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Abstract

In the context of computational anatomy, one aims at understanding and modelling the anatomy of the brain and
its variations across a population. This geometrical variability is often measured from precisely de�ned anatomical
landmarks such as sulcal lines or meshes of brain structures. This requires (1) to compare geometrical objects without
introducing too many non realistic priors and (2) to retrieve the variability of the whole brain from the variability of
the landmarks.
We propose, in this paper, to infer a statistical brain model from the consistent integration of variability of sulcal

lines. The similarity between two sets of lines is measured by a distance on currents that does not assume any type
of point correspondences and it is not sensitive to the sampling of lines. This shape similarity measure is used in a
di�eomorphic registrations which retrieves a single deformation of the whole 3D space. This di�eomorphism integrates
the variability of all lines in a as spatially consistent manner as possible.
Based on repeated pairwise registrations on a large database, we learn how the mean anatomy varies in a population

by computing statistics on di�eomorphisms. Whereas usual methods lead to descriptive measures of variability, such
as variability maps or statistical tests, our model is generative: we can simulate new observations according to the
learned probability law on deformations. In practice, this variability captured by the model is synthesized in the
principal modes of deformations. As a deformation is dense, we can also apply it to other anatomical structures de�ned
in the template space. This is illustrated the action of the principal modes of deformations to a mean cortical surface.
Eventually, our current-based di�eomorphic registration (CDR) approach is carefully compared to a pointwise line

correspondences (PLC) method. Variability measures are computed with both methods on the same dataset of sulcal
lines. The results suggest that we retrieve more variability with CDR than with PLC, especially in the direction of the
lines. Other di�erences also appear which highlight the di�erent methodological assumptions each method is based on.

Key words: computational anatomy, brain variability, sulcal lines, shape statistics, non-linear registration, currents, large
deformations, di�eomorphisms

1. Introduction

From the ever growing databases of medical im-
ages, there is considerable interest in extracting the
most relevant information to characterize normal
anatomical variability within a group of subjects as
well as between di�erent groups, to detect anatom-

ical abnormalities, to classify new images accord-
ing to their pathologies, and for understanding dis-
ease progression. However, modeling the individual
anatomy and its normal variability across a popu-
lation is di�cult as there are commonly no phys-
ical models for comparing di�erent subjects, and
anatomical shapes are complex and require large
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number of degrees of freedom to model adequately.
Moreover, anatomical landmarks such as curves or
surfaces embedded in R3 as well as deformations of
the 3D space do not belong to usual vector spaces.
De�ning statistical models is therefore di�cult and
speci�c tools have to be developed to accurately
measure anatomical variations. If anatomic varia-
tion were better understood, tools encoding these
variations could have a signi�cant impact in neuro-
science to minimize the in�uence of the anatomical
variability in functional group analysis, and in clin-
ical medical image analysis to better drive the per-
sonalization of genericmodels of the anatomy (called
also template, atlas or prototype in the literature).
Instead of analyzing the anatomical variability di-

rectly in the 3D intensity space, it is often prefer-
able to extract precisely de�ned anatomical land-
marks such as sulcal lines (Thompson et al., 1996a;
Mangin et al., 2004), cortical surface models (Fis-
chl et al., 2001; Tosun and Prince, 2005), or mod-
els of some sub-cortical structures (Hazlett et al.,
2005; Vaillant et al., 2007). The data to be analyzed
are thus curves, surfaces or volumes represented by
structured or unstructured point sets. The �rst at-
tempts to compare such shapes was based on de�n-
ing correspondences between points (Zhang, 1994;
Chui and Rangarajan, 2003). However, the sampling
of two di�erent geometric subjects can be so dif-
ferent that such a correspondence assumption in-
troduces a bias that often hides the �real� under-
lying geometrical variability. To overcome this dif-
�culty, some authors proposed to measure varia-
tions of some features extracted a priori such as
length, area, volume, complexity, principal modes
of variation of the cloud of sampled points, etc. See
Paus et al. (2001) for instance. Although these ap-
proaches, that derive scalar measures from structure
models, are relatively easy to set up from a computa-
tional point of view, they fail to capture �ne geomet-
rical variations between subjects like for instance a
twisting of the extremity of a sulcus, which cannot
be readily described by a set of a priori selected
features. Also, data analysis often proceed by com-
puting dense displacement �elds that encode vari-
ations in shape and volume among individuals, of-
ten based on deformable registration of shapes. The
deformation that maps one shape onto another has
been proved to be useful for measuring signi�cant
anatomical variability among di�erent subjects (Fil-
lard et al., 2007a; Vaillant et al., 2007; Ashburner
and al, 1998; Durrleman et al., 2007). Due to the
presence of noise and of sampling e�ects, it may be

advantageous to allow a trade o� between the reg-
ularity of the deformation and the precision of the
matching, instead of exact matching. This raises the
need to develop a consistent deformation framework
and a shape similarity measure that does not rely
on point correspondences nor on features selected a

priori.
In this perspective, one interesting framework

consists of modeling geometrical primitives as cur-
rents (Vaillant and Glaunès, 2005; Vaillant et al.,
2007; Durrleman et al., 2007). The idea is to char-
acterize shapes via vector �elds, which are used to
probe them. For instance, a surface is character-
ized by the �ux of any vector �eld through it, a
line by the path integral of any vector �eld along
it. Conversely, associating a �ux to any vector �eld
speci�es an object which is more general than a sur-
face or a curve and which is called a current. This
way of embedding shapes in a Hilbert space allows
one to de�ne algebraic operations such as addition
or averaging, and to measure distance between geo-
metrical primitives via an inner product that does
not assume a speci�c type of point correspondence.
Discrete and continuous objects are handled in the
same setting, o�ering a way to measure the sam-
pling quality and to guarantee numerical stability.
This framework has been used to compute and
visualize mean lines and surfaces, and to perform
principal component analysis on datasets of such
primitives, suggesting the e�ciency and generality
of the approach (Durrleman et al., 2008).
However this similarity measure is too weak to

capture the broad range of possible di�erences be-
tween shapes: it is bene�cial to couple it with a
deformation framework. The large deformation dif-
feomorphic metric mapping (LDDMM) framework
(Trouvé, 1998; Grenander and Miller, 1998; Dupuis
et al., 1998; Miller et al., 2002, 2006) is ideal for
this task as shown in Vaillant and Glaunès (2005)
and Glaunès and Joshi (2006) although it might be
possible to adapt other di�eomorphism registrations
method proposed for images (e.g. Ashburner and
Friston (2003); Avants et al. (2006)). The deforma-
tion that matches a pair of shapes is sought within
a group of regular di�eomorphisms in order to op-
timize a trade-o� between the regularity of the de-
formation and matching accuracy, as measured by
the dissimilarity measure on currents (Vaillant and
Glaunès, 2005; Durrleman et al., 2007). As a result,
the registration decomposes the di�erences between
two shapes into (1) a deformation that captures a
�global� misalignment and (2) a residual term (rep-
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resenting the di�erence between the registered shape
and the target shape) that contains possible non-
di�eomorphic variations as well as physical and nu-
merical noise. In the approach followed here, we per-
form our statistical analysis of shape on the defor-
mation term only. Our results on a dataset of sul-
cal lines show that this method can be used to de-
tect and characterize anatomical variability within
a group of subjects.
Moreover, this di�eomorphic framework enables

to register multiple objects in a spatially consistent
way. Indeed, a dataset of anatomical landmarks of-
ten consists of a set of several shapes (e.g. a set of sul-
cal lines or set of meshes representing di�erent sub-
cortical structures for instance (Mangin et al., 2004;
Duchesnay et al., 2007; Gorczowski et al., 2007). If
one set of manifolds, such as a distributed set of sul-
cal landmark curves, is embedded in another man-
ifold which also varies, such as the cortical surface,
one often aims to measure the variability not only
of the embedded landmarks but also of the whole
underlying brain surface or 3D brain volume. The
framework based on currents enables precisely to de-
�ne a distance between multiple objects sets even if
they are not labeled or if all subjects have not the
same number of objects. (In these cases the distance
will just be less precise than for labeled objects).
The di�eomorphic framework in turn �nds a single
deformation of the underlying image domain that
integrates the variability of all objects in as consis-
tent manner as possible. By contrast, several meth-
ods such as in Fillard et al. (2007a) analyze the vari-
ability of each shape individually; there is a need
for an extrinsic extrapolation scheme to retrieve a
variability in the space between the objects. The
approach proposed in Hellier and Barillot (2003);
Cachier et al. (2001) makes a model of deforma-
tion that has constraints on sulci, cortex, and whole
brain, all within a single optimization framework.
Earlier work like Thompson and Toga (1996) just
used the matching of low order manifolds �rst, and
used these as hard constraints or boundary condi-
tions on subsequent mappings one dimension higher.
Altough there are many other registration frame-
works in the literature, we focus in this paper on the
current-based di�eomorphic registrations (CDR) to
build brain variability models.
This paper aims to present and discuss such a

framework, based on di�eomorphic registration of
currents, in the case of curves. We apply the method
on a dataset of labeled sulcal lines to infer the vari-
ability of the brain surface within a population. In

Section 2, we explain the framework for registration
of sulcal lines. How this di�ers from the pointwise
line correspondence (PLC) approach, proposed in
Fillard et al. (2007a), is discussed in depth from a
methodological point of view. In Section 3, we per-
form a statistical analysis of the underlying brain
surface based on these registrations. This allows us
tomeasure and visualize how the brain surface varies
in a population. A comparison with the results ob-
tained in Fillard et al. (2007a) on the same database
illustrates some of the di�erent methodological as-
sumptions each method is based on.

2. Registering Sets of 3D Curves

Registering a set of 3D curves L0 onto another
set of 3D curves L1 can be formulated as the task
of looking for the most regular deformation φ that
transports all curves of L0 and best matches the
curves of L1. We follow here the approach intro-
duced in Glaunès (2005): the unknown deformation
is sought in a subgroup of di�eomorphisms and its
regularity is measured based its distance to the iden-
tity (i.e. no deformation), the similarity measure is
computed by embedding the curves into a space of
currents. As it is common practice in deformable im-
age registration, we �nd the registrations by mini-
mizing a cost function that balances the regularity
of the deformation against the matching �delity.

2.1. Non-parametric Representation of Curves as

Currents

The space of currents is a vector space that may
be equipped with a norm that measures geometri-
cal similarity between curves. In this space, curves
could be discrete or continuous and may consist of
several di�erent parts. All these objects are han-
dled in the same setting and inherit many interest-
ing mathematical properties: linear operations, dis-
tance, convergence, etc. Moreover, this de�nition of
distance between curves does not make any assump-
tion about point correspondences, even implicitly.
This framework di�ers therefore from usual meth-
ods such as that in Joshi and Miller (2000) where
landmark matchings are performed or those in Chui
andRangarajan (2003); Granger and Pennec (2002);
Cachier et al. (2001) where curves are considered as
unstructured point sets and di�erent kind of �fuzzy�
correspondences are assumed. We recall here how to
build a space of currents and how to compute explic-
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itly a similarity measure on curves. For more details
on the theory we refer the reader to Vaillant and
Glaunès (2005); Glaunès (2005); Durrleman et al.
(2008) and references therein.
In the framework of currents, curves are seen via

the way they integrate vector �elds. Any continuous
curves or any �nite set of polygonal lines (denoted
here generally L) can be characterized by the path
integral of any vector �eld ω along it:

∀ω ∈ W, L : ω −→
∫

L

< ω(l), τ(l) >R3 dl (1)

where τ(l) is the unit tangent vector (de�ned almost
everywhere) of L at point l and W is a test space
of smooth vector �elds (See Fig.1). More generally,
a current L is de�ned as a continuous linear map-
ping from the test space W to R. As a set of map-
pings, the space of current (denotedW ∗) is a vector
space: (L1+L2)(ω) = L1(ω)+L2(ω) and (λL)(ω) =
λ(L(ω)). For curves, this means that the path inte-
gral along two curves is the sum of the path integral
along each curve: the addition corresponds there-
fore to the union of the two curves. Scaling a curve
means scaling the path integral along the curve.
Suppose now, that we can provide the test

space W with a norm (‖.‖W ) that measures the
regularity of the vector �elds in W . We can de-
�ne then a norm of a current L as the supre-
mum path integral of any regular vector �eld (i.e.

‖ω‖W ≤ 1) along L: ‖L‖2
W∗ = Sup‖ω‖W≤1 |L(ω)|.

The distance between two curves (‖L− L′‖2
W∗ =

sup‖ω‖W≤1 |L(ω)− L′(ω)|) is therefore obtained for
the vector �eld that best separate the two lines, in
the sense that the di�erence between the path inte-
grals along both curves is the largest possible. This
distance between curves is geometric: it does not

depend on how curves are parametrized and does not

assume any point-correspondences between curves.

For computational purposes, we suppose, from
now onward, thatW is a reproducible kernel Hilbert
space (r.k.h.s.) with kernel KW (see Aronszajn
(1950); Saitoh (1988) for details): vector �elds in W
are convolutions between any square-integrable vec-
tor �elds and the kernel. This framework is general
and includes for instance radial basis functions. In
this setting, the vector space of currents is a dense
span of the set of all delta Dirac currents δα

x , which
is de�ned by: δα

x (ω) = 〈ω(x), α〉R3 for any ω ∈ W .
A Dirac current may be seen as an oriented segment
α entirely concentrated at one point x. Although a
curve has an in�nite set of tangents, polygonal lines
may be approximated in the space of currents by a

Figure 1. Measure of dissimilarity between lines modeled as
currents: given two lines L and L′ (in red and blue) we com-
pute the di�erence between the path integral of a vector �eld
ω (here drawn in black) along both lines. The maximum dif-
ference obtained when ω varies among all possible regular
vector �elds (i.e. ‖ω‖W ≤ 1) is a measure of the geometrical
dissimilarity between the two lines. In this way, we de�ne a
distance between shapes without assuming point correspon-
dences. The more we allow the test vector �elds ω to have
high spatial frequencies, the more �nely we measure geomet-
rical di�erences. In this application, manual delineation of
the sulci is typically accurate to within a 1-2 mm Hausdor�
distance to a gold standard developed from multiple raters,
so the matching of features at a slightly coarser scale than
this is empirically reasonable.

�nite sum
∑

k δτk
ck

where ck is the center of the kth

segment and τk the tangent of the line at ck.
In this setting, it has been shown (Vaillant and

Glaunès, 2005; Glaunès, 2005) that the norm on
W ∗ comes from an inner product 〈., .〉W∗ . On
basis elements, this inner product is

〈
δα
x , δβ

y

〉
W∗ =

αtKW (x, y)β. The inner product between two

polygonal lines L =
∑n

i=1 δτi
ci

and L′ =
∑m

j=1 δ
τ ′

j

c′
j

(where n is not necessarily equal to m) is therefore
given by:

〈L,L′〉W∗ =
n∑

i=1

m∑
j=1

(τi)tKW (ci, c
′
j)τ

′
j (2)

This enables to compute explicitly the distance be-
tween two curves:

d2(L,L′) = ‖L′ − L‖2
W∗ = ‖L‖2

W∗+‖L′‖2
W∗−2 〈L,L′〉W∗

(3)
In our applications, we choose KW to be isotropic
and Gaussian: for all points x, y ∈ R3, KW (x, y) =
exp(−‖x− y‖2

/λ2
W )Id.

We observe that the distance between two curves
(Eq.3), induced by the Hilbertian inner product
Eq.2, measures geometrical di�erences both in pose
and shape (See Fig.1). If the points on one curve are
at a distance much larger than λW from the points
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on the other curve, then curves are considered as or-
thogonal (〈L,L′〉W∗ ∼ 0) and their distance is large
whatever their respective shapes are. By contrast,
if two parts of the curves are located within an area
of size λW , local alignment of the tangent vectors
is taken into account by the inner product within
the sums in Eq.2, thus measuring shape variations.
Furthermore within this area, variations at a scale
much smaller than λW are not taken into account
thanks to the smoothing e�ect of the kernel. Such
variations are considered as noise. Finally, this dis-
tance captures �rst misalignment and then shape
dissimilarities until a noise level quanti�ed by λW is
reached. Used as a data �delity term, this distance
integrates a denoising process, to some extent, into
the modeling, preventing systematically over�tted
registrations.

2.2. Di�eomorphic Registration

We use here the large deformation framework
founded in the paradigm of Grenander's group
action approach for modeling objects (see Grenan-
der (1994); Miller et al. (2006); Glaunès and Joshi
(2006); Marsland and Twining (2004)). This frame-
work enables to �nd a globally consistent deforma-
tion of the underlying space that best matches the
sets of lines. This di�ers from Fillard et al. (2007a)
where each line is registered individually without
assuming spatial consistency of the displacement
�eld between lines.
We build our deformations as di�eomorphisms φv

1,
solutions at time t = 1 of the �ow equation:

∂φt(x)
∂t

= vt(φt(x)) (4)

with initial condition φ0 = idR3 (i.e., φ0(x) = x:
no deformation). The time-varying vector �eld v =
(vt)t∈[0,1] is the speed �eld in the Lagrangian coordi-
nates. We suppose, from now onwards, that at every
time t, vt belongs to a r.k.h.s. V with kernel KV . We
denote ‖.‖V the norm on this space that measure
the spatial regularity of the vector �eld. To measure
the regularity of the �nal di�eomorphism, we inte-
grate the regularity of this speed �eld along time
(Grenander and Miller, 1998; Miller et al., 2002):

v ∈ L2([0, 1], V ): ‖v‖2
L2([0,1],V ) =

∫ 1

0
‖vt‖2

V dt.
Our registration problem is to map a set of n la-

beled sulcal lines L0 = ∪n
i=1L0,i to another labeled

set L1 = ∪n
i=1L1,i. We must �nd therefore a time-

varying vector �elds (vt)t∈[0,1] that minimizes the
following cost function J :

J (v) = γ ‖v‖2
L2([0,1],V ) +

n∑
i=1

‖φv
1.L0,i − L1,i‖2

W∗

(5)
where γ is a trade-o� between the regularity of the
deformation and the �delity to data.

φ.L represents the geometrical transportation of
the curve L by the deformation φ. This formulation
is compatible with our framework based on currents.
The path integral of ω along a deformed curve φ(L)
equals the path integral along L of the pulled-back
vector �eld: φ ? ω(x) = (dxφ)tω(φ(x)). This is a
change of variables formula within Eq.1, from which
we deduce a general action of di�eomorphism on any
currents: φ.L(ω) = L(φ ? ω). In particular, on basis

element, this gives: φ.δα
x = δ

dxφ(α)
φ(x) : an in�nitesimal

segment α at point x is transported into φ(x) and
deformed by the Jacobian matrix: dxφ. Combined
with Eq.2 and 3, this makes computable the �delity
to data term in Eq.5, once a deformation is given.
To minimize the cost function in Eq.5, we take

advantage of a dimensionality reduction property.
Although the vector �elds vt are dense, it has been
shown (for instance in Miller et al. (2002); Vaillant
and Glaunès (2005)) that, in case of discrete curves,

L0 =
∑N

i=1 δτi
ci
, the minimum of Eq.5 is achieved for

a vector �eld vt which interpolates the trajectories
of the points of L0:

∀x ∈ R3, vt(x) =
N∑

i=1

KV (x, ci(t))αi(t) (6)

where the momenta (αi(t)) is a set of N vectors (in
3D) for each time t and ci(t) = φt(ci) are the tra-
jectories of the points of L0. Based on Eq.4 evalu-
ated at x = ci, these trajectories depend only on
the momenta αi(t). This means that the minimiz-
ing dense vector �eld vt is entirely determined by a
set of 3 ∗ N parameters for each time t. Once the
time interval [0, 1] is discretized, the cost function
Eq.5 depends on a �nite set a parameters and may
be therefore minimized by a standard gradient de-
scent scheme. All computational details of this gra-
dient descent can be found in Vaillant and Glaunès
(2005); Glaunès (2005).
For KV we choose an isotropic and Gaussian ker-

nel with standard deviation λV . This parameter con-
trols the regularity of the speed vector �eld vt at
each time t and hence the regularity of the �nal dif-
feomorphism. λV de�nes roughly the scale of the dif-
feomorphism's spatial consistency (called also rigid-
ity). This is then the scale at which the underlying
deformation tries to integrate the geometrical infor-
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mation. If λV is much smaller than the distance be-
tween lines, the �nal deformation can vary dramat-
ically in space, each piece of lines are then matched
almost independently and the deformation is negli-
gible outside the data. On the contrary, the greater
λV , the more consistently the deformation tries to
explain the variation of each lines, jointly with less
and less precise matching.

2.3. Registration Results

As part of a collaborative project involving the
Asclepios-LONI associated team Brain-Atlas, we
used a dataset consisting of cortical sulcal land-
marks (72 per brain) delineated in a large number
of subjects scanned with 3D MRI (age: 51.8 +/- 6.2
years). In order to compare our measures of variabil-
ity with the ones of Fillard et al. (2007a), we used
the same set of 72 mean lines that the authors of Fil-
lard et al. (2007a) computed from the same dataset.
For 34 subjects in the database, we register this set
of mean lines onto every individual subject's set of
sulcal lines. The registrations were computed by J.
Glaunès' algorithm detailed in Glaunès (2005). This
algorithm depends on the 3 parameters: λV , λW and
γ. To understand the impact of these parameters
and the speci�city of this current-based di�eomor-
phic registrations (CDR) with respect to a pointwise
line correspondence (PLC) method (Fillard et al.,
2007a), we ran the registration algorithm for several
di�erent sets of parameters.
Figure 3-a,b and c show for di�erent parameter

values the registrations in the superior temporal
area of the cortex in the right hemisphere (view
from inside), the brain faces to the left of this �g-
ure, and region surrounding the Sylvian �ssure, on
the lateral surface of the right hemisphere, is mag-
ni�ed. From 3-a to 3-b, λW is doubled: greater vari-
ations are considered as noise and the matching is
less precise (area 1). However, when λW is too small,
lines with few sampled points are not matched cor-
rectly (area 2). Small curves have small weight in
the data �delity term and matching them is not
worth the cost of the deformation: the algorithm is
locally in a minimum. Greater λW makes distance
loss larger due to the curve's motion to its target.
The local minimum issue is avoided. In both cases (a
and b), the deformation kernel's size is very small:
λV = 5mm whereas the diameter of the brain is
about 120mm. The speed vector �eld is highly ir-
regular and each curve is matched almost indepen-

Figure 2. Registration of the mean lines set (in blue) towards
one subject's lines set (in red). A unique deformation trans-
ports all the mean blue lines to the registered green lines. The
spatial consistency constraint as well as the smoothing e�ect
of the norm of currents prevents over�tted registrations from
occurring. The residuals (i.e., the di�erence between the reg-
istered green lines and target's red lines) contains physical
and numerical noise as well as possible non-di�eomorphic
variations. They are considered here as noise: the statistics
on brain shape will rely only on the di�eomorphism. A movie
of this deformation can be seen at �rst author webpage:
www-sop.inria.fr/asclepios/personnel/Stanley.Durrleman.

dently. This is particularly obvious in area 3, which
is close to the supramarginal and angular gyri of
the temporo-parietal cortex, where the speed vector
�eld varies dramatically between two close points
that belong to two di�erent curves. There is almost
no deformation between the curves. By contrast, in
�gure 3-c, λV = 25mm and the deformation tends to
explain the sulcal lines variability with a consistent
deformation of the underlying space. This makes the
speed vector �eldmore regular, as in area 3.Whereas
λW is the same as in �gure 3-a, small curves are now
matched since they are �pushed� by the large curves
in the surroundings. To match the larger curves, the
space must deform consistently in this area with the
e�ect of moving small curves to their target. This
global constraint also leads to larger residual match-
ing errors than in �gure 3-a (area 1). Such residual
errors contain both geometrical noise on lines (quan-
ti�ed by λW ) and some variability that cannot be
explained consistently with other curves in a neigh-
borhood of size λV , which is regarded as noise in the
model. Besides λV and λW , γ re�nes the compro-
mise between the regularity of the deformation and
the precision of the matching.
Figure 3-d shows, in the same anatomical region,

how a pointwise line correspondence method (PLC)
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a-λV =5mm,λW =5mm,γ=0.01 b-λV =5mm,λW =10mm,γ=0.01

c-λV =25mm,λW =5mm,γ=0.01 d-PLC method

Figure 3. Registration of the same subject for three di�erent sets of parameters (a,b,c) and with a pointwise line correspondences
approach (d). In these �gures, the superior temporal area of the cortex is magni�ed (arrow 1 points the extremity of the
Sylvian Fissure). The parameters in�uence the precision of the matching (like in area 1), the regularity of the deformation
�eld (area 3) and the way the deformation integrates geometrical information (area 2).

set up in Fillard et al. (2007a) handles the same data.
Lines are registered individually and point corre-
spondences are assumed between source and target
lines. Extremal points are supposed to be matched.
In between points are matched via a closest neighbor
procedure after B-spline smoothing and resampling.
As no correlations between curves are assumed and
no correspondence �eld computed outside the data,
this matching can be seen as an approximation of our
registrations when λV tends to zero. Since the cor-
respondences between points do not take noise into

account, it is also the limit as λW tends to zero but
avoiding the local minimum issue. The di�erent way
that PLC handles lines matching have important
consequences. For instance, the tangential variation
of two curves is mainly captured at the extremities of
the curves, and minimized elsewhere. With the cur-
rent approach, these variations are captured more
geometrically all along the curves. Moreover, the
PLC approach does not take noise into account (in
the sense that noisy point correspondence �eld com-
puted from the manual traces is regarded as true),
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and does not model any deformation of the space
between the curves. As we will see in the next sec-
tion, PLC approach needs afterwards to handle two
additional processing, denoising and extrapolation
of the variability measures, to compute brain shape
statistics. This method consists therefore of 3 dis-
tinct processing steps: matching, denoising, extrap-
olation, each with its own assumptions and parame-
ters. By contrast, the approach proposed here based
on currents' di�eomorphic registrations (CDR) inte-
grates denoising, matching and extrapolation within
a single consistent framework. Matching based on
currents avoids the need to de�ne a principle for en-
forcing speci�c point correspondences. Denoising is
performed jointly with the matching while minimiz-
ing the cost function. Extrapolation is performed
on the basis of a deformation of the underlying bio-
logical material. The whole framework is explicitly
controlled by 3 parameters λV , λW and γ that ef-
fect a compromise between the di�erent processing
steps. This method, however, discounts variability
that is not compatible with the modeling. Residual
matching errors may hide non-di�eomorphic varia-
tions between subjects although one would like to
take them into account. Setting the 3 parameters
is di�cult since they are not independent and de-
termine jointly the �nal residual matching errors.
After extensive experiments, we choose the typical
coherence scale of di�eomorphisms λV = 25mm,
the typical noise scale on lines λW = 5mm and the
tradeo� γ = 0.01 by visually inspecting the results.
Changing these parameters would smoothly a�ect
the typical correlation size of the following variabil-
ity maps. These values highlight the speci�city of
our framework, that will explain, in turn, the di�er-
ent variability maps retrieved by our CDR method
and the PLC approach on the same dataset as in
Fillard et al. (2007a).

3. Statistics on Deformations

3.1. Tangent-space Representation of

Di�eomorphisms

To compute statistics on deformations, we take
advantage of an additional property of the minimiz-
ing di�eomorphisms. It has been shown (in Miller
et al. (2006) for instance) that the di�eomorphism
retrieved by the minimization of Eq.5 is geodesic:
among all time-varying vector-�elds that enables to
go from Id to φ1, the minimizer of Eq5 has the small-

est norm in L2([0, 1], V ). As a consequence, the mo-
menta (αi(t))i solve the Euler-Lagrange equations
(Miller et al., 2002, 2006): they are entirely deter-
mined by their initial values: αi(0). This is the usual
tangent-space representation as highlighted in Vail-
lant et al. (2004) or in Pennec et al. (2006) for �nite
dimensional manifolds. This representation enables
to generate randomly deformations of L0: given any
set ofN vectors α0

i , we can solve the Euler-Lagrange
equations (partial di�erential equations) to give the
momenta at every time: αi(t). We deduce then from
Eq.6 evaluated at every x = ci, the speed of the
trajectories of the points ci of L0: vt(ci). Integrat-
ing the �ow equation Eq.4 enables then to compute
the whole trajectories φt(ci). The generated defor-
mation does not act only on the line L0 but it is
a di�eomorphism of the whole 3D space. Based on
the interpolation property Eq.6, we can compute the
speed (and then the trajectory by Eq.4) of any point
x of the space, thus computing the entire di�eomor-
phism. The purpose of our forthcoming statistical
estimations is to learn a law on the momenta α0

i ,
so that di�eomorphisms simulated according to this
law model the variability within the studied popu-
lation.
From the previous 34 registrations of the mean

lines to each subject's lines, we store 34 sets of initial
momenta: (αs

i ) for i = 1 . . . N and s = 1 . . . 34where
N is the total number of points ci within the set of
mean lines: L0 =

∑N
i=1 δτi

ci
. We de�ne an inner prod-

uct (resp. a norm) on this space of momenta as the
inner product (resp. norm) of its associated dense

vector �eld v0(x) =
∑N

i=1 KV (x, ci)αi(0) based on
Eq.6. Since V is a r.k.h.s. with kernel KV , the inner
product between two sets of 3N momenta (from the
registration of two di�erent subjects) (αp

i )i and (αq
i )i

is equals to
∑N

i,j=1(α
p
i )

tKV (ci, cj)α
q
j . In the sequel,

we denote this inner product between two vectors in
R3N : 〈αp, αq〉V ∗ . Our statistics on di�eomorphisms
are then reduced to statistics in R3N provided by
this inner product.

3.2. Mean of Deformations

Since the mean lines we used as a template
were obtained in Fillard et al. (2007a), they are
not consistent with our registration framework.
The deformations are not centered around the
identity (i.e. no deformation), so the vectors in
R3N do not have zero-mean. To measure the
induced bias, we compute the mean of the ini-
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tial momenta at each sample: ᾱi = 1
34

∑34
s=1 αs

i .

The norm of this bias is given by ‖ᾱ‖2
V ∗ =∑N

i,j=1 ᾱiK
V (ci, cj)ᾱj . Numerically we �nd in

our experiments: ‖ᾱ‖V ∗ /
√

1
34

∑34
s=1 ‖αs − ᾱ‖2

V ∗ =
0.39. This means that the bias is less than 0.4 times
the standard deviation, far below the usual 3σ
threshold to decide a statistical signi�cance. 1

We now substract the mean �eld to each subject's
�eld so that the analyzed data are centered for the
following computations of second order statistics.

3.3. A Gaussian Model on Deformations

To compute the covariance structure of the set of
deformations, we perform a Principal Component
Analysis (PCA) on the set of vectors αs ∈ R3N for
each subject s. For this purpose, we build the 34×34
symmetric matrix whose coe�cients are 〈αp, αq〉V ∗ .
If V 1 ∈ R34 is the �rst eigenvector of this matrix,
the �rst mode of initial momenta is given by: mi =∑34

s=1 V 1
s αs

i (the normalization factor has been set

to 1 so that ‖m‖2
V ∗ = λ1, i.e. the eigenvalue corre-

sponding to V 1). Given this �rst mode of initial mo-
menta m, we follow the procedure explained in sec-
tion 3.1, to generate the di�eomorphism determined
by m. We call this deformation, the �rst mode of de-
formation. It illustrates, to the �rst order, how the
mean anatomy varies within the population. Since
the di�eomorphism is dense, we can apply it not only
on the mean lines points but also on a mean corti-
cal surface to which the mean lines are close (Fig.
4-middle). This deformation shows the variability
between 0 and σ (Fig. 4-right). Repeating the pro-
cedure for −α give the �rst mode of deformation be-
tween 0 and −σ (Fig. 4-left). Complete movie of the
�rst deformation mode is available at �rst author's
webpage 2 . This illustrates the generative property
of the modelling: the lines and surfaces build by this
procedure do not belong to the original database.
These results show that we learn here a complete

statistical model of the whole brain surface defor-
mation constrained by the sulcal lines. This di�ers
from other methods that measure only the variabil-

1 Performing a real statistical test would imply the estima-
tion of the number of degrees of freedom (since the initial
momenta are not independent) as well as the curvature of
the space (Bhattacharya and Patrangenaru, 2003; Oller and
Corcuera, 1995; Pennec, 1999). This is particularly di�cult
due to the in�nite dimension of the space.
2 www-sop.inria.fr/asclepios/personnel/Stanley.Durrleman/

ity of the sulcal lines. This is possible due to in-
tegrative power of the proposed approach: the dif-
feomorphisms integrate the information of all sul-
cal constraints to �nd the most acceptable defor-
mation of the brain volume. As for the modes of
deformation, this enables to generate new observa-
tions (new brain surfaces) according to the learned
probability law on deformations. This determine at
least visually how these new observations compare
with the original data and therefore understand the
variability that the model captured. For this rea-
son, such models are called generative models: we
not only learn how to factorize an observation into a
deformation and residual noise, but also how to re-
construct it. Such models o�er an approach to clas-
sify new subjects according to characteristics such
as gender, handedness, pathologies, etc., and iden-
tify systematic di�erences in anatomy that correlate
with these features. Given a previously unseen indi-
vidual anatomy, we can decompose it into a global
deformation driven by its sulcal lines position and
a residual noise. Our statistical model tells us how
probable such a deformation may be within a given
population. Other methods try to retrieve similar
correlations but with descriptive statistics such as
statistical test for instance (Narr et al., 2007; Hamil-
ton et al., 2007; Luders et al., 2004). In the PLC
approach (Fillard et al., 2007a) no deformation is
computed outside the lines. In this framework, the
lines variability is computed from the displacement
�eld at each mean lines samples positions. Then an
extrinsic extrapolation scheme enables to retrieve a
variability measure on the whole brain surface. In
this aspect, the link between the observations and
the mean surface is broken by the succession of dis-
tinct processing: the statistical model is learned on
the lines only and the extrapolation scheme does not
directly infer a probability model on the brain sur-
face. PLC approach deduces from the observations
variability maps on the brain surface (see next sec-
tion) but the way to reconstruct surfaces from these
maps is missing. There are other methods that ex-
trapolate sulcal line deformations to a full cortical
surface, based on covariant partial di�erential equa-
tions that are invariant to the surface parametriza-
tion (Thompson et al., 2002), based on harmonic
mappings that minimize a surface-to-surface defor-
mation energy (Shi et al., 2007; Wang et al., 2005).
Some of these methods even extend the surface de-
formation to the full volume, using interpolation
(Thompson and Toga, 1996). In each of these cases,
the di�erential operator governing the mapping may
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−σ 0 +σ

Figure 4. First mode of deformation obtained by a PCA on the initial vector speed �elds. Original mean brain surface (Center)
and its deformation at −σ (Left) and +σ (Right). Colors measure the displacement of each point along the deformation process
(in mm).

be regarded, after suitable normalization, as the ex-
ponent of a Bayesian prior on the space of allowable
deformations, so in a sense there is an assumed prob-
ability law that captures the variability and spatial
covariance of the mappings in between the explicitly
de�ned landmarks, even when a partial di�erential
equation or variational method is used to interpo-
late the mappings.

3.4. Comparison of Variability Maps

To compare our CDR-based variability measures
with those computed with a PLC approach on the
same database we create variability maps similar to
those in Fillard et al. (2007a): in absence of gener-
ative models, PLC approach performs such descrip-
tive statistics. At each point x of the mean surface,
we computed the covariance matrix of the 34 initial
speed vectors v0(x), computed with Eq.6 for each set
of initial momenta. These 3×3 matrices (called also
tensors) show how locally one point is varying among
the studied population, as proposed in Thompson
et al. (1996b, 1998). We notice that this variance
contains less information than the former principal
component analysis. Here each point are considered
independently whereas the PCA takes into account
the correlations of all points' motion together. More-
over, due to the di�eomorphic approach, the initial
vector �eld is dense and no extrinsic extrapolation
scheme is required to compute the covariance matri-
ces at each point of the mean surface. By contrast,
PLC approach computes these 3 × 3 matrices from
the correspondence �elds at the mean lines samples.
These tensors are then extrapolated to the whole
brain surface using a log-Euclidean framework (Pen-
nec et al., 2006; Arsigny et al., 2006) without any

guarantee that the obtained variability measures are
compatible with an underlying deformation of the
brain surface. This gives an aggregated measure at
the population level that is not based on individ-
ual deformation mappings. The two approaches are
based on radically di�erent assumptions and the
following variability maps show how these di�erent
models in�uence the results. Di�erences stem from
the di�erent way lines are matched, noise is removed
and variability is extrapolated to the brain surface.

3.4.1. Regularity of the Variability
The �gure 5 shows the covariance matrices built

from the initial vector speed at the mean lines points
(ci) in our Current-based Di�eomorphic Registra-
tions (CDR) (Fig.5-a) and from the correspondence
�eld in the PLC approach (Fig.5-b). We notice that
the point matching method leads to irregular tensor
�elds at extremities of the lines and between lines,
whereas the global regularity constraint of the dif-
feomorphism in CDR imposes the retrieved variabil-
ity to be spatially smoother. CDR thus discounts
any variability contained in the residual matching
errors, which is considered here as noise. In PLC,
the tensor �eld is denoised separately by removing
�unreliable� large tensors at the end of lines before
the extrapolation step.

3.4.2. Variability in the Direction of the Lines

One drawback of PLC's method as underlined in
Fillard et al. (2007a) is the fact that it systemati-
cally under-estimates the variability in the direction
of the lines. This variability is indeed essentially cap-
tured at the extremities of the lines and minimized
in between. As a pragmatic solution, in the PLC ap-
proach, the large extremal tensors were removed be-
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Whole Brain Detail

a - Current-based Di�eomorphic Registrations (CDR)

Whole Brain Detail

b - Pointwise Line Correspondences (PLC)

Figure 5. At each sampling point, ellipsoids represent the square root of the empirical covariance matrix of the initial speed
vectors (left hand side) or displacement �eld (right hand side). With PLC method, extremal points are supposed to be matched:
this induces a high variability at the extremities of lines (area 1, right). This is avoided by the current approach (area 1,
left). With PLC, each line is registered individually: the variance can vary dramatically where lines cross (area 2, right). This
situation can occur where a sulcus has a branch, in �Y�-shape con�guration, and the junction may not be considered by the
PLC approach. The global regularity constraint of CDR leads to smoother results (area 2, left).

fore extrapolating the variability, and the �nal mea-
sures minimize the variability in the direction of the
lines. This aperture problem is particularly visible
on the top of the brain as shown in �gure 6. By con-
trast, the models based on currents (CDR) manage
to represent a larger part of this variability. This ef-
fect is of particular importance since this tangential
variation is one of the major variation trends within
the population as shown in Fig.4. Anatomically, any
lateral splaying of the central and pre-central sulci
(at the top of the brain) is usually a sign atrophy,
consistent with widening of the interhemispheric �s-
sure. If this variation is discounted, for example by
discarding tensors at the extreme points of sulci,
any future registration approach that uses the ten-
sor �elds to model variation will underestimate the
true anatomic variation in these areas. Otherwise,
the variability which is orthogonal to the direction
of the lines is in good agreement for the most part.

3.4.3. Distinction between correlated and

anticorrelated motions

In our CDR framework the tensors at every points
of the mean surface are computed from the initial
speed vectors at these points that are interpolations
of the initial speed vectors at the mean lines sam-
ples (see Eq.6): the interpolation is performed before
computing the variability measures. By contrast,
in the PLC method the covariance are computed
on the mean samples and then extrapolated to the
brain surface. As shown �gure 9 this di�erence the-
oretically enables CDR to distinguish between areas
where points are deviating from the mean anatomy
in a correlated or anti-correlated manner. This is a
possible explanation of the di�erent variability maps
retrieved in area 4 of �gure 8.
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Variability map Covariance matrices

a - Current-based Di�eomorphic Registrations (CDR)

Variability map Covariance matrices

b - Pointwise Line Correspondences (PLC)

Figure 6. In the variability maps, a variability in the direction of the lines is retrieved in area 3 (extremities of central sulci) by
CDR and not by PLC. The covariance matrices in this region show that the variability is mainly longitudinal. Since, in PLC
method, large tensors at the endpoints of the sulcal lines are removed before the extrapolation, the variability in the direction
of the lines is missed and the total variability is unreasonably small.

a - CDR b - PLC

Figure 7. The registration method in�uences the way tangential variability is taken into account. With point correspondences
the tangential variability is mainly captured at the endpoints of the lines and minimized in between. The approach based on
current (CDR) retrieves a tangential component of variability all along the lines.

4. Discussion and Conclusion

In this paper we present a methodological frame-
work to build global brain shape statistics by mea-
suring and consistently integrating the variability
of anatomical constraints such as sulcal lines. This

framework is based on two methodological tools:
lines are modeled as currents, and multiple object
sets are matched by a single di�eomorphic defor-
mation. By modeling lines as currents, we are able
to measure geometrical dissimilarity between curves
without assuming point correspondences between
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Left Hemisphere Right Hemisphere

a - Current-based Di�eomorphic Registrations (CDR)

Left Hemisphere Right Hemisphere

b - Pointwise Line Correspondences (PLC)

Figure 8. Area 4 is surrounded by 4 major sulci: the Sylvian �ssure (a), postcentral sulcus (b), intraparietal sulcus (c) and
superior temporal sulcus (d). In the left hemisphere the �rst two vary, with respect to the sample mean, mostly in a decorrelated
manner with respect to the last two sulci whereas their respective motions are much more correlated on the right hemisphere.
The CDR approach tries to combine the motion of all lines and therefore leads to a small variability in area 4 (the perisylvian
cortex) in the left hemisphere and to a large one in the right hemisphere. In these perisylvian areas, the variability is likely
to di�er by hemisphere as the right hemisphere perisylvian sulci are torqued forward and at a higher angle of elevation than
their counterparts in the left hemisphere (Thompson et al., 1998). With PLC method this asymmetry in the magnitude of
anatomical variability is not retrieved directly.

a - CDR b - PLC

Figure 9. Extrapolation schemes in the simple case of anti-correlated vectors. Right: In PLC framework the tensors are
computed at the sample points and then extrapolated in the middle point: the tensor in the middle is similar to the two others.
Left: In CDR approach one �rst extrapolates the vector �eld and then computes at each point the covariance matrix. Since
the vectors are anti-correlated, the �eld is close to zero at the center and the variability measured at this point is negligible.

objects. Discrete and continuous lines are handled in
the same setting, thus guaranteeing numerical sta-
bility and nice convergence properties. This distance
is also robust to noise, preventing small perturba-
tions of lines from hiding true underlying geomet-
rical di�erences. On the other hand, the di�eomor-
phic framework consistently integrates the geomet-
rical variations of a set of currents into a single de-

formation.We avoid modeling the variability of each
objects independently. On the contrary, we try to
explain the variability of the sulcal constraints by a
global deformation of the underlying image domain.
By inferring aGaussianmodel on such deformations,
we can de�ne a generative statistical model that
roots the variability measures into a rigorous model
for individuals. Principal trends of variations within
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the database can be highlighted by looking at the
deformation of a mean brain surface. Such statistical
models o�er an approach for classifying new obser-
vations according to their pathologies, gender,etc.
The synthesis of the geometrical variations into prin-
cipal modes of variations may also make it easier
to identify spatially correlated anatomical patterns
and may lead to new scienti�c �ndings.
This framework however raises several questions.

Our statistical modeling focuses on the deformation
term whereas there is obviously no ground truth re-
garding anatomical homology between brains. Even
so, a di�eomorphism can capture a large part of
the geometrical variability between shapes and sets
of shapes. It is clear that some of the �true� un-
derlying variability is not captured by the di�eo-
morphism and remains unmodeled in the residual
matching errors. These residuals contain numerical
and physical noise, possible non-di�eomorphic vari-
ations (changes in topology or folding patterns for
instance) as well as variations that are not compat-
ible with the variations of other objects in the sur-
roundings. Our statistical model focuses here on the
deformation term only and our results indicate that
it can model a great part of the variability. However,
a more complete statistical framework would take
into account the matching residuals as well. A given
observation would be therefore decomposed into a
deformation and residuals and the statistical model
would say how probable such a decomposition might
be. Building such a statistical framework is beyond
the scope of the present paper, but it must be the
topic of further investigation.
Some comment is also necessary regarding

whether the norm on currents is appropriate for the
data, as this model does not take explicitly curva-
ture into account and every points on lines play the
same role. When anatomical curves are matched
using a smooth registration �eld, Leow et al. (2005)
have previously explored the case where the curves
are modeled as level sets of an implicit functions,
and no explicit point correspondence is enforced,
allowing the mapping to relax along sulcal lines.
They investigated the matching of anatomic struc-
tures by directly constructing their implicit level
set representations and the proposed matching cost
functionals were shown to be closely related to the
Hausdor� metric. With this type of mapping, brain
structural variability was reduced by 10% in most
regions and up to 40% in other regions; greatest
reduction was observed in the temporal and frontal
lobes, while a lesser reduction was observed in ar-

eas with greatest anatomic variability. Arguably,
this results in mappings that have less distortion
while still matching homologous gyral anatomy in
detail from one subject to another. Contrary to
some other norms that explicitly take into account
surface curvature (Fischl et al., 2004), or di�er-
ential invariants within a curve (such as torsion)
derived from the Frenet frames of the curves being
matched (Guéziec and Ayache, 1994), our norm in
this paper, and the one in the paper by Leow et al.
(2005) do not consider that there are particular
points of anatomical interest along the curves that
can be identi�ed as reliable landmarks. With some
minor exceptions (such as the genu of the central
sulcus (Vaillant and Davatzikos, 1999; Goualher
et al., 2000), curvature, at least at the �ner scale
of indentations within sulci, is not a reliable guide
to functional or structural homology in the human
cortex, and using points of maximum curvature to
guide correspondence may be problematic. Our ap-
proach is somewhat more agnostic in regard to point
matching. At least for the human cortex, details
visible on MRI along the length of a sulcus would
not be reliable features for anatomical matching,
although this does not preclude their identi�cation
in future, e.g. using other modalities such as DTI.
The third issue concerns the choice of sulcal lines

as constraints to retrieve the global variability of the
brain. The question of the anatomical signi�cance
of the sulcal lines is often raised in the literature
(Toga and Thompson, 2007; Thompson and Toga,
2003). The sulci that we use here as topological con-
straints for cortical matching are essentially those
which have been chosen to have functional signi�-
cance, occur consistently in large numbers of normal
individuals, and are not so variable in their incidence
and relation to other sulci that it would preclude
their reliable identi�cation in large numbers of sub-
jects. Moreover, the sulcal lines are labeled and sup-
posed to be in a single part. However, the framework
based on currents is not limited to such databases:
lines could be discontinuous and consists of several
parts, which may indeed be more accommodating of
interrupted sulci, which are known to occur (Man-
gin et al., 2004; Duchesnay et al., 2007). Even if the
lines are not labeled, a matching based on currents
is still possible: we then consider all the lines as a
single current. Preliminary experiments on the bot-
tom lines of the sulci automatically extracted from
a few subjects Rivière et al. (2002) raises however
several problems. The geometry of the lines can be
so complex that it is not possible to de�ne a global
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orientation of the sulci. The variability is too high to
retrieve sensible correspondences in the absence of
any priors on sulcal labels. The quality of the lines
extraction (and possibly the quality of the labelling
itself) does not enable to �nd reasonable matchings
between subjects. The geometry of the sulci depends
actually on the process of extraction (whatever it is
manual or automatic). In order to better constrain
the registrations, one needs to account for more in-
formation than only the most probable lines. One
would like for instance to use probability maps of
the presence of the sulci in order to account for vari-
ability of the extraction itself. Sulcal ribbons could
also contain more reliable geometrical information.
A similar framework (but that does note require
orientation of lines) has been used in Auzias et al.
(2008) with the sulci of Rivière et al. (2002). In
the future, alternative cortical landmarks, including
perhaps the endpoints of �ber paths inferred from
DTI, may also supplant or partially replace the re-
liance on sulci as a guide to anatomical homology in
the human cortex (Cathier and Mangin, 2006).
The comparison with a pointwise line correspon-

dence (PLC) method is also di�cult to interpret.
The comparison remains here largely qualitative and
at a methodological level. Even so, it is clear that
each result is biased by the assumptions on which
the variability measures are based. Each approach
reveals new features from the database such as the
principal modes of deformation, or unexpected pat-
terns of anatomical correlation at distant points
(Fillard et al., 2007b). A fair comparison between
both methods would rely on objective statistical
performance metrics, such as their respective pre-
dictive power for instance. In future, we will design
studies that aim to predict extrinsic information
about the subjects (e.g. sex, handedness, disease
subtype, prognosis), from the information encoded
in the cortical deformations. In a sense, the best
model of anatomical variability is one that allows
most reliable inferences and predictions regarding
population. However, such a deep comparison is
beyond the scope of this paper. Our purpose was
here to present a general framework to compute
statistics of brain shapes, to highlight its strength
and limitations and �nally to show its feasibility
and relevance for addressing a range of statistical
problems in the �eld of computational anatomy.
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