case).

4.3.1 A significant dissymmetry

The first question is typical of pure anatomical studies. The
aim can be for example to designate the regions of the
brain in a population of right handed young, healthy males
which are significantly dissymmetrical (with respect to per-
fect symmetry, i.e., a null dissymmetry field). This is a
classical multivariate analysis test. For a given voxelx in
the reference image, the random vector for a specimeni
projected inx beingxi, the average on the population ofn
specimens being� and the covariance matrix being�, we
have:

� = 1
n

Pn
i=1 xi

� = 1
n�1

Pn
i=1(xi � �)>(xi � �)

(5)

The probability of being wrong in saying that the pop-
ulation has a mean different from�0 = 0 (i.e. is different
from a perfect symmetry) is called the�-value and is given
by the following formula:

� = F�1
p;n�p

�
(n� p)

(n� 1)p
T 2(�0)

�
(6)

where:
T 2(�0) = n(�� �0)

>��1(�� �0) (7)

The closer the�-value is to zero, the more significant the
dissymmetry. The�-values computed for all voxels can be
represented in a 3D image. Setting a threshold�0 in this im-
age (for example�0 = 0:001) is equivalent to performing
an Hotelling’s test, that is, to determining the voxels where
T 2 is such that:

T 2 > T 2
0 =

(n� 1)p

(n� p)
Fp;n�p(�0) (8)

�0 is called the significance level of the test. It is, how-
ever, unfortunate to reduce the information to only a binary
image. To have a more pictorial representation of the map
of �-values, we propose to display the following values:
i = �0=� if � > �0, i = 1 otherwise.

The output is a 3D image coded with floating point val-
ues where the intensityi is between0 and1, and saturated
(i = 1) when the dissymmetry is highly significant. The
Hotelling’s test is then simply to determine the voxelsi = 1
in such an image. In the case of expansion/contraction, the
sign of the divergence can be used to provide an additional
information on the nature of the dissymmetry, to lead to
an image withi 2 [0; 1], wherei = 0 (black) means sig-
nificantly smaller (with a significance level�0), i = 0:5
(gray) means undetectable dissymmetry andi = 1:0 (white)
means significantly larger (with a significance level�0).

4.3.2 Significant dissymmetry differences between
populations

Our second question is typical of pathological studies
where, other parameters being controlled, a population of
n1 pathological or atypical subjectsfx1;ig with mean�1 is
compared to a population ofn2 controlsfx2;ig with mean
�2. It can be for example a population of right handed
schizophrenic males with a population of right handed
healthy males. The probability of being wrong in saying
that the two populations have a different mean is:

� = F�1
p;n1+n2�p�1

�
n1 + n2 � p� 1

(n1 + n2 � 2)p
T 2(�1; �2)

�
(9)

where:

T 2 =
n1n2

(n1 + n2)
(�x2 � �x1)

>S�1(�x2 � �x1); (10)

� = 1
n1+n2�2

[
Pn1

i=1(x1;i � �1)
>(x1;i � �1)

+
Pn2

i=1(x2;i � �2)
>(x2;i � �2)] (11)

We note however that this formula is valid only under
the hypothesis that the variances of the two populations of
subjects (which are a-priori unknown) are exactly the same,
which is not always true, especially with respect to groups
of diseased patients. What statistics can tell us is that for
a “reasonable” number of samples in both populations, this
assumption is no longer needed. However, for reduced sets
of samples and without the variance equality hypothesis,
more complicated formulae have to be used (again, see [1]).

4.3.3 Significant atypical dissymmetry

Our third question can be used for individual diagnosis. A
typical question might be to detect automatically a brain
tumor as being a region significantly more dissymmetrical
than the same region in a normal population. The probabil-
ity of being wrong in saying that a valuex0 is significantly
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different from a population having a mean� and a covari-
ance matrix� is a simplification of the preceding formula
for n2 = 1:

F�1
p;n�p

�
n� p

(n� 1)p
T 2(�)

�
(12)

where:

T 2(�) =
n

n+ 1
(�� x0)

>��1(�� x0) (13)

4.3.4 Partial conclusions about dissymmetry maps

Many combinations are possible, such as: is my patient
closer to a group of epileptics than to a group of controls. . . .
The computations which have been presented here are valid
for voxel to voxel uncorrelated measurements, which unfor-
tunately is not the case in practice because the deformation
field between the direct and chiral images is regularized.
However, the spatial coherency can be used to derive more
robust statistical parameters, as proposed by the theory of
random fields and implemented in the SPM method in the
case of the analysis of functional images (for example, see
[10]). We have not yet investigated the possibilities of such
a method in the case of dissymmetry studies; this appears to
be an interesting perspective to explore.

Figure 6. Synthesized expansion in 3D within
the brain of an healthy subject (upper: with-
out expansion, lower: with expansion). Mid-
dle: intensity images, left: jjF jj and right
jjF jjdiv(F ). The crossbars represent the fo-
cal point of the expansion.

5. Synthetic experiments

We have performed various tests to validate the different
modules used in this method (see [20] for a first validation

of non-rigid inter-patient matching, or [19] for tests about
volume variation quantification).

To validate the dissymmetry field computation, we have
performed the following experiment: starting from the 3D
imageI1 of a real patient, we have simulated an artificial
expansion (a mass effect) at a known location and of a
known radius in the right hemisphere of the brain (image
D1). We have then computed the dissymmetry fieldF , jjF jj
andjjF jjdiv(F ) of D1 (see figure 6), and compared it with
the dissymmetry field obtained directly withI1.

The deformation can be seen visually by comparingI1
andD1, but with D1 alone, it is hard to determine visu-
ally the nature and amplitude of the deformation. In the
jjF jj images, there is a large region where the norm of the
dissymmetry vectors are very high. It is therefore easy to
detect that there is something unusual going on with respect
to perfect symmetry, but it is however very difficult to de-
termine the “cause” of the dissymmetry, that is the focus of
expansion. This focus can be emphasized only by using a
vector field operator appropriate to expansion/atrophy. In
the image presentingjjF jjdiv(F ), the expansion translates
into a roughly spherical shaped white region in the right
hemisphere (on the left in the image), centered on the fo-
cus of expansion. Of course, it also translates into a sym-
metrical spherical dark region in the left hemisphere. The
signal is less obvious in the outer boundary of the brain be-
cause it is corrupted by the natural dissymmetry of these
regions. The “aperture” problem, which states that defor-
mation are easier to detect in directions perpendicular to
interfaces (such as grey/white matter) than in parallel di-
rections explains also why perfect spherical shapes are not
retrieved.

In figure 7, we present the subtraction betweenI1 images
andD1 images to emphasize the effects created by the ex-
pansion only. Again, only thejjF jjdiv(F ) provides a clear
signal with respect to the localization and extension of the
expansion. We hope to be able to emphasize with this tech-
nique the effect of a growing tumor such as a glioblastoma,
which is very difficult to segment because of its diffusion
within the tissue.

Figure 7. Subtraction of images I1 and images
D1 to emphasize the deformation effects only.
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6. Some preliminary experimental results

The following results are very preliminary. In particular,
they are not validated medical studies but are presented here
only to illustrate the potential applications of our method.
Much more work and strong collaborations with anatomists,
along with much larger image databases are needed to lead
to medically significant results.

6.1. A population of healthy right handed males

A first experiment is on a population of 3D MR scans
of ten different healthy subjects, all of them being right
handed males. These subjects have been selected for the
medical study described in [14]. Their handedness was as-
certained using the Edinburgh Handedness Inventory (short
form) which is a 10 item questionnaire giving a laterality
quotient percentage from�100 (left handed) to100 (right
handed). Other metrics of handedness are described in [12].
The 10 subjects rated a minimum of 87 with respect to
this scale. We have realigned automatically all the images
with respect to the mid-plane, computed their dissymme-
try maps, applied the norm-times-divergence operator and
fused all the information in the frame of an eleventh sub-
ject’s image (right handed rating100) also realigned, ex-
actly as it was described in section 4.3.1 and summarized in
figure 5.

Figure 8. Significant dissymmetry for a popu-
lation of 10 healthy right handed males. Left:
reference patient; middle: average of the 10
jjF jjdiv(F )jj maps; right: significance map for
�0 = 0:001. The right temporal lobe (on the
left in the image) is indeed significantly larger
than the left one for normal anatomy.

The results are presented in figure 8 for coronal and
axial cross sections and at the level of the temporal lobe
only. The left images present the reference subject. The
images in the middle present the average ofjjF jjdiv(F ) for
the 10 subjects. The significance map (the right images)
present the loci which are significantly dissymmetrical (re-
spectively larger:white or smaller:black). We have normal-
ized the image of the significance map with a significance
level�0 = 0:001 (that is, pure white or pure black means
� � 0:001). A mask has been applied to keep only the data
at the level of the reference subject’s brain. This experiment
confirms that the dissymmetry map presented in figure 4 for
a single subject is representative of a normal dissymmetry,
which means a larger right temporal lobe (on the left in the
images) in normal subjects.

6.2. Left handed versus right handed

We now illustrate what was presented in section 4.3.2:
the comparison of two populations. We have compared
the average of 10 right handed healthy males (handedness
score� 87) with the average of 3 left handed healthy males
(handedness score� �57). The results are presented in fig-
ure 9, with the averages ofjjF jjdiv(F )jj for the right and
left handed groups (left and middle images), and the signif-
icance map normalized using the same significance level�0
as in figure 8 (the right images).

The results appear less conclusive than for normal dis-
symmetry. In particular, determining discriminant features
of left handed versus right handed subjects is far from being
evident. A careful exploration of the 3D data and more ex-
periments with a larger set of right and left handed subjects
are probably needed to lead to definitive conclusions.

6.3. A patient with focal aphasia

We now study a patient presenting a focal aphasia. In
the image of this patient (figure 10), we note an obvious
dissymmetry of the ventricles [17]. The aim of this exper-
iment is to retrieve this dissymmetry thanks to the signifi-
cance map and according to the methodology presented in
section 4.3.3. Figure 10 presents coronal and axial views
of the focal aphasic subjects. On the left is the original im-
age, in the middle is thejjF jjdiv(F ) dissymmetry map, and
on the right is the significance map with respect to the pop-
ulation of 10 healthy right handed males, projected back
on the focal aphasic’s image. The obvious dissymmetry of
the brain ventricles is retrieved and correctly localized in
the significance map, with very high magnitude significance
values (using the same significance level as in figure 8).
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Figure 9. Dissymmetries between a popula-
tion of 10 right handed males and a popula-
tion of 3 left handed males. Left: average of
the 10 jjF jjdiv(F )jj right handed maps; mid-
dle: average of 3 left handed; right: signifi-
cance map for �0 = 0:001; the same signifi-
cance level as for figure 8. These preliminary
results are not conclusive with respect to a
significant morphological difference between
left and right handed people. Larger datasets
are probably requested before drawing any
conclusion.

7. Conclusion

We have presented a general method to study the dis-
symmetry of symmetrical organs, such as the human brain,
using 3D dissymmetry fields, 3D vector field operators, and
the computation of 3D significance maps. The main feature
of our method is that we are dealing with dense volumetric
representations of the dissymmetry. We have also proposed
and tested a fully automated implementation of this method,
relying mainly on 3D non-rigid inter-patient matching tools
applied between the images and symmetric images with
respect to an arbitrary plane. A by-product of this is an
unsupervised method to realign automatically symmetrical
structures with respect to their mid-plane. We have also de-
scribed three main application fields, which are the study
of the normal dissymmetry in a given population, the com-
parison of the dissymmetry between two populations, and
the detection of the significant abnormal dissymmetries of
a patient with respect to a reference population. Finally, we
have presented preliminary results for the case of human
brain. These must be investigated in depth, with the care-
ful support of anatomists and for much larger databases to
enable us to draw conclusive medical results.

Figure 10. Significant abnormal dissymmetry
of a diseased patient (focal aphasia), with re-
spect to the population of 10 right handed
normal males. Left: focal aphasic’s image;
middle: jjF jjdiv(F )jj for the aphasic; right:
significance map for �0 = 0:001, with respect
to the 10 right handed people. Note the sig-
nificant dissymmetry at the level of the ven-
tricles, which is correctly localized.
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8. Annex

8.1. Symmetry plane computation

We want to minimize:C =
P

i(S(qi) � pi)
2, with

S(qi) = qi � 2((qi � p)>n)n and wherep is a point in the
symmetry plane andn the unit normal vector to the plane.
By differentiatingC with respect top, we get:

dC

dp
= 4
X
i

(2p� qi � pi)
>nn> (14)

which demonstrates that the barycenterG = 1
n

P
i
(qi+pi)

2
belongs to the symmetry plane. We get:

C =
X
i

(qi � pi)
2 + 4[(qi �G)>n][(pi �G)>n] (15)

which is minimized when the following expression is mini-
mized: X

i

n>[(pi �G)(qi �G)>]n (16)
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which means thann is the eigenvector associated to the
smallest eigenvalue ofI , where:

I =
X
i

(pi �G)(qi �G)> (17)

8.2. Realignment of a 3D image

We want to demonstrate thatR�1=2(I1) is an image
where the mid-plane isP 0 : x = px=2. This is equivalent to
demonstrating that after the application ofR�1=2, the im-
ageR�1=2(I1) and the imageR�1=2(S(I1)) are symmetri-
cal with respect toP 0, that is:

K �R�1=2(I1) = R�1=2 � S(I1) (18)

To demonstrate this, we shall note thatS andK are planar
symmetries therefore we haveK �K = Id andS �S = Id,
hence:

R�1 = (S �K)�1 = K�1�S�1 = K �S ) K = R�1�S
(19)

Furthermore, asR�1=2 is an affine rotation with a rotation
axis inP 0, K �R�1=2 is also a planar symmetry, hence:

K �R�1=2 = (K �R�1=2)�1 = R1=2 �K�1 = R1=2 �K
(20)

ReplacingK with R�1 � S in equation 20 (on the right)
gives the desired relation:

K �R�1=2 = R1=2 �R�1 � S = R�1=2 � S (21)
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