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Abstract. In this article we study the use of SPECT perfusion imaging
for the diagnosis of Alzheimer’s disease. We present a classifier based
approach that does not need any explicit knowledge about the pathol-
ogy. We directly use the voxel intensities as features. This approach is
compared with three classical approaches: regions of interests, statisti-
cal parametric mapping and visual analysis which is the most commonly
used method. We tested our method both on simulated and on real data.
The realistic simulations give us total control about the ground truth.
On real data, our method was more sensitive than the human experts,
while having an acceptable specificity. We conclude that an automatic
method can be a useful help for clinicians.

1 Introduction

Alzheimer’s disease (AD) is the most frequent type of dementia for elderly pa-
tients. Due to aging populations its occurrence will still increase. Even though
no definitive cure has been found for this disease, reliable diagnosis is useful for
excluding other dementias, choosing the right treatment and for the development
of new treatments.

AD is diagnosed using the criteria from the National Institute of Neurological
and Communicative Disorders and Stroke and Alzheimer’s Disease and Related
Disorders Association (NINCDS-ADRDA) [1]. In practice the main tool for eval-
uating patients are neuro-psychologic tests, that test abilities like memory and
language. The Mini Mental State Examination (MMSE) is the most widely used
of these tests [2].
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Brain images can provide some indication of AD. Magnetic resonance imaging
(MRI) is used to study possible anatomical changes of the brain [3]. Images
showing the local perfusion of the brain can be used for the diagnosis of AD
because the perfusion pattern is affected by the disease. In this article we will
look into the use of cerebral perfusion imaging acquired by single photon emitting
computer tomography (SPECT) using Technetium-99m Hexamethyl Propylene
Amine Oxime (HMPAO) as the tracer. Even though the perfusion pattern and
its evolution are not the same for all patients some hypo-perfusion patterns seem
to be typical for the disease. In the literature, three main regions are described as
showing hypo-perfusion[4] signals, 1. the temporo-parietal region, 2. the posterior
cingulate gyri and precunei, and 3. the medial temporal lobe. The first region is
known as the predominant pattern for AD, however this region was not found for
early AD [5]. The second region is probably more specific and more frequent in
early AD [6]. Previous pathological studies have suggested that the third region
is the first affected by the disease [7], however in practice it is only observed in
more advanced stages of the disease [6].

There is not one single perfusion pattern that differentiates AD patients
form healthy subjects. Thus it might be useful to have tools that could assist
physicians in this difficult task. In this article we will present a method that does
not need any explicit knowledge about the perfusion pattern of AD patients.

Some approaches for a computer aided diagnosis (CAD) system for the anal-
ysis of SPECT images for AD can be found in literature. The first family is
based on the analysis of regions of interest. The mean values for these regions
are analyzed using some discriminant functions (see e.g. [8][9]).

The second approach is statistical parametric mapping (SPM) and its numer-
ous variants. Statistical parametric mapping is widely used in the neuro-sciences.
Its framework was first developed for the analysis of SPECT and PET studies,
but is now mainly used for the analysis of functional MRI data. It was not de-
veloped specifically to study a single image, but for comparing groups of images.
One can use it for diagnostics by comparing the image under study to a group
of normal images.

Statistical parametric mapping consists of doing a voxel-wise statistical test,
in our case a t-test, comparing the values of the image under study to the mean
values of the group of normal images. Subsequently the significant voxels are
inferred by using the random field theory (see e.g. [10] for a full description
of SPM). A largely used freely available implementation called SPM99 [11] has
been developed and will be used in this article to compare our approach.

In this article we will propose another approach using as less a-priori infor-
mation about the pathology as possible, by obtaining it implicitly from image
databases. The other important aspect of our approach is the use of a global
approach. This means that we will not provide the clinician with information
about where the hypo-perfused areas are situated (e.g. as given by SPM) but
we will only give a global answer to the question whether or not the image un-
der study belongs to an AD patient. This has the advantage over a more local
approach that all the information in the image can be used at once in contrast
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to the mono-variate methods like SPM. A multi-variate approach generally in-
creases sensitivity at the price of loosing regional specificity (e.g. depicting local
hypo-perfusion regions).

In [12] some very preliminary results were presented. In this article we present
results on a large set of real data. This data comes from several centers to
show the robustness of our method. However only limited knowledge about the
perfusion pattern is available for real data. We only know if the perfusion pattern
was that of an Alzheimer’s subject or not. The locations of the hypo-perfused
regions are not known, neither the amount of the hypo-perfusions. Therefore we
chose to simulate images as to have complete local control, and thus knowledge
of the ground truth.

The following section first discusses the pre-processing of the data, followed
by the analysis of the data using classifiers. In section 3 we present the data
we used for our experiments. We used both real data and simulated data. The
results on the data are presented in section 4 and discussed in section 5.

2 Methods

Spatial Normalization. In the classifier based approach we need the assump-
tion that the same position in the volume coordinate system within different
volumes corresponds to the same anatomical position.

This means that we need to spatially register the volumes. Because of the
limited anatomical information available in the volumes we chose to estimate
affine transformations between the volumes. We used the correlation ratio as
the similarity measure [13] that we minimized using Powell optimization [14].
To obtain a more robust result we used the following procedure. First of all, we
registered all volumes to a single volume, this was done to obtain an average vol-
ume. This average volume was first put on the mid-sagittal plane by registering
it with a flipped version (see [15]). Subsequently it was made to be symmetrical
by taking the mean of itself with a flipped version around the mid-sagittal plane.
Finally all volumes were matched to this symmetric average volume.

Intensity Normalization. HMPAO brain uptake is proportional to regional
cerebral blood flow. However absolute measurement is not possible and only the
relative distribution of the tracer can be studied. The cerebellum is usually not
affected in AD and can therefore be chosen as reference area. We normalized
the intensities by dividing by the summed intensity in the cerebellum. This was
done automatically by using a template on the registered volumes.

Classification. Because the hypo-perfusion pattern for early AD is not very
well defined we chose to develop a method where we did not use any explicit
knowledge about the typical perfusion patterns. We used implicit knowledge
about the perfusion patterns by using a database of images of AD patients and
normal subjects.
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To separate the images we used a classifier using the voxel intensities as
features and this database to train the classifier. Using the voxel intensities as
features makes it possible not to introduce any particular knowledge about the
exact location of the hypo-perfusion area(s). Thus by using a database of images
and the voxel intensities we circumvent the problem of the exact definition of
the typical perfusion pattern for early AD.

In general the number of images available in the training databases is signif-
icantly smaller (< 100) than the number of voxels (> 1000). Thus the number
of features (voxels) is much larger than the number of samples (training im-
ages). The number of samples is considered to be small if it is about the same or
smaller than the number of dimensions. In this case we speak of almost empty
spaces, the small sample size problem or the so called curse of dimensionality. In
classical pattern recognition it was believed that no good generalization could
be obtained for this cases. Generalization is the capacity of a classifier to rightly
classify a sample never seen before.

Even though, traditionally it was thought that due to the curse of dimen-
sionality it is necessary to fill the feature space with many more objects than
its dimensionality in order to obtain a classifier that generalizes well. Recently
it has become clear however, that there are several ways to construct classifiers
in almost empty spaces (see the following review [16]).

We chose to use the pseudo-Fisher linear discriminant classifier (PFLDC)
as it has already been applied to the small sample size problem for some non-
medical applications [17][18][16]. We also did some experiments with the nearest
mean classifier (NMC)[19].

All experiments carried out in this article (except noted otherwise) were
carried out using the leave-one-out approach to have an independent test and
training set, and thus this provides an unbiased estimate of the classification
performance.

3 Materials

Simulations. We chose to use a so called photon simulator to generate simu-
lated images. We used the freely available SimSET simulation package developed
by the University of Washington Imaging Research Laboratory. More informa-
tion about this package as well as further references can be found on its website1.

The freely available Zubal phantom [20] was used to define the activities
and the attenuation coefficients for each segmented region. Instead of using this
phantom directly to generate volumes, we chose to deform it, to simulate the
differences in morphology that exist between different subjects. To obtain real-
istic deformations we used the free-form deformation fields as generated by the
Pasha algorithm (see [21] when registering the phantom with 23 MRI volumes
of healthy subjects.

To simulate hypo-perfusion areas we lowered the activity by 20 % percent
in the following areas: 1) internal temporal, 2) cingulum and precuneus, 3)
1 http://depts.washington.edu/˜simset/html/simset main.html
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Fig. 1. Examples of four volumes from the Cologne center after intensity and spatial
normalization. In each column the first two small images show two normal subjects,
the last two images show slices of AD subjects. The sets of slices are ordered from left
to right and from top to bottom. Strong hypo-perfusion can be seen for the first AD
patient, whereas the hypo-perfusion is more subtle for the second patient.

temporal-parietal region. These regions were manually segmented in the Zubal
atlas because the segmentation of the atlas was not fine enough. The three re-
gions had respectively a volume of 72319 mm3, 32010 mm3and 18642 mm3. For
each simulated AD image, only one region was hypo-perfused.

We simulated 13 control volumes and 10 volumes per hypo-perfusion region
and value (2 hypo-perfusion values times 3 regions times 10 images, gives 60
AD volumes). The volumes were reconstructed using filtered-back projection,
without attenuation correction. The reconstructed volumes had a voxel size of
2.5 mm by 2.5 mm by 3.6 mm.

Real Data. The real images we used for our experiments were taken from a con-
current study investigating the use of SPECT as a diagnostic tool for the early
onset of AD. A detailed description of this data can be found in [22]. Subjects of
four different centers, Edinburgh (Scotland), Nice (France), Genoa (Italy), and
Cologne (Germany) were included for this study. In total 158 subjects partici-
pated, including 99 patients with AD, 28 patients suffering from depression (not
used in this article), and 31 healthy volunteers. An example of this data is seen
in figure 1.

Applying the registration procedure as described above resulted in images of
128 by 128 by 89 voxels, with a voxelsize of 1.71 mm by 1.71 mm by 1.88 mm
for all four centers.

Experts. All real images were rated in four categories(very probable, probably,
probably not and very unlikely to have AD) by sixteen European expert nuclear
medicine physicians .

To be able to compare the data from the experts with that of the automatic
methods, we considered the first two ratings as positive and the other two as
negative. The different observers turn out to have quite different sensitivities
and specificities therefore we will also just show the results of the Nice experts.
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4 Experiments

Simulated Data. We tested the nearest mean classifier (NMC) as well as the
Fisher linear discriminant classifier (PFLDC) on the simulated data. The images
were subsampled by a factor two in each dimension as to obtain a number of
voxels that does not need excessive amounts of computing time and computer
memory. This resulted in 9150 features.

The FLDC was able to classify the images with the following results per re-
gion 1: 90.0%, 84.6% 2: 70.0%, 76.9% 3: 80.0%, 84.6% sensitivity and specificity.
The NMC classifer had slightly worse results. However SPM was not able to
detect the hypo-perfusion areas at all, different significance levels were tried, at
each level SPM showed approximately the same number of regions containing
hypo-perfusions (true positives) as not containing hypo perfusions (false posi-
tives).

Real Data. Figure 2 shows the results on all the real data using the leave-one-
out error estimate. The right side of the figure shows results when training on just
data from one site and using the classifier for the remaining data. The FLDC ROI
approach consisted of using a regions of interest approach (21 regions) similar
to that found in literature [8][9] defined by the Zubal phantom and carrying out
classification using the FLDC by using the mean intensities of those areas as
features. In the SPM cluster approach we used SPM at a significance level of 0.1
at the cluster level. We considered each image where some significant clusters
were found to be a positive result. The FLDC column shows the results for
the Fisher linear classifier on the images after a subsampling of a factor two in
each dimension resulting in 26950 features. All experts show the results of all 16
experts, whereas Nice experts show only the four experts from Nice.

On all the data the FLDC is statistically significantly more sensitive than the
experts from all centers (p<3.10−10), however the experts are significantly more
specific than the FLDC (p<0.05). When training the FLDC on the data from
Edinburgh and testing on the remaining data the FLDC is nearly significantly
more specific (p<0.07 ) but there is no significant difference in sensitivity.

The difference in the results seen between the left and the right of figure 2
are due to the much smaller training set in the right case and also probably due
to differences in the acquisition protocols between the different sites. However
note that the classification approach still provides useful results even when using
a small training set not acquired in exactly the same way. This shows that for
clinical use larger databases are needed, however that classification of images
with different acquisition parameters is possible.

5 Conclusion

Based on the experiments described in this article we conclude that automatic
approaches to the classification of images perform at least as well as human
observers. In general our automatic method is more sensitive while still being
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Fig. 2. Left: Graphical representation of the main results when using all the real data
(AD: 93, normal: 31 cases), Right: results of testing on all data except Edinburgh
(80 AD, 16 controls) when training on the data from the Edinburgh center only. The
number of true positives is given by circles. The number of true negatives is given by
crosses. Because the axes are scaled to the number of AD (93) and normal (31) images,
sensitivity (circles) and specificity (crosses) are indicated by the dotted horizontal lines.

sufficiently specific. One would need more data, especially of control subjects to
be able to state that automatic methods outperform human observers.

We have shown that classification of images using the voxel values as features
equals or outperforms the other automatic methods. Thus classification without
using any specific knowledge related to the pathology is shown to be possible.

The automatic methods used in this article, with the exception of SPM give
only global information on the image. The best of them do outperform SPM.
However only providing global information might not be sufficient for clinicians.
Therefore in practice, results as those obtained by SPM might be used as addi-
tional information to the global classification.

For future work one might want to try the presented approach for differential
diagnosis (e.g. AD versus Pick’s disease) which might be an even more important
clinical issue. ROC analysis of the classifier as well as of the experts will be
useful to better compare performances, especially when observing the probable
differences in position on the ROC curves (operating points) in the current study
between the experts (see e.g. sensitivity differences between all the experts and
a given group of experts only).
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