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Abstract. Patient-specific cardiac modelling can help in understanding
pathophysiology and predict therapy planning. However it requires to
personalize the model geometry, kinematics, electrophysiology and me-
chanics. Calibration aims at providing global values (space invariant) of
parameters before performing the personalization stage which involves
solving an inverse problem to find regional values. We propose an au-
tomatic calibration method of the mechanical parameters of the Bestel-
Clément-Sorine (BCS) electromechanical model of the heart based on
the Unscented Transform algorithm. A sensitivity analysis is performed
that reveals which observations on the volume and pressure evolution are
significant to characterize the global behaviour of the myocardium. We
show that the calibration method gives satisfying results by optimizing
up to 7 parameters of the BCS model in only one iteration. This method
was evaluated on 7 volunteers and 2 heart failure patients, with a mean
relative error from the real data of 11%. This calibration enabled fur-
thermore a preliminary study of the specific parameters to the studied
pathologies.

1 Introduction

Patient-specific cardiac modelling can provide additional guidance to cardiolo-
gists in understanding pathophysiology and predict therapy planning. Several
approaches for the past 20 years have been developed to describe and simulate
the cardiac function, including cardiac mechanics and electrophysiology [1–3].
They differ in their choice of hyperelastic material, electrophysiological prop-
erties or electromechanical coupling. In this paper the Bestel-Clement-Sorine
(BCS) model [3], further improved by [4] is used.

The simulation becomes patient-specific after several levels of personaliza-
tion: geometrical, kinematic, electrophysiological and mechanical. Mechanical
personalization consists in optimizing mechanical parameters of the model so
that the simulation behaves in accordance to patient-specific datasets (images
and other signals).
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This inverse problem has been tackled by different authors (for instance [5],
[6],[7] or [8]). However there is no guarantee that such algorithms will converge
toward a relevant solution due to their dependence on an initial range of param-
eter values. The choice of the parameters to estimate and their initial calibration
has therefore great impact for the personalization.

Our main contribution tackles this initialization issue: we propose a simple
and efficient method to automatically calibrate the parameters from the ven-
tricular volume or pressure evolution over the cardiac cycle. It has been applied
successfully for the calibration of mechanical parameters from 7 healthy cases
and has been tested in two heart failure cases. Our proposed method is based on
the Unscented Transform algorithm and requires only one iteration with multi-
ple simulations performed in parallel for calibrating up to 7 parameters selected
from a sensitivity analysis. Moreover, a comparison between the estimated pa-
rameters for control and heart failure cases enabled a preliminary specificity
study that aims at classifying the pathologies.

2 The Bestel-Clement-Sorine Electromechanical Model
of the Heart

Our approach is based on the Bestel-Clement-Sorine (BCS) model [3] further
improved by [4]. The model is composed of a passive isotropic visco-hyperelastic
component that accounts for the elasticity and the friction in the cardiac extra-
cellular matrix surrounding the fibres, described as a Mooney-Rivlin material.
The strain energy for a Mooney-Rivlin material is given as: We = c1(Ī1 − 3) +
c2(Ī2 − 3) + K

2 (J − 1)2, where c1, c2 are material parameters and K is the Bulk
modulus. The quantities Ī1 and Ī2 are the isochoric invariants of the Cauchy-
deformation tensor C.

In parallel, the stress along the cardiac fibre is composed of an active part
(contraction in the sarcomere) and a passive part corresponding to the elastic
bound (titin) between sarcomeres and Z-discs, having stress σs = Eses. The
contractile component having stress tensor σc, driven by the control variable u,
has a viscous part to account for the energy dissipated in the sarcomere due to
friction. This gives σc = τc + µėc. Fig. 1 shows a rheological representation of
this model.

At the nanoscopic scale, the binding and unbinding process of the actin and
myosin filaments in the sarcomere is described by Huxley’s filament model [9].
Statistical mechanics allows to describe its behavior at the macroscopic scale,
resulting in a differential equation that controls the active stress τc and the
sarcomere stiffness kc:{

k̇c = −(| u | +α | ėc |)kc + n0k0 | u |+
τ̇c = −(| u | +α | ėc |)τc + ėckc + n0σ0 | u |+

(1)

where α is a constant related to the cross-bridge release due to a high contraction
rate, k0 and σ0 are respectively the maximum stiffness and contraction. n0 is
a reduction factor that allows to take into account the Starling effect by which
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Fig. 1: Full electromechanical and circulation model. (Left) We is the strain energy of
the extracellular matrix considered here as an isotropic material, associated with a
dissipative term η. u is a control variable which is driven by changes in transmembrane
potential. It controls the contraction stress τc. µ deals with the friction in the sarcomere
while Es is a linear spring to enforce elasticity of the Z-discs (titin). (Right) Circulation
model in the filling phase for the left ventricle.

the maximum contraction depends on the fibre strain ec. The control variable
u is derived from the electrical activation model and is a function of the free
calcium concentration only. It is modeled using electrophysiological inputs such
as depolarization times (Td) and action potential durations (APD) and depends
on two parameters: kATP the rate of the myosin ATPase activity controlling the
contraction rate and kRS the rate of sarcoplasmic reticulum calcium re-uptake
controlling the relaxation rate.

The ventricles are filled with blood coming from the atria and ejected through
the arteries. A basic circulation model is represented in Fig. 1. A valve model
explained in [4] gives relationships between the outward flow and the various
pressures (ventricular, arteria and atria). The arteria pressure is modeled using
a four-element Windkessel model [10], that depends on four parameters: the
peripheral resistance Rp, the characteristic time τ , the characteristic resistance
Zc and the total arteria inertance L.

3 Unscented Transform-Based Parameter Calibration

To calibrate the model, we use the algorithm derived from the Unscented Trans-
form [11]. We chose the ventricular volume curves as main observations to per-
form the calibration as they are important physiological indices and can be cap-
tured by few quantities: the minimum volume Vmin, the maximum and minimum
of the flow (qmax and qmin respectively). Moreover, if available, the maximum
pressure Pmax, as well as the maximum and minimum of the derivative of the
pressure (dP/dtmax and dP/dtmin respectively) can be taken into account.



3.1 Unscented Transform Algorithm

The proposed algorithm finds a set of parameters that minimize the difference
between the measured observation Zobs and the predicted observation Z̄. It is
explained as follows: Let Z be the vector of observations and X the parameter
vector which has mean X0, covariance CX and dimension n. We set the covari-
ance as CX = Cov(X,X) by estimating the minimal and the maximal value of
each parameter with a trial and error approach on one volunteer. We compute
observations Ziε from the 2n+ 1 sets of parameters Xiε = [x1, x2, ..., xi + εsi, ...]
around the mean value X0 where ε ∈ {−1, 0, 1} and si is an uncertainty func-
tion of the covariance si = γ

√
CXi, with γ the scaling parameters. The mean

observation is set as Z̄ =
∑
i,ε ωiεZiε with some weights ωiε described by [12].

Finally we derive the covariance matrix as:

Cov(X,Z) =
∑
iε

ωiε(Xiε −X0) (Ziε − Z̄)T (2)

The new set of parameters Xnew found to match the observations Zobs is

(Xnew −X0) = Cov(X,Z) Cov(Z,Z)−1 (Zobs − Z̄) (3)

where
Cov(Z,Z) =

∑
iε

ωiε(Ziε − Z̄) (Ziε − Z̄)T . (4)

This algorithm is very simple to implement and runs in one iteration to give
Xnew. Another simulation is necessary to obtain the resulting observation Znew.

3.2 Parameter Selection

Fourteen parameters in total have to be estimated: (σ0, krs, katp, k0, α, µ,Es)
active parameters, (K, c1, c2) passive parameters and (Rp, τ, Zc, L) for the valve
model. Since it is not reasonable to try to estimate all of them at once, we
decide to fix some to a standard value and estimate others. A sensitivity analysis
was performed in order to select the main parameters. We chose the following
four parameters (σ0, µ,K,Rp) that we might be able to estimate from a volume
curve. This choice was confirmed by a Singular-Value-Decomposition (SVD) of
the covariance matrix Cov(X,Z) made from all fourteen parameters and the
three observations (Vmin, qmax and qmin). When pressure curves are available,
more parameters can be estimated. krs, katp as well as the stiffness parameter
c1 were chosen since they greatly influence the pressure slopes. Relevant curves
are presented in Fig. 2.

4 Calibration Results on Healthy and Pathological cases

We demonstrate the application of the proposed method on cardiac MRI data
on both volunteer and patient data acquired at the Division of Imaging Sciences
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Fig. 2: Observations over time: (Top) Volume in mL, (Bottom) Pressure in kPa.

& Biomedical Engineering at King’s College London, UK. Initial parameters X0

and covariance matrix CX are the same for all cases. Each case was calibrated in
about 20 minutes that includes the time to run in parallel the 2n+1 simulations,
the calibration time and the final simulation with the calibrated parameters.

4.1 Volunteer Data: Calibration with Volume Curves

The study was performed on seven healthy hearts provided by the STACOM
challenge. The electrophysiological model was simulated with standard values
and healthy onset (see Fig.3 Left). From the kinematic personalization, we reg-
istered all images on the end diastolic image. Then, image transformations were
applied to the end-diastolic tetrahedral mesh to estimate the volume of the
ventricles over time and then the observation vector Zobs. Fig. 3 shows the mea-
sured, reference and estimated volume curves on case 3 and errors between the
real observations Zobs and the simulated observations Znew are given in Table 1.
Moreover, the calibration provided a consistent and plausible range of global
values for parameters that will be used in a specificity study (see Table 2).

4.2 Pathological Data: Calibration with Volume and Pressures

The proposed calibration approach was applied on two Left Bundle Branch Block
(LBBB)3 cases. Electrophysiological personalization (see Fig. 4 left) was enabled
and pressure curves were available thanks to pressure sensors. Results on the two

3 LBBB cases are characterized by dyssynchronous electrophysiology that leads to
inefficient contraction.



Volunteers 1 2 3 4 5 6 7 Mean

Vmin 0.35 3.51 0.83 0.79 1.09 1.38 1.31 1.32
qmax 3.06 20.99 8.57 21.37 11.5 12.1 5.36 11.85
qmin 0.31 4.12 27.41 6.48 27.58 16.92 5.81 12.66

Table 1: Relative errors (in %) between simulated results Znew and real data Zobs on
the 7 healthy cases.

Volunteers 1 2 3 4 5 6 7 Mean

σ0 (MPa) 6.49 4.42 4.92 5.46 5.51 8.75 5.32 5.8
µ (MPa.s) 0.31 0.31 0.27 0.3 0.33 0.26 0.3 0.3
K (MPa) 14.22 10.44 12.72 13.24 14.12 12.72 12.82 12.9

Rp (MPa.m−3.s) 93.87 130.88 110.1 116.73 104.43 98.3 141.39 113.7

Table 2: Estimated parameters from the calibration.
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Fig. 3: (Left) Electrophysiological and geometrical input. (Right) Results of the cali-
bration technique on real data for one healthy volunteer.

LBBB cases are given in Fig. 4 and the comparison with the images is given in
Fig. 5. The mean relative error for both cases is about 16%. We noticed a much
higher passive stiffness (K = 19MPa) for LBBB case 2 which also suffers from
dilated cardiomyopathy, and a smaller contractility (σ0 < 4MPa) for both heart
failure cases. These results are in agreement with medical knowledge (see [13]
for instance). Therefore we can assess that a small contractility may be specific
to LBBB cases as a high myocardial stiffness may be to dilated cardiomyopathy.

4.3 Evaluation of Registration Error Influence

We tried to evaluate the error in the registration technique to understand whether
the model could actually match the data better than shown in Fig. 3. For this
purpose, we created synthetic images from a real sequence, using the deformed
meshes resulting from a simulation. We then registered this new sequence with
the same registration technique as used for the kinematics personalization, and
extracted the volume curves from the resulting registered meshes. The compar-
ison between the initial simulated volume curve and the one computed after
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Fig. 4: (Left) Personalized electrophysiology. (Right) Results of the calibration tech-
nique on real data for LBBB case 1

(a) t = 0 ms

(b) t = 410 ms

Fig. 5: Simulated mesh for LBBB case 1.

Fig. 6: Comparison between the volume
variation computed from the simula-
tion and the one estimated from reg-
istered images.

registration gives a relative error of about 25% for both slopes (see Fig.6), which
is of the same order of magnitude as the one after model calibration.

5 Conclusion

In this paper we proposed an innovative calibration method of an electrome-
chanical cardiac model. The model depends on 14 parameters that act on the
active, passive and constraint components. The calibration based on the Un-
scented Transform allowed us to give a fast initialization of 4 or 7 parameters,
leaving the others fixed to standard values. The choice of these parameters was
made based on a sensitivity analysis on the volume and pressure variation and
confirmed by a Singular-Value-Decomposition analysis. Since the calibration re-
quires only to run several simulations in parallel to estimate these parameters



followed by one additional simulated cycle to verify the results, it can easily be
used as a preprocessing step before the application of more sophisticated per-
sonalization algorithms. Moreover, the calibration performed on the 7 healthy
volunteers and 2 heart failure cases allowed us to compare parameters for patho-
logical cases versus healthy controls as a first step toward specificity analysis
to classify various pathologies. Additional heart failure cases and observations
quantities (global indices of the strain for instance) are required to further im-
prove the calibration and validate this specificity study. Finally, the impact of
the calibration on the personalization algorithm also needs to be investigated.
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