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Abstract Patient-specific cardiac modelling can help
in understanding pathophysiology and predict therapy
planning. However it requires to personalize the model
geometry, kinematics, electrophysiology and mechan-
ics. Calibration aims at providing proper initial val-
ues of parameters before performing the personaliza-
tion stage which involves solving an inverse problem.
We propose a fast automatic calibration method of the
mechanical parameters of a complete electromechani-
cal model of the heart based on a sensitivity analysis
and the Unscented Transform algorithm. A new im-
plementation of the complete Bestel-Clement-Sorine
(BCS) cardiac model is also proposed, in a modular
and efficient framework. A complete sensitivity anal-
ysis is performed that reveals which observations on
the volume evolution are significant to characterize the
global behaviour of the myocardium. We show that the
calibration method gives satisfying results by optimiz-
ing up to 5 parameters of the BCS model in only one
iteration. This method was evaluated synthetically as
well as on 7 volunteers with a mean relative error from
the real data of 10%. This calibration is designed to
replace manual parameter estimation as well as initial-
ization steps that precede automatic personalization al-
gorithms based on images.
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1 Introduction

The clinical understanding and treatment of cardiovas-
cular diseases is highly complex and includes a wide
range of therapies: from drug therapy to Radiofre-
quency Ablation (RFA) aiming at reducing Ventricu-
lar Tachycardia (VT) or Atrial Fibrillation (AF), also
including Cardiac Resynchronization Therapy (CRT)
aiming at relieving Heart Failure (HF) symptoms with
the implantation of pacemaker leads (Smith et al,
2011). Optimizing the leads configuration, selecting
suitable patients, estimating regions to be ablated are
difficulties that face the cardiologists for each patient.
In order to provide additional guidance to cardiolo-
gists, many research groups are investigating the pos-
sibility to plan such therapies based on biophysical
models of the heart (Kerckhoffs, 2010). The hypothe-
sis is that one may combine anatomical and functional
data to build patient-specific cardiac models that could
have the potential to predict the benefit of the thera-
pies. Cardiac electromechanical simulations are based
on computational models that can represent the heart
geometry, motion and electrophysiology patterns dur-
ing a cardiac cycle with sufficient accuracy. Integration
of anatomical, mechanical and electrophysiological in-
formation for a given subject is essential to build such
models.

Several approaches for the past 20 years have
been developed to describe and simulate cardiac func-
tion, including cardiac mechanics and electrophysiol-
ogy (Humphrey et al, 1990; Hunter et al, 1997; Nash,
1998; Bestel et al, 2001; Sachse, 2004). They differ in
their choice of hyperelastic material, electrophysiolog-
ical properties or electromechanical coupling. In this
paper the Bestel-Clement-Sorine (BCS) model (Bestel
et al, 2001), further improved by (Chapelle et al, 2012),



is used for its consistency with thermodynamical re-
quirements in its continuous as well as in its dis-
crete form (Sainte-Marie et al, 2006). Moreover it has
demonstrated a good predictive power under different
pacing conditions in terms of haemodynamics (Serme-
sant et al, 2012).

The simulation becomes patient-specific after sev-
eral levels of personalization: geometrical (a compu-
tational mesh is built from patient-specific anatomi-
cal images (see Fig. 1), kinematic (the motion of the
cardiac structure is estimated from cine-MR images
(McLeod et al, 2012; Sermesant et al, 2006)), elec-
trophysiological (the depolarization and repolarization
times are extracted from electrocardiograms (Relan
et al, 2011)) and mechanical. The focus of this paper
is on the latter personalization level, which consists
in optimizing mechanical parameters of the model so
that the simulation behaves in accordance to patient-
specific datasets (images and other signals).

This inverse problem has been tackled by differ-
ent authors. For instance, (Xi et al, 2011) and (Liu and
Shi, 2009) estimate the passive material stiffness with
data assimilation methods while (Wang et al, 2009)
use Sequential Quadratic Programming. (Moireau and
Chapelle, 2011) as well as (Chabiniok et al, 2011) esti-
mate the contractility parameters using Reduced Un-
scented Kalman Filtering. (Sundar et al, 2009) and
(Delingette et al, 2011) rather use adjoint data assimi-
lation methods.

All these methods are time consuming since they
require an important number of simulations. Moreover,
there is no guarantee that such algorithms converge to-
ward a relevant solution due to their dependence on
initial range of parameter values since it is often nec-
essary to be close to the solution for the algorithm to
converge toward the global minimum. The choice of
the parameters to estimate and their initial calibration
have therefore great impact for the personalization.

Our main contribution tackles this initialization is-
sue: we propose a simple and efficient method to auto-
matically calibrate the parameters from the ventricular
volume evolution over the cardiac cycle. It has been
applied successfully for the calibration of mechanical
parameters from 7 healthy cases. Our proposed method
is based on the Unscented Transform algorithm and
requires only one iteration with multiple simulations
performed in parallel for calibrating typically 4 or 5
parameters selected from a sensitivity analysis.

Our approach remains tractable (computational
time around 20 minutes for a tetrahedral mesh of
80,000 elements) due to a novel and efficient imple-
mentation of the BCS model in the interactive frame-

work SOFA1. It also includes the changes of cardiac
phases through a valve model and takes into account
the mechanical effect of the pericardial sac.

Fig. 1: Extracted myocardium meshes including the two ventri-
cles and the four valves, segmented from 3D MRI.

2 Materials and Methods

2.1 Data Acquisition

We demonstrate the application of the proposed
method on cardiac MRI data, including both SSFP se-
quence for anatomical description and cine-MRI for
motion tracking. Data were acquired at the Division of
Imaging Sciences & Biomedical Engineering at King’s
College London, UK, as part of studies that were ethi-
cally approved.

2.1.1 Volunteer Study

This study includes an extensive multi-modality imag-
ing of volunteers from which seven healthy cases
were used. All datasets consist of sequences of 4D
cine-MRI with a spatial resolution of approximately
1.5×1.5×7mm3 and a temporal resolution of around
30 ms (30 images per cardiac cycle), that cover the
ventricles entirely. Volunteers were aged 28 ± 5 years,
and supposed to be without clinical history of cardiac
diseases. This dataset was made available to the re-
search community for the STACOM’2011 challenge,
see (Tobon-Gomez et al, 2011) for details regarding the
data acquisition of this study.

1 SOFA is an Open Source medical simulation software avail-
able at www.sofa-framework.org

2



2.1.2 Clinical Data Pre-Processing

Three different steps are needed before any mechanical
personalization can be performed: extraction of the
myocardium geometry, estimation of the patient’s
cardiac motion and personalization of the electrophys-
iological propagation.

Geometry Personalization
To personalize the geometry from images, we used
Philips automatic cardiac segmentation (Ecabert et al,
2011) in GIMIAS2 to extract the ventricles from the
SSFP sequence and then recreate a binary mask of the
myocardium. We then used CGAL3 meshing software
to create tetrahedral meshes. In the electromechanical
model presented in Section 2.2, fibre directions play
an important role for both electrophysiological and
mechanical simulations. There are several ways to
generate realistic fibre directions: by mapping an atlas
onto the myocardium geometry (Peyrat et al, 2007;
Lombaert et al, 2011; Toussaint et al, 2010) or by
synthetically using prescribed values of helix angles
across the myocardium wall. In this paper, the fibres
were created synthetically with angles varying linearly
from -70° to +70° across the myocardial wall (from
epicardium to endocardium).

Kinematics personalization
A non-rigid registration algorithm was applied to
the clinical 4D image sequences to find the defor-
mation field between the end diastolic image and
each subsequent image. We used the incompressible
Log-Domain Demons (iLogDemons) developed by
(Mansi et al, 2011) which estimates a dense non linear
transformation that best aligns a template image to a
reference image. Moreover, it allows to recover some
components of the twist motion of the myocardium
by incorporating an elastic and an incompressible
regularizer into the registration.

Electrophysiology personalization
To simulate the electrophysiological pattern of activ-
ity, an Eikonal model was solved for the depolarization
time Td at each point of the mesh: v

√
∇T t

d D∇Td = 1.
v is the local electrical conduction velocity and D =
(1− r)f⊗ f + rI is the anisotropic conductivity ten-
sor which depends on the fibre orientation f and on an
anisotropic ratio r. The solution of this electrophysi-
ological model was performed using multi-front Fast

2 GIMIAS is a workflow-oriented environment focused on
biomedical image computing and simulation (Larrabide et al,
2009)

3 CGAL is a Computational Geometry Algorithms Library. It
is available at http://www.cgal.org

Marching Method which also computes the repolariza-
tion times (Sermesant et al, 2007) taking into account
a restitution curve. For patient data, the personaliza-
tion of this model requires to specify the onset of the
electrical propagation (corresponding to the extremi-
ties of the Purkinje network) and the conduction veloc-
ity. No subject specific electrophysiological data were
acquired and therefore standard values were assumed
(conduction velocity of 900mm/s). The simulation of
electrophysiology leads to the estimation of depolar-
ization and repolarization times that then serve as in-
puts for the mechanical contraction.

2.2 Electromechanical Modelling of the Heart: The
Bestel-Clement-Sorine Model

We describe in this section, the modelling and nu-
merical methods used to represent the mechanical
behaviour of the heart. Our approach is based on
the Bestel-Clement-Sorine (BCS) model (Bestel et al,
2001) further improved by (Chapelle et al, 2012). This
choice is governed by some good properties of the BCS
model: It is based on a multi-scale analysis, is compat-
ible with the laws of thermodynamics (balance of en-
ergy may be written), takes into account the Starling ef-
fect. Moreover, the model has been shown to represent
rather well (Chabiniok, 2011) the physiological behav-
ior of a myocardial fibre based on a quantitative com-
parison with a rodent papillary muscle under isotonic,
isometric contractions measured experimentally.

The model is composed of a passive isotropic
visco-hyperelastic component that accounts for the
elasticity and the friction in the cardiac extracellular
matrix (mainly collagen and elastic) surrounding the
fibres. In parallel, the stress along the cardiac fibre
is composed of an active part (contraction in the sar-
comere) and a passive part corresponding to the elas-
tic bound (titin) between sarcomeres and Z-discs. The
contractile component, driven by the control variable
u, has a viscous part to account for the energy dissi-
pated in the sarcomere due to friction. The elasticity of
the titin is the component that allows the isometric be-
haviour of the cardiac fibre. Fig. 2 shows a rheological
representation of this model.

The equations are summarized here to introduce its
parameters and to describe its implementation based on
the SOFA platform.

2.2.1 Passive Non-Linear Elasticity

In the BCS approach, the extracellular matrix is con-
sidered to be a passive hyperelastic material. Sev-
eral authors (Holzapfel and Ogden, 2009; Wong et al,
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Fig. 2: Full electromechanical and circulation model. (Left) We is the strain energy of the extracellular matrix considered here as an
isotropic material, associated with a dissipative term η . u is a control variable which is driven by changes in transmembrane potential.
It controls the contraction stress τc. µ deals with the friction in the sarcomere while Es is a linear spring to enforce elasticity of the
titin. (Right) Circulation model in the filling phase for the left ventricle.

2008; Mazhari and McCulloch, 2000) consider the my-
ocardium as a whole to have an orthotropic behavior
(such as the Costa’s law (Costa et al, 2001)), taking
into account both fibre and laminar sheets directions. In
this paper, we consider an isotropic behavior described
as a Mooney Rivlin material. Thus globally, adding
the elasticity of the Z-discs, the passive behavior of
myocardial tissue in the BCS model is considered to
be transversally isotropic. An exponential hyperelastic
material has been considered in (Chabiniok, 2011) in-
stead of Mooney-Rivlin but with limited benefits due
to its contraction behavior. Orthotropic materials may
be introduced in the future by integrating recent work
from Lombaert et al (2011) which estimates the lami-
nar sheets direction on human hearts.

Linear tetrahedral finite elements are used to dis-
cretize the strain energy describing the Mooney-Rivlin
material. Instead of the classical Bubnov-Galerkin Fi-
nite Element Method (FEM) formulation, the energy
is discretized with the MJED (Multiplicative Jaco-
bian Energy Decomposition) technique described in
(Marchesseau et al, 2010). This method is equivalent
to the classical FEM but allows to quickly assemble
the stiffness matrix of any hyperelastic materials by
precomputing some of its terms. The strain energy for
Mooney Rivlin material is given as:

We = c1(Ī1−3)+ c2(Ī2−3)+
K
2

(J−1)2 (1)

where c1,c2 are material parameters and K is the
Bulk modulus. The quantities Ī1 and Ī2 are the iso-

choric invariants of the Cauchy-deformation tensor
C = ∇φ T ∇φ : Ī1 = J−2/3I1, Ī2 = J−4/3I2 where I1 =
trC, I2 = 1

2 ((trC)2− trC2) and J is the Jacobian J =
det∇φ .

2.2.2 Active Fibre Contraction

The active component is added to account for the con-
traction of the sarcomere. The contraction stress tensor
σc is in parallel with a viscosity element (cf Fig. 2)
which gives σc = τc + µ ėc. A linear elastic component
having stress σs = Eses is in series with the contractile
component. Therefore, after linearization of the equa-
tions presented by (Chapelle et al, 2012), e1D = es +ec
and σc = σs, where e1D is the projection of the Green-
Lagrange deformation tensor E on the fibre direction:
e1D = fT Ef. At the nanoscopic scale, the binding and
unbinding process of the actin and myosin filaments in
the sarcomere is described by Huxley filament model
(Huxley, 1957). Statistical mechanics allows to de-
scribe its behavior at the macroscopic scale, resulting
in a differential equation that controls the active stress
τc and the sarcomere stiffness kc:{

k̇c =−(| u |+α | ėc |)kc +n0k0 | u |+
τ̇c =−(| u |+α | ėc |)τc + ėckc +n0σ0 | u |+

(2)

where α is a constant related to the cross-bridge re-
lease due to a high contraction rate, k0 and σ0 are re-
spectively the maximum stiffness and contraction. n0
is a reduction factor that allows to take into account
the Starling effect by which the maximum contraction
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depends on the fibre strain ec. The control variable u
is derived from the electrical activation model and is a
function of the free calcium concentration only. It can
be summarized as:{

u(t) = kAT P when Td ≤ t ≤ Td +APD
u(t) =−kRS when t < Td and t > Td +APD

(3)

kAT P is the rate of the myosin ATPase activity con-
trolling the contraction rate and kRS is the rate of sar-
coplasmic reticulum calcium re-uptake controlling the
relaxation rate. Td and APD are respectively the depo-
larization time and the action potential duration (time
during which the cell stays excited). These two values
are obtained by a biophysical model of cardiac electro-
physiology. Finally, the density of strain energy to add
to the passive model is Wc = σcfT Ef.

Our implementation in SOFA first solves the cou-
pled differential equations (2) with an Euler implicit
solver, and then computes the required force fields and
stiffness matrices for the global system. Appendix A
provides additional details about the discretized equa-
tions.

2.2.3 Haemodynamic Model

The ventricles are filled with blood coming from the
atria and ejected through the arteries. A basic circu-
lation model is represented in Fig. 2 and represents
the four phases of the cardiac cycle, independently for
each ventricle as follows:

– Filling: while the ventricular pressure (Pv) is below
the atrium pressure (Pat ), the mitral (or tricuspid)
valve is open and the ventricle fills up with blood.

– Isovolumetric Contraction: the contraction starts
and all valves are closed.

– Ejection: when Pv > Par the arterial pressure, the
aortic (or pulmonary) valve opens and the blood is
ejected from the ventricle.

– Isovolumetric Relaxation: the relaxation starts and
all valves are closed.

To model those phases we apply the haemodynamic
model introduced by (Chapelle et al, 2012). It gives a
relation between the blood flow leaving the ventricle
(q) and the atrial, ventricular and aortic pressures:

q =


Kat(Pv−Pat) for Pv ≤ Pat
Kiso(Pv−Pat) for Pat < Pv ≤ Par
Kar(Pv−Par)+Kiso(Par−Pat) for Pv > Par

(4)

where Kat and Kar correspond to linear laws and Kiso
relaxes the usual isovolumetric constraint (q = 0). With

this definition, Kiso is much smaller than Kat and Kar.
The aortic pressure is computed following the fourth-
element Windkessel model described in Appendix B.
Windkessel model depends on four parameters: the pe-
ripheral resistance Rp, the characteristic time τ , the
characteristic resistance Zc and the total arteria iner-
tance L. The initial and asymptotic arterial pressures
also influence the model. The atrial pressure is com-
puted analytically as two sigmoids and depends on an
initial and a maximum pressure that is set from the lit-
erature (Schäffler and Schmidt, 1999). The sigmoids
start during the relaxation and finish before the begin-
ning of the next contraction. An adjustment is set a
posteriori to fit the volume or pressure curves.

To apply this model we need to solve the following
dynamical system, simultaneously for both ventricles,
with the pressure vector Pv = [PvL,PvR]:

[
K GT

G D

][
∆s
Pv

]
=
[

F
FD

]
where K∆s = F is the unconstrained dynamical system
including passive and active elasticities, and s the un-
known nodal velocities. G = [GL,GR] is the derivative
of the volume with respect to the positions: GT ∆u =
∆V where u are the unknown positions of the points
and V = [VL,VR] is the volume of the ventricles (see
Appendix B). FD = [FDL,FDR] and D = [DL,DR] are
set for each phase to verify:

G∆s+DPv = FD (5)

(see B for a detailed derivation of this equation from
eq(4)). To solve the dynamical system K∆st+∆ t = F−
GT Pv

t+∆ t without adding state variables for Pv, we de-
sign a prediction-correction algorithm to solve the con-
straint (Algorithm.1).

Algorithm 1 HaemodynamicModel() function
1: Solve K∆ s̃t+∆ t = F−GT Pv

t

2: Using (5) and ∆st+∆ t = ∆ s̃t+∆ t − K−1GT (Pv
t+∆ t − Pt

v),
rewrite G∆ s̃t+∆ t −B(Pv

t+∆ t − Pv
t) = FD −DPv

t+∆ t with
B = GK−1GT

3: Solve separately for each ventricle the equation KA = GT

with A = [AL,AR] to get B = GA.
4: Compute the unknown pressure

Pv
t+∆ t = (D−B)−1

(
FD−BPv

t −G∆ s̃t+∆ t
)

5: Correct the velocity such as

∆st+∆ t = ∆ s̃t+∆ t −A(Pv
t+∆ t −Pv

t)
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2.2.4 Boundary Conditions

Two types of boundary conditions were defined to pre-
vent rigid body motion. First, the heart mesh is at-
tached at the level of the four valve annuli limiting the
ventricles. To allow some valve motion, linear springs
connect the valve vertices to their reference position.
We defined a unique stiffness matrix K = kbId where
kb is the isotropic stiffness. Therefore the force for each
node is defined as Fi = K(Qi−Pi) where Pi is the ini-
tial position and Qi is the current position. A value of
50Pa was chosen for the stiffness kb so as to allow a
small movement of the valves. This constraint has a
noticeable impact on the motion of the myocardium,
but not as much on the global indices of the volume
and pressure. Second, we defined a fixed pericardium
surface surrounding the myocardium which limits the
ventricle displacements: each time a epicardium vertex
hits the pericardial surface, a force is applied prevent-
ing the penetration. The pericardial surface was defined
as an offset surface of the epicardium situated at a fixed
distance (∼ 2mm) from the epicardium at end-diastolic
time point and efficient collision detection was imple-
mented in SOFA. This collision constraint enables to
limit the radial body motion but does not impact the
global volume or pressure evolution.

2.2.5 Implementation issues

The implementation of the BCS model in the SOFA
platform differs from the one of (Chapelle et al, 2012)
in several ways. In our approach, the fibre stresses and
stiffness at each node are not added as state variables
but are solved separately from the position and ve-
locity variables with a weaker coupling. This allows
us to have a better conditioned system of equations
that is solved efficiently with regular linear solver such
as pre-conditioned conjugated gradient. Furthermore,
we have linearized the strain relation e1D = es + ec
in the active components and solved the valve model
with a prediction-correction approach which requires
2 additional solutions of the linear system of equations
per time step. Also, fast assembly of the stiffness ma-
trix associated with passive hyperelastic material was
reached with the MJED method. Finally, we added a
pericardial constraint to limit the displacement of epi-
cardium vertices. Efficient and interactive simulations
were made possible thanks to the adoption of the sim-
ulation platform SOFA.

2.3 Sensitivity Analysis of Global Outputs to the
Model Parameters

We propose in this paper a calibration method of the
model parameters. A first step is to select the main
parameters that can be estimated given the available
data. To this end, we study the influence of each ac-
tive, passive and heamodynamic model parameter on
the volume, the outward flow (q = −dV/dt) and the
pressure in the ventricle. This required about 160 simu-
lations. The results are given in Section 3.3 only for the
left ventricle since the right ventricle has a similar be-
haviour. The sensitivity analysis is performed with null
initial velocities for two reasons: first, the cycle starts
with the isovolumetric contraction phase so the initial
velocity is small and second, the temporal samplings
of the MRI datasets are too sparse (only 30 images for
0.93s) to precisely estimate the initial velocity. The re-
sults are shown for one volunteer geometry, similar re-
sults were found on different geometries. The variation
of the parameters was chosen after a trial and error ap-
proach in order to obtain a physiologically realistic be-
haviour. The used minimum and maximum values are
presented in Table 1.

Table 1: Ranges of parameter values explored in the sensitivity
analysis.

Notation Parameter Name Min - Max

σ0 (MPa) Max Contraction 4−10
k0 (MPa) Max Stiffness 3−9
kAT P (s−1) Contraction Rate 5−20
kRS (s−1) Relaxation Rate 5−60
Es (MPa) Linear Modulus 3−15
α Cross-bridges Unfasten Rate 0−0.8
µ (MPa.s) Viscosity 0.07−0.6
c1 (kPa) Mooney Rivlin Modulus 7−20
c2 (kPa) Mooney Rivlin Modulus 7−20
K (MPa) Bulk Modulus 6−25
τ (s) Wind. Charact. Time 0.4−2
Rp (MPa.m−3.s) Wind. Periph. Resistance 30−300
Zc (MPa.m−3.s) Wind. Charact. Resistance 1−10
L (kPa.s2.m−3) Wind. Total Art. Inertance 1−100

2.4 Parameters Calibration Based on Unscented
Transform

From this qualitative study of the main model param-
eters, we determine a strategy to automatically as-
sess the model parameters from the volume and flow
curves. Since our goal is to calibrate and not to per-
sonalize the model, the method has to be fast and re-
quire minimal implementation. We chose the ventricu-
lar volume curves as main observation to perform the
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calibration as they are important physiological indices
and can be captured by few quantities: the minimum
volume Vmin (which could also be the ejection fraction
since the maximum volume is constant over all cases),
the maximum and minimum of the flow (qmax and qmin
respectively).

2.4.1 Unscented Transform Algorithm

To calibrate the model, we use the algorithm derived
from the Unscented Transform (Julier and Uhlmann,
1997). The proposed algorithm finds a set of param-
eters that minimizes the difference between the mea-
sured observation Zobs and the predicted observation
Z̄. It is explained as follows: Let Z be the vector of
observations, here Z = [Vmin,qmax,qmin] and X the pa-
rameter vector which has mean X0, covariance CX and
dimension n. We set the covariance as CX = Cov(X,X)
by estimating the minimal and the maximal value of
each parameter with a trial and error approach. We
compute observations Ziε from the 2n + 1 sets of pa-
rameters Xiε = [x1,x2, ...,xi + εsi, ...] around the mean
value X0 where ε ∈ {−1,0,1} and si is an uncer-
tainty function of the covariance si = γ

√
CX i, with γ

the scaling parameters. The mean observation is set as
Z̄ = ∑i,ε ωiε Ziε with some weights ωiε described by
(Wan and Van Der Merwe, 2000). Finally we derive
the covariance matrix as:

Cov(X,Z) = ∑
iε

ωiε(Xiε −X0) (Ziε − Z̄)T (6)

The new set of parameters Xnew found to match the
observations Zobs is

(Xnew−X0) = Cov(X,Z) Cov(Z,Z)−1 (Zobs− Z̄) (7)

where

Cov(Z,Z) = ∑
iε

ωiε(Ziε − Z̄) (Ziε − Z̄)T . (8)

This algorithm is very simple to implement and runs in
one iteration to give Xnew. Another simulation is nec-
essary to obtain the resulting observation Znew.

2.4.2 Qualitative and Quantitative Parameter
Selection

Sixteen parameters in total may be estimated:
(σ0,krs,kat p,k0,α,µ,Es) active parameters, (K,c1,c2)
passive parameters and (Rp,τ,Zc,L,KisoC,KisoR) for
the valve model. Since it is not reasonable to try
to estimate all of them at once, we decide to set
some of them to a standard value and estimate the
remaining ones. The selection was made from the
sensitivity analysis results and confirmed by a Singular

Value Decomposition (SVD) of the covariance matrix
Cov(X,Z) between all 16 parameters and the three
observations cited above [Vmin,qmax,qmin]. Then, for
each vector Xiε , the observations Ziε are computed
(which corresponds to 33 simulations). The Singular
Value Decomposition leads to Cov(X,Z) = USVT

where U is a 16× 16 unitary matrix whose columns
are called the left singular vectors and represent the
eigenvectors of Cov(X,Z)Cov(X,Z)T . Four parame-
ters were therefore selected (see Sec.3.2.4).

2.4.3 Computational Considerations

Before running the proposed algorithm, a few manual
steps were performed on one volunteer case. First, γ

and the weights ωiε have to be adjusted. They both de-
pend on the dimension n and on a parameter α which
represents the spread of the sigma points around X0

and is set to 10−1 (Wan and Van Der Merwe, 2000).
Then, the covariance matrix CX and the initial value
X0 had to be defined and computed from a trial and
error approach. Once calibrated on one volunteer, the
same values were used on all the cases. To obtain the
four parameters from this algorithm, nine independent
simulations are required. To check the results, another
simulation is performed and the resulting observations
are compared to the data. When dealing with real data,
a time shift is estimated a posteriori since the simula-
tion does not start exactly at the same time and phase
of the cycle as the time series of images. This time
shift is computed in order to minimize the mean square
difference between the volumes over time in the data
(V obs) and the ones after estimation of the parameters
(V new). Although the considered observations are time-
invariant, we record this time shift since personaliza-
tion techniques based on images require the simulation
to be synchronized with the measurements. Finally, in
order to fit the end-diastolic volume or pressure, the
atrial pressure is manually adjusted.

3 Results

3.1 Forward Simulation of the Bestel-Clement-Sorine
Model

The simulations were performed on a laptop PC with
a Intel Core Duo processor at 2.80Hz and took about
10 minutes per cardiac cycle for meshes with about
80,000 tetrahedra. The time steps were set depending
on the cardiac cycles and the number of images (for in-
stance dt = 7.75ms for 30 images and a heart period of
0.93s). A sensitivity study on the mesh quality and the
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Fig. 3: (Left) Mesh and electrophysiological isochrones. (Right) Pressures and volumes curves resulting from the simulation of one
cardiac cycle, for the left ventricle.

(a) Volume: KisoC (b) Volume: KisoR (c) Flow: KisoC (d) Flow: KisoR

Fig. 4: Volume (in mL) and outward flow (in mL.s−1) evolution over time (in s) for the left ventricle, with varying isovolumetric
factors. The local minimum of the flow at the end of the cycle represents the beginning of the atrial contraction.

time step showed that the chosen values lead to a good
trade-off between computation time and accuracy. An
example of resulting curves for the pressure and the
volume in the left ventricle is given in Fig. 3 including
the four cardiac phases. The duration of the isovolu-
metric phases depends on the factors KisoC and KisoR as
shown on Fig. 4. The mesh and the electrophysiologi-
cal mapping used for this simulation are also presented
in Fig. 3. With this example, the power developed by
the heart can be computed as P = ∆VL ∆PvL ≈ 1.3W
which is in the range of [1W,2W ] usually referenced in
the literature.

3.2 Sensitivity Analysis of Global Outputs to the
Model Parameters

Results of the sensitivity analysis on the volume, pres-
sure and flow curves are presented below. For all the
cases, the initial states of simulations are obtained with
a mesh created from the segmentation of the end-
diastole frame.

3.2.1 Active parameters

The active parameters mainly influence the volume
curves in terms of amplitude, slopes or duration of
the phases. Some of them also influence the pressure
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(a) σ0 (b) kAT P (c) kRS (d) µ

(e) k0 (f) Es (g) α

Fig. 5: Volume evolution (in mL) over time (in s) for the left ventricle, with varying active parameters.

curves. Relevant curves are presented in Fig. 5 for the
volume and Fig. 6 for the pressure.

From these curves, we can conclude that the max-
imum contraction σ0 and the contraction rate kat p act
together to increase the ejection fraction and change
both the relaxation and the contraction slopes while
the relaxation rate krs only influences the relaxation
phase. The linear modulus Es and the viscosity param-
eter µ modify the slopes and enable a complete cycle.
Finally both the maximum stiffness k0 and the cross-
bridges unfasten rate α have a small influence on the
ejection fraction. Similar conclusions can be drawn for
the pressure curves: when a parameter acts on the ejec-
tion fraction it also acts on the maximum pressure, the
pressure slopes are dependent on the same parameters
as the volume slopes.

3.2.2 Passive Parameters

No significant differences in terms of pressure or vol-
umes curves can be noticed between the two Mooney-
Rivlin parameters c1 and c2, therefore the influence of
only one of them is given in Fig. 7. Mooney Rivlin
first modulus c1 influences the ejection fraction and
the maximum of pressure. The bulk modulus K greatly
acts on the relaxation phase. Moreover, when those pa-
rameters are too large, the end-diastolic volume de-
creases. K controls the quasi-incompressibility of the
myocardial motion, the higher K the closer to incom-
pressibility the motion. We noticed that incompress-

ibility is an important factor to recover some torsion
during the isovolumetric phases.

3.2.3 Heamodynamic Model Parameters

Since the list of parameters that influence the heamo-
dynamic constraint is important, we consider here only
the Windkessel parameters, that mainly act on the aor-
tic pressure. The atrial pressure is supposed to be
known, this pressure only impacts the fast filling pe-
riod. We can also vary the initial and the asymptotic
aortic pressures, but they only translate the resulting
pressure curves. Therefore we use default values from
the literature (Schäffler and Schmidt, 1999).

Results are presented in Fig. 8 on the pressure
curves only. The peripheral resistance Rp strongly acts
on the maximum pressure but also on the length of the
isovolumetric relaxation. The characteristic time τ in-
fluences the maximum of pressure whereas the char-
acteristic resistance Zc and the total arteria inertance L
change the shape of the pressure during the ejection.

The effects of parameter interactions on the mini-
mum volume Vmin was also studied. Fig. 9 shows that
the proposed sensitivity analysis holds at various oper-
ating points. Therefore the performed sensitivity anal-
ysis enables to draw conclusions on the selection of the
most influential parameters.

9



(a) σ0 (b) kAT P (c) kRS (d) µ

Fig. 6: Pressure evolution (in kPa) over time (in s) for the left ventricle, with varying active parameters.

(a) c1 (b) K (c) c1 (d) K

Fig. 7: Pressure (in kPa) and volume (in mL) evolution over time (in s) for the left ventricle, with varying passive parameters.

(a) τ (b) Rp (c) Zc (d) L

Fig. 8: Pressure evolution (in kPa) over time (in s) for the left ventricle, with varying Windkessel parameters.

(a) σ0 and Kat p (b) E and µ (c) Rp and K

Fig. 9: Effects of parameter interactions on Vmin. Varying two parameters in a grid leads to a similar global trend.
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3.2.4 Qualitative and Quantitative Justification of the
Parameter Selection

Selection from the Sensitivity Analysis
From the curves presented earlier, we fixed kat p
because its impact on the observations is coupled
with the impact of the maximum contraction σ0. The
same conclusions follow for the passive parameters
which all act in the same direction, therefore we only
estimated the bulk modulus K. We noticed that the
linear modulus Es and the viscosity parameter µ have
similar behaviour, we therefore estimated only µ .
We fixed the cross-bridges unfasten rate α and the
maximum stiffness k0 which do not have an impact
as strong as the other parameters. Finally the periph-
eral resistance Rp was also estimated since it acts
significantly on the slopes and ejection fraction. Not
considering the other valve model parameters since no
data is usually available on the pressure, we were left
with the following five parameters (σ0,krs,µ,K,Rp)
to estimate.

Selection from the Singular-Value Decomposition
The Singular-Value Decomposition (SVD) led to
left singular vectors representing the eigenvectors of
Cov(X,Z)Cov(X,Z)T . The first three singular vectors
only were considered (since there were only three ob-
servations). They depended mainly on the four pa-
rameters (σ0,K,Rp,µ) and slightly on krs. This anal-
ysis led us to try both X = X4 = [σ0,µ,K,Rp] and
X = X5 = [σ0,K,Rp,µ,krs] for the automatic calibra-
tion which is coherent with the previous selection of
parameters provided by the sensitivity analysis.

3.3 Calibration Results on Synthetic and Healthy
cases

To evaluate the calibration technique, several tests were
performed.

3.3.1 Synthetic Data

First, tests on synthetic data were performed to verify
the effectiveness of the method. We simulated a car-
diac cycle with known parameters and extracted the re-
sulting ventricular volume curve as detailed in B. The
application of the calibration method on this synthetic
volume curve led to 4 or 5 parameters supposed to pro-
duce the same volume curve. Indeed, a good match
was found with the volume curve and its derivative as
shown in Fig. 10. The mean relative error between the
data Zobs and the observations obtained after parameter
calibration Znew was less than 1%. No differences were

noticeable between the estimation of 4 parameters or 5
parameters.

Fig. 10: Results of the calibration technique on synthetic data on
the volume evolution in mL(top) and the outward flow function
in mL.s−1 (bottom).

Therefore, this calibration technique allows to esti-
mate 4 (or 5) influential parameters after performing 9
(or 11) independent simulations (that can be launched
in parallel). Hence, this technique is fast and is suit-
able to be applied on a large database of patients. Table
2 compares the parameters used to simulate the data
and the estimated ones. It shows that the solution is not
unique due to parameter observability issues and possi-
ble correlation between the parameters that lead to the
non-uniqueness of the solution for these observations.
More observation would be required to constrain the
uniqueness of the parameters.

3.3.2 Volunteer Data

The study was performed on seven healthy hearts pro-
vided by the STACOM challenge. The electrophys-
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Table 2: Parameters values found by the calibration algorithm on
synthetic data for 4 parameters.

σ (MPa) K (MPa) Rp (MPa) µ (MPa.s)

Data 10 10 80 0.2
X4 9.5 12.9 83 0.3

iological model was simulated with standard values
of the conductivity and the anisotropic ratio. From
the kinematic personalization, we registered all im-
ages on the end diastolic image. Then, image trans-
formations were applied to the end-diastolic tetrahe-
dral mesh to estimate the volume of the ventricles over
time and then the observation vector Zobs. The calibra-
tion required launching 9 (or 11) simulations around
the mean parameter vector X0 = [7,13,100,0.28] and 4
(or 5) parameters were then estimated based on the Un-
scented Transform algorithm. Fig. 11 shows the mea-
sured, reference and estimated volume curves on case
3.

Fig. 12 shows two views of the estimated cardiac
motion overlapped with the MRI sequence at different
times of the cycle. The meshes seem to follow reason-
ably well the images at each phase of the cardiac cycle.
Differences may be explained by segmentation errors
on the first image, by registration errors or model er-
rors.

Trying to estimate 4 or 5 parameters in all of the
cases showed that the results are either similar, or bet-
ter with 4 parameters than with 5. Therefore only the
variation of 4 parameters was studied. A statistical di-
agram on Fig. 13 gives the median and variance of all
cases on values normalized by X0 = [7, 13, 100, 0.28].
The distribution for healthy cases is rather smooth, Rp
has the largest variance of about 12%. These mean val-
ues are partially in agreement with what Chabiniok
et al (2011) estimated with a similar model. Indeed, our
Bulk modulus (K ∼ 10) is in the range [1− 10] they
gave, whereas our contractility is higher (σ0 ∼ 5 in-
stead of σ0 ∼ 0.5). These differences can be due to the
pathology they studied, the differences in the boundary
conditions or their local approach to find the parame-
ters which differs from our global technique.

Errors between the real observations Zobs and the
simulated observations Znew are given in Table 3.

For all cases, the match is excellent for the mini-
mum volume and hence the ejection fraction, but less
good (' 15%) for the slopes. In all cases the calibra-
tion enables a significant improvement (as shown on
Fig.14). Errors can be explained in several ways. First,
the real volume curve extracted from the images con-
tains registration errors; then, errors on the geometry,

Fig. 11: Results of the calibration technique on real data for one
healthy volunteer. (Left) Volume evolution in mL. (Right) Flow
evolution in mL.s−1.

Fig. 13: Box plot showing the median and variance of the param-
eters for seven healthy cases. The values are normalized by the
mean parameter X0.
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(a) t = 0 ms (b) t = 190 ms (c) t = 520 ms (d) t = 710 ms

(e) t = 0 ms (f) t = 190 ms (g) t = 520 ms (h) t = 710 ms

Fig. 12: Short axis and long axis views of the simulated mesh on top of the MR images at different moments of the cardiac cycle (heart
period = 930 ms) for case 3.

Table 3: Relative errors (in %) between simulated results Znew and real data Zobs on the 7 healthy cases

Volunteers 1 2 3 4 5 6 7 Mean Min Max

Vmin 0.35 3.51 0.83 0.79 1.09 1.38 1.31 1.26 0.35 3.51
qmax 3.06 20.99 8.57 21.37 11.5 12.1 5.36 14.29 3.06 21.37
qmin 0.31 4.12 27.41 6.48 27.58 16.92 5.81 15.18 0.31 27.58

the fibers and electrophysiology add to these results.
Finally, the choice of the calibrated parameters is not
unique and influences the results.

Fig. 14: Relative errors (in %) on the observations before and
after calibration.

3.3.3 Evaluation of Registration Error Influence

We tried to evaluate the error in the registration tech-
nique to understand whether the model could actu-
ally match the data better than shown on Fig. 11. For
this purpose, we created synthetic images (as done
by (Prakosa et al, 2011)) from a real sequence, us-
ing the deformed meshes resulting from a simula-
tion. This technique creates new cardiac cine-MRI se-
quences combining the deformation field computed by
the simulation and the deformation field computed by
the image registration of the real sequence. We then
registered this new sequence with the iLogDemons al-
gorithm, and extracted the volume curves from the re-
sulting registered meshes. We expect to have similar
curves since images are created from the same elec-
tromechanical model of the heart. The comparison be-
tween the initial simulated volume curve and the one
computed after registration is given in Fig. 15. The rel-
ative error is about 25% for both slopes and 3% for
Vmin. These errors indicate that the model may not be
able to better match these registered volume curves.
This can be due to registration errors as well as mod-
elling errors.
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Fig. 15: Comparison between the volume variation computed
from the simulation and the one estimated from registered im-
ages (in mL).

4 Discussion and Conclusion

In this paper we proposed an innovative calibration
method of an electromechanical cardiac model. The
complete model depends on 16 parameters that act on
the active, passive and constraint components. The cal-
ibration based on Unscented Transform allowed us to
give a fast initialization of 4 or 5 parameters, leav-
ing the other 12 or 11 fixed to standard values. The
choice of these 4 (or 5) parameters was made based on
a sensitivity analysis on the volume variation and were
confirmed by Singular-Value Decomposition analysis.
Since the calibration requires only to run several sim-
ulations in parallel to estimate these parameters fol-
lowed by one additional simulated cycle to verify the
results, it can easily be used as a preprocessing step
before the application of more sophisticated personal-
ization algorithms.

The creation of a synthetic image sequence allowed
us to measure the intrinsic error in estimating volume

curves over time. Since this error is of the same or-
der of magnitude as the one after model calibration on
healthy cases, we can conclude that the calibration en-
ables the best possible match of the volume curve given
the registration and the modelling errors, on 7 healthy
volunteers. Furthermore, the calibration provided con-
sistent and plausible range of values for the parameters.

This work could be extended in several ways. For
instance, fibre orientations which is important to model
electrical and mechanical behaviours may be based on
a registered human atlas built from DT-MRI (Lombaert
et al, 2011) or from in-vivo patient specific imaging
(Toussaint et al, 2010). Furthermore, the parameters of
the registration algorithm could be optimized to bet-
ter track the cardiac motion. An alternative for image
registration is to use a physically based model (Wong
et al, 2010) which may include more a priori knowl-
edge about the cardiac motion.

Another extension of this work would be to include
more observations such as global indices of the cardiac
motion or endocardial pressures (if available). Indeed,
volume curves provide basic information about the car-
diac cycle and ejection fraction. A larger set of param-
eters could be estimated by adding global or even re-
gional motion indices such as radial, longitudinal or
circumferential displacements or strains in the ventri-
cles or AHA segments.

To conclude, we proposed an efficient calibration
method to quickly assess the main parameters of a
cardiac model. The authors believe that this calibration
can replace manual personalization based on trial
and error, before the application of advanced auto-
matic personalization algorithms from medical images.
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A Active Force Calculation

To solve the coupled equations (2), we reformulate into

Ẋ =
(
−r ėc
0 −r

)
X+n0 | u |+

(
σ0
k0

)
where X = (τc,kc), r = (| u | +α | ėc |). This is solved using
Euler Implicit Solver for instance, and it gives at each time step
the couple (τn

c ,kn
c ).

The contraction stress at each time step σn
c = Es(en

1D− en
c)

is given easily once we have en
c . Since σc = Es(e1D− ec) = τc +
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µ ėc, we obtain a recursive equation for en
c :

en+1
c =

∆ tEs

µ
en

1D +
(

1− ∆ tEs

µ

)
en

c −
∆ t
µ

τ
n
c

where τn
c is given by solving the coupled equations. Therefore

we determine the applied force and stiffness using the Total La-
grangian approach with Finite Elements Methods (Delingette
and Ayache, 2004). The contraction force Fi on each deformed
vertex Qi and the stiffness matrix Ki j on each edge are given by:

Fi =−1
4

∇φσc(f⊗ f)Di

and

Ki j =
σc

4
Id(DT

j f⊗ fDi)+
∂σc

∂Q j
DT

i f⊗ f∇φ
T

where f is the fibre direction and Di is a shape vector at initial
vertex Pi.

We need to differentiate the contraction stress with respect
to the nodal point. We start with the definition of the contraction
stress σc = Es(e1D− ec) and e1D = fT Ef. The Green-Lagrange
deformation tensor can be written

E =−1
4 ∑

k
∑
l 6=k

(‖Qk−Ql‖2−‖Pk−Pl‖2)(Dk⊗Dl +Dl ⊗Dk)

e1D =−1
2 ∑

l 6=k
‖Qk−Ql‖2(fT DkDT

l f)+‖Pk−Pl‖2(fT DkDT
l f)

∂e1D

∂Q j
=−∑

i6= j
(Q j−Qi)DT

i fDT
j f

Using the definitions of the deformation gradient ∇φ =
∑i QiDT

i and the fact that ∑
4
i=1 Di = 0, we rewrite the last equa-

tion into:

∂e1D

∂Q j
= Q j(−∑

i6= j
DT

i )fDT
j f+(∑

i6= j
QiDT

i )fDT
j f = ∇φ fDT

j f

Therefore
∂σc

∂Q j
= Es∇φ fDT

j f

B Heamodynamic Model

B.1 Relation between nodal displacements and
ventricular volumes

We compute the volume of the ventricle (open surface mesh Z)
as a sum of the tetrahedra that are formed by each triangle on
the surface and a unique point, for instance the point O. Let Qk
be the deformed points on the surface with each unit volume of
tetrahedron Ti given by Vi = 1

6 |QTi(0),QTi(1),QTi(2)|, where |., ., .|
is the mix product. If the surface is closed, the total volume is the
sum of the unit volumes over all the triangles.

For an open surface mesh, with N holes, we virtually close
each of the holes n by a point Cn - the barycenter of the Nn points
on the border named QHn(k):

Cn =
1

Nn

Nn−1

∑
k=0

QHn(k)

Therefore the total volume of the ventricle can be written as:

Vtotal = ∑
TiεZ

Vi +∑
n

Nn−1

∑
k=0

1
6
|QHn(k),QHn(k+1),Cn| (9)

B.2 Derivatives of the volume

We obtain the vector GL (respectively GR), by differentiating the
volume with respect to the nodal positions on the surface.

– Inside Points:

Let’s define the area vector of a triangle Ti:

A(Ti) =
QTi(0)×QTi(1) +QTi(1)×QTi(2) +QTi(2)×QTi(0)

2

then we need to sum over all the triangles that surround the point
Qi.

∂V
∂Qi

=
1
3 ∑

Tj⊃Qi

A(Tj)

– Border Points:

To this derivative, the contribution of 1
6 |QH j(k),QH j(k+1),C j| has

to be added. It gives therefore

∂V
∂QHn(i)

=
1
3 ∑

Tj⊃QHn(i)

A(Tj)

+
QHn(i)×QHn(i+1)

6
+

QHn(i+1)×Cn

6

+
Cn×QHn(i−1)

6
+

QHn(i−1)×QHn(i)

6

(10)

– Second Derivative for inside points:

We want to differentiate ∂V
∂Qi

with respect to ∂Qk. When we
sum the area vectors over all the triangles that surround ∂Qi,
many terms are cancelled, and many do not include ∂Qk. For the
derivative, only two terms remain:

∂ 2V
∂Qk∂Qi

=
1
6

∂

∂Qk
(Qk×Qv +Qu×Qk)

where (Qk,Qv,Qi) and (Qu,Qk,Qi) are two oriented triangles.
The second derivative is then:

∂ 2V
∂Qk∂Qi

=
1
6

 0 −b3 b2
b2 0 −b1
−b2 b1 0

 (11)

where b = (b1,b2,b3) = Qu−Qv.

– Second Derivative for border points:

When Qi and Qk are on the border, for instance Qi = QHn(i) and
Qk = QHn(i+1), we have to add a vector b̃ = QHn(i)−Cn

to b.

B.3 Constraint Formulation

In order to model the constraint explained by equation (4), we
need to rewrite it in the form of equation (5) for each ventricle.
Knowing that q = − ∆V

∆ t and ∆V
∆ t = GT (∆st+∆ t + st). For each

phase:

– Filling Phase:

q = Kat(Pv−Pat) gives{
D = Kat

FD = Kat Pt+∆ t
at −GT st

– Isovolumetric Phases:
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q = Kiso(Pv−Pat) gives{
D = Kiso

FD = KisoPt+∆ t
at −GT st

For those two phases we need to know Pt+∆ t
at which is modelled

as two sigmoids following Billet’s description (Billet, 2010).

– Ejection Phase:

q = Kar(Pv−Par)+ Kiso(Par −Pat). We need to estimate Pt+∆ t
ar .

To this end, we can use several Windkessel models (two, three,
or four elements). The method to derive the constraint equation
is the same for each of them, hence we only describe here the
technique for the four-element Windkessel model which is the
most accurate but complex one. The four-element Windkessel
equation relates the pressure of the aorta Par (or pulmonary vein)
to the flow and its first two derivatives:

RpCṖar +Par−Pve = (Rp +Zc)q+(RpZcC +L)q̇+LRpCq̈ (12)

with Pve the venous pressure, Rp the peripheral resistance, C the
total arterial compliance, Zc the characteristic impedance, and
L the total arterial inertance (L = 0 reduces the equation to the
three-element Windkessel). We denote τ = RpC the characteris-
tic time. We use Euler Implicit integration scheme, therefore

q̇ =
qt+∆ t −qt

∆ t
, Ṗar =

Pt+∆ t
ar −Pt

ar

∆ t

and q̈ =
1

∆ t

(
qt+∆ t −qt

∆ t
− q̇t

)
From q = Kar(Pv−Par)+Kiso(Par−Pat) we extract

Pt+∆ t
ar =

qt+∆ t −KarPt+∆ t
v +KisoPt+∆ t

at

Kiso−Kar

that we inject into equation (12). We thus obtain:

d0 =
(

τ

∆ t +1
)( 1

Kar−Kiso
+Zc

)
+Rp + L

∆ t + Lτ

∆ t2

d1 = Kar
Kar−Kiso

(
τ

∆ t +1
)

P = τ

∆ t Pt
ar +Pve + Kiso

Kar−Kiso

(
τ

∆ t +1
)

Pt+∆ t
at

−
(

τZc+L
∆ t −

Lτ

∆ t2

)
qt − Lτ

∆ t q̇t

D = d1/d0
FD = P/d0−GT st
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