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Abstract

Computing, visualizing and interpreting statistics on shapes like curves or surfaces is a real challenge with many
applications ranging from medical image analysis to computer graphics. Modeling such geometrical primitives with
currents avoids to base the comparison between primitives either on a selection of geometrical measures (like length,
area or curvature) or on the assumption of point-correspondence. This framework has been used relevantly to register
brain surfaces or to measure geometrical invariants. However, while the state-of-the-art methods e�ciently perform
pairwise registrations, new numerical schemes are required to process groupwise statistics due to an increasing
complexity when the size of the database is growing.
In this paper, we propose a Matching Pursuit Algorithm for currents, which allows us to approximate, at any

desired accuracy, the mean and modes of a population of geometrical primitives modeled as currents. This leads to
a sparse representation of the currents, which o�ers a way to visualize, and hence to interpret, such statistics. More
importantly, this tool allows us to build atlases from a population of currents, based on a rigorous statistical model.
In this model, data are seen as deformations of an unknown template perturbed by random currents. A Maximum
A Posteriori approach is used to estimate consistently the template, the deformations of this template to each data
and the residual perturbations. Statistics on both the deformations and the residual currents provide a complete
description of the geometrical variability of the structures.
Eventually, this framework is generic and can be applied to a large range of anatomical data. We show the relevance

of our approach by describing the variability of population of sulcal lines, surfaces of internal structures of the brain
and white matter �ber bundles. Complementary experiments on simulated data show the potential of the method to
give anatomical characterization of pathologies in the context of supervised learning.

Key words: currents, curves, surfaces, statistics, matching pursuit algorithm, approximation, sparse decomposition, atlas
estimation, template, registration, shape space, anatomical variability, group classi�cation, computational anatomy

1. Introduction

In many communities such as medical imaging,
computer vision or computer graphics, there is a
substantial need for shape statistics to incorporate
shape priors in image segmentation, to analyze geo-
metrical or anatomical di�erences between groups,
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to classify new observations according to some char-
acteristics, for shape recognition purpose, etc. Over
the last years, many methods have been proposed
for encoding statistical priors on curves, quite less
were proposed for surfaces, even less were proposed
for generic geometrical data like point sets, curves,
surfaces or volumes. In this paper, for the sake of
simplicity, we call simply shapes any of these geo-
metrical data.
Approaches based on level-sets use geometrical

constraints (length, area, volume, curvature, etc.)

Preprint submitted to Elsevier July 15, 2009



as priors, like in Leventon et al. (2000, 2003); Pardo
et al. (2004); Cremers (2006), for instance. How-
ever, it is di�cult to �gure out how to automati-
cally learn such priors from typical data sets. Indeed,
curves in this setting are embedded into a space
which does not allow us to de�ne easily statistics.
Models based on point distribution assume point-
correspondences between structures (Cooper et al.,
1995; Cootes et al., 2008). Such approaches can lead
to statistical models as in Twining et al. (2005) for
instance. In medical imaging, however, samples of
curves or surfaces segmented from MR images, have
never been shown to correspond from one struc-
ture to another. Assuming arbitrary point corre-
spondences may lead to important bias in the sta-
tistical estimations. Improvements of point distribu-
tion models were proposed to relax the constraint of
point correspondences, for instance Minimum De-
scription Length approach (Marsland et al., 2008),
statistical versions of the Iterative Closest Points al-
gorithm (Hufnagel et al., 2008) or fuzzy correspon-
dences approaches (Chui and Rangarajan, 2003).
These techniques, though, are still built on the idea
of point correspondences. Alternatively,Medial Axis
representations have been proposed to build statis-
tical models on surfaces (Pizer et al., 2003; Fletcher
et al., 2004). They require, nevertheless, to com-
pletely specify the topology of shapes. Like in several
of the previous references, Charpiat et al. (2005);
Mio et al. (2007); Joshi et al. (2007) propose to do
statistics on the deformations between shapes in the
perspective of Grenander's approach based on group
action for modeling objects (Grenander, 1994). Al-
though such approaches have been proved useful to
capture variations between anatomical structures,
they lead only to a partial description of the vari-
ability. Indeed, interesting anatomical features may
remain in the residual shape that has not been cap-
tured by the smooth deformations (di�erence be-
tween the registered shapes and the target shape).
Such features are typically change of topology, mat-
ter creation of deletion. A complete description of
the variability should be based therefore on both the
deformations and the residual shapes. This requires
to embed shapes into a metric space which enables
to compute easily statistics and which may be cou-
pled consistently with a deformation framework (an
action of deformations on the metric shape should
be de�ned).
In contrast to the previous modeling, the currents

de�ne a unifying framework to process any kind of
geometrical data like sets of curves, sets of surfaces

or a mix of both. This framework has the advan-
tage not to assume point correspondences between
structures, to be robust to change of connectivity
within the sets of shapes and to be weakly sensitive
to the sampling of shapes (Vaillant and Glaunès,
2005; Durrleman et al., 2008b,c). In this framework,
the comparison between shapes relies on their global
geometrical similarity and not on a set of a priori
extracted features like volume, length or curvature
for instance. Moreover, shapes are embedded into a
vector space provided with an inner-product. This
gives a mathematically well grounded framework to
compute statistics like mean and principal modes of
a population of shapes.
This framework has been successfully applied to

perform registrations between two sets of anatom-
ical structures segmented from MR images of two
di�erent subjects (Vaillant and Glaunès, 2005;
Glaunès, 2005; Vaillant et al., 2007). If a template
con�guration is given, statistics may be performed
on the registrations between this template and ev-
ery subject within a population as in Vaillant et al.
(2004); Durrleman et al. (2008c). However, the es-
timation of the template itself, consistently with its
deformation within the population, has not yet been
given a satisfactory answer. In Glaunès and Joshi
(2006), a template is estimated from a population
of currents, but in a way that does not allow us to
perform easily joint statistics on deformations and
residual currents. Such residues, however, may con-
tain also interesting anatomical features. The pur-
pose of this paper is precisely to present a unifying
framework to (1) estimate a prototype shape from
a population of shapes along with its deformation
to every subject, (2) perform statistics on the de-
formations and (3) compute mean and modes of the
residual currents. Generic statistics on deformations
via tangent-space representation have already been
proposed by Vaillant et al. (2004); Pennec (2006)
for instance. We have now to focus on the statistics
on the space of currents and the atlas estimation.
In the framework of currents, sets of curves or sur-

faces are represented by a set of unconnected ori-
ented points. Each oriented point represents the seg-
ment of a polygonal line or the normal of a mesh
cell. While this representation has been proved use-
ful to perform pairwise registrations, it raises dra-
matic computational issues for group-wise statistics.
The representation of the mean or principal modes
of a population of shapes contain as many elements
as the total number of tangents or normals in the
database. The size of this representation tends to in-
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�nity as the number of subjects within the database
increases, or as the sampling of the discrete shapes
becomes �ner. In both cases, however, the statis-
tics (mean and principal modes) converge in the
space of currents. This representation is therefore
not adapted to perform statistics on currents.
In this paper, we propose to use Matching Pur-

suit algorithms to give a more stable representation
of currents (i.e. whose size does not increase linearly
with the number of subjects). This method builds on
ideas from the approximation theory previously de-
veloped to decompose images in wavelet bases (Mal-
lat and Zhang, 1993; Pati et al., 1993; Davis et al.,
1997). To the very best of our knowledge, this is the
�rst time that these signal processing techniques are
used in geometric shape analysis. Given any current
(like mean of a population of shapes for instance),
we �nd a new basis on which the coe�cients of the
decomposition of the current decrease quickly. The
basis is chosen so that the redundancy of the de-
composition is the lowest possible. In this sense, we
say that this decomposition is adapted to the sig-
nal. Keeping only the �rst terms of this decompo-
sition provides therefore an approximation of the
input current at any desired accuracy. Our experi-
ments on real data show that we can achieve very
high compression ratio, with a very low approxima-
tion error. The deformation of a mean obtained from
3 shapes of 15 000 points such as in Fig.9, which
was previously taking 10 hours, is now taking about
5 minutes (using the same code as in Vaillant and
Glaunès (2005); Durrleman et al. (2007)). For a set
of 50 instances, representing the mean requires 1.2
Kb in our framework, versus 8 Mb originally. De-
forming the former still requires 5 minutes while it
is not feasible to deform the later without high per-
formance computing.
This new representation of currents can be used

now to de�ne statistics on currents. In a �rst simple
model, we consider that the population of shapes
is a realization of a random Gaussian process. Em-
pirical mean and empirical covariance matrix gives
estimation of the mean and covariance of this Gaus-
sian law. Our numerical tool gives a sparse represen-
tation of the empirical mean and principal modes,
which are easier to interpret than their initial repre-
sentation (i.e. the set of every segment and normal
in the database). However, deformations have been
proved useful to measure anatomical variability and
one wants to include them consistently within a
global statistical framework to analyze variability of
a population of shapes. We de�ne therefore a sec-

ond statistical model, in which every shape is con-
sidered as a random smooth deformation of an un-
known template plus a random Gaussian perturba-
tion in the space of currents. In this setting, theMax-
imum A Posteriori estimation of both the template
and the deformations needs the use of our new nu-
merical tool. Once the template and deformations
are estimated, joint statistics may be performed on
the deformations and the residual perturbation (dif-
ference in the space of current between the input
shapes and the deformed template). This model de-
composes therefore the anatomical variability into a
geometrical part captured by the deformations, and
a �texture" part which contains everything that can-
not be captured by a smooth deformation.
These statistical models are generative. This

means that they not only provide descriptive mea-
sures of variability (like variance, correlation be-
tween observations and modes, hypotheses testing,
etc.), but also allows us to generate new data accord-
ing to the estimated variability, or to compare any
new available data with the variability captured by
our model. By this mean, we can visually interpret
the variability captured by our model and therefore
drive the search of new anatomical knowledge. This
also o�ers a way to detect automatically patholo-
gies from deviations to the normal variability, or to
the automatic classi�cation of populations.
This framework is also very versatile and generic.

It can be applied to a large range of anatomical data
such as sulcal curves, surfaces of internal structures
of the brain or white matter �ber bundles. We use
our statistical analysis to describe the anatomical
variability of the Sylvian �ssure in a normal pop-
ulation, to describe the anatomical di�erences be-
tween hippocampus of population of autistics and
a population of controls, to provide a description
of the variability of the cortico-bulbar tract both
in term of geometrical variations and residual non-
di�eomorphic perturbations. We also illustrate the
potential of our method for automatic group classi-
�cation in the context of supervised learning.
The paper is organized as follows. In Section 2,

we introduce the currents and recall the main prop-
erties used in this paper. In Section 3, we adapt the
Matching Pursuit algorithm to our framework based
on currents. Synthetic examples show how it can be
used to represent mean and modes of a population
of shapes. In Section 4, we introduce the complete
statistical model which includes deformations. We
show how the Matching Pursuit algorithm helps to
estimate consistently the template and the deforma-
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tion of this template to every subject in the pop-
ulation. Synthetic examples show how this model
works on 2D-curves, and how it can be used for the
separation of populations. In Section 5, we gather
the experiments on real anatomical data. We show
that our two statistical models lead to relevant de-
scription of the anatomical variability of curves or
surfaces.

2. Non-parametric representation of shapes

as currents

2.1. Currents: an object which integrates vector

�elds

A current is a mathematical object which has
been proved relevant to model geometrical data like
curves and surfaces (Vaillant and Glaunès, 2005;
Glaunès and Joshi, 2006; Durrleman et al., 2007).
The idea is to characterize shapes via vector �elds,
which are used to probe them (shapes is here a
generic word to denote curves, surfaces or sets of
such objects). Given ω a square integrable 3D vec-
tor �eld, a surface (or a set of surfaces) S integrates
ω thanks to the �ux equation:

S(ω) =
∫

S

ω(x)t(u× v)(x)dσ(x) (1)

where (u×v)(x) is the normal of the surface at point
x, (u, v) an orthonormal basis of its tangent plane
at x, and dσ the Lebesgue measure on the surface.
Equation 1 computes the �ux of the vector �eld ω
through the surface S.
Similarly, a curve (or a set of curves) L integrates

any vector �elds ω thanks to the path-integral:

L(ω) =
∫

L

ω(x)tτ(x)dx (2)

where τ is the tangent of the curve at point x. Equa-
tion 2 computes the �ux of the �eld of tangents
through all equipotential surfaces of ω.
To characterize a shape (set of curves or surfaces),

we measure how these quantities (Eq.1 or Eq. 2)
vary while ω (or equivalently the equipotentials of
ω) varies. For this purpose, we need to de�ne a test
space of square integrable vector �elds W , in which
ω varies. We will then de�ne the space of currents
W ∗ as the space of continuous linear mapping from
W to R (i.e. objects which integrate vector �eld).
Eq.1 and Eq. 2 will make therefore any sets of curves
and surfaces particular cases of currents.

We choose W as the set of the convolutions be-
tween any square integrable vector �elds and a
smoothing kernel. This excludes from W the vector
�elds with too high spatial frequencies. Formally, W
is the reproducing kernel Hilbert space (r.k.h.s 1 ).
The kernel determines the transfer function of the
�lter. In our applications, we will use a Gaussian
kernel: KW (x, y) = exp(−‖x− y‖2 λ2

W )Id for any
points (x, y). In this case, the standard deviation
λW is the typical scale at which the vector �elds
ω in W may vary spatially. By construction, the
space of vector �elds W has two important prop-
erties: (1) W is the dense span of the vector �elds
of the form ω(x) = KW (x, y)β for any �xed points
y and vectors β; (2) W is provided with an inner
product which is de�ned on these basis vectors by〈
KW (., x)α, KW (., y)β

〉
W

= αtKW (x, y)β. This
inner product leads to the more general reproducing
property: 〈

KW (., x)α, ω
〉

W
= αtω(x) (3)

The space of currents, denoted W ∗, is the space
of the continuous linear mappings from W to R. As
a consequence, the Riesz-Frechet theorem ensures
that there is a linear mapping between the space of
vector �elds W and its dual space W ∗, the space of
currents. We denote this mapping LW : W −→W ∗.
It is de�ned by:

LW (ω)(ω′) = 〈ω, ω′〉W (4)

for all vector �elds ω, ω′ ∈ W (for ω ∈ W , LW (ω)
is a current, i.e. a mapping from W to R). We call
LW (ω) the dual representation of the vector �eld ω.
The dual representation of the basis vectors

KW (x, .)α are called the Delta Dirac currents:
δα
x = LW (KW (x, .)α). This shows that KW is the
Green function of the di�erential operator 2 LW .
Combining Eq.3 and Eq.4, we get:

δα
x (ω) =

〈
KW (x, .)α, ω

〉
W

= αtω(x) (5)

We have therefore : δα
x (ω) = αtω(x), which is the

term within integrals in Eq. 1 and Eq. 2. A delta
Dirac current may be interpreted therefore as an in-
�nitesimal segment (or normal) α entirely concen-
trated at point x. Since W is a dense span of the vec-
tor �elds KW (x, .)α, the space of currents is a dense

1 We refer the reader to Saitoh (1988) for more theoretical
details on the construction of r.k.h.s.
2 An equivalent construction would consist of �xing a di�er-
ential operator LW and to denote KW its Green function.
However, we prefer here to have a closed form for the kernel
instead of the di�erential operator.
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span of the Delta Dirac currents δα
x . This means that

any currents may be decomposed into a in�nite set
of Dirac currents. If the current T is a set of curves
or surfaces, it decomposed into the in�nite set of its
tangents or normals at each point of the shape. Its
dual representation L−1

W (T ) (a vector �eld in W ) is
the convolution of every tangent (or normal) with
the regularizing kernel KW .
Although a curve (resp. a surface) has an in�-

nite number of tangents (resp. normals), a polygonal
lines (resp. a mesh) may be approximated by a �nite
sum

∑
k δαk

xk
where xk is the center of each segment

(resp. center of each mesh cell) and αk the tangent
of the line (resp. the normal of the surface) at xk. Its
dual representation is therefore given at any point x
by the �nite sum:

∑
k KW (x, xk)αk. With this ap-

proximation, the integrals in Eq. 1 and Eq. 2 are
replaced by their Riemann sums. This approxima-
tion converges in the space of currents as the sam-
pling of the curves and surfaces become �ner. This
shows that this modeling of curves and surfaces is
weakly sensitive to the sampling of the geometrical
objects. Moreover, the description in term of the col-
lection of tangents and normals account only for lo-
cal properties of the shapes. It makes the framework
based on currents fully robust to topology changes or
the change of connectivity between structures (like
curves interruption or reconnection for instance).

2.2. Correspondence-less distance between curves

or surfaces

One of the main interest of modeling curves or
surfaces as currents is that it embeds these geomet-
rical objects into a vector space provided with an
inner-product. This allows us to de�ne a distance
between curves and surfaces which do not assume
any point correspondences between structures.
As mappings from W to R, the currents build a

vector space (W ∗): (T1 + T2)(ω) = T1(ω) + T2(ω)
and (λ.T )(ω) = λ.T (ω). If T1 and T2 are surfaces,
this means that the �ux through two surfaces is the
sum of the �ux through each surface: the addition is
equivalent to the union of surfaces. The union of the
normals of a surface is represented by the addition of
their Delta Dirac currents. Scaling a surface means
scaling the power of the �ux through the surface.
The space of currents W ∗ is provided with an

inner-product, denoted 〈., .〉W∗ , such that the map-
ping LW between the space of vector �elds W and
W ∗ is isometric. On the basis vectors, this inner-

product is therefore given by:〈
δα
x , δβ

y

〉
W∗ = 〈K(., x)α, K(., y)β〉W

= αtKW (x, y)β
(6)

By linearity, the inner product between two �nite

sets of Dirac currents T =
∑

i δαi
xi

and T ′ =
∑

j δ
βj
yj

(which may model two surfaces for instance) is given
by: 〈T, T ′〉W∗ =

∑
i

∑
j αt

iK
W (xi, yj)βj . This gives

explicit and easily tractable formula to compute the
inner product between two shapes. The distance be-
tween the two shapes is simply de�ned by the norm
of their di�erence: d(T, T ′) = ‖T − T ′‖W∗ .
This distance on the space of currents has a

geometrical interpretation. Indeed, one can show
that the norm on currents is a spectral norm:
‖T − T ′‖2W∗ = sup‖ω‖W≤1 |T (ω)− T ′(ω)|. If T is
a surface, one looks for the regular vector �eld ω
(‖ω‖W ≤ 1) which best separates the two surfaces,
in the sense that the di�erence of the �ux of ω
through each surface is the largest possible. In other
words, a small distance means that we cannot �nd
any regular vector �eld which makes a di�erence be-
tween the �ux through each surface. The vector �eld
which achieves the supremum is given by the dual
representation of T − T ′: ω = L−1

W (T ) − L−1
W (T ′).

In some sense, this vector �eld captures the largest
di�erences between the two surfaces. It allows us
therefore to visualize where these di�erences occur.
The smaller the standard deviation λW , the smaller
the scale at which ω may vary spatially, the �ner
the geometrical details captured by this distance.
This distance measures shape dissimilarity globally
and do not assume point correspondence between
surfaces.

2.3. Gaussian variables in the space of currents

To de�ne statistical models on the space of cur-
rents, we still need to de�ne a Gaussian noise on
currents. There is a generic way to de�ne random
variables in Hilbert spaces, such that their restric-
tions on any �nite dimensional spaces are Gaussian.
Let V =

∑∞
k=0 vkek be the decomposition of a vec-

tor V on the Hilbert basis (ek) (as such, ‖V ‖2 =∑∞
k=0 |vk|2 <∞). This vector may be associated to

the Gaussian variable
∑∞

k=0 γkvk, where each γk is
a zero-mean real Gaussian variable with variance 1.
The variance of this variable is given by ‖V ‖2. In
in�nite dimension, a random Gaussian variable ε is
de�ned therefore as a mapping from every vector of
the Hilbert space (here our space of currents) to a
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real Gaussian variable. Given the inner-product in
the space of currents, the covariance between the
Gaussian variables associated to two basis elements
is given by Cov(ε(δα

x ), ε(δβ
y )) = αtKW (x, y)β.

In a discrete setting, we usually set a grid of
points Λ = {xp}p=1...N . The span of the Delta
Dirac currents constrained to belong to the grid
(Span{δα

xp
;xp ∈ Λ, α ∈ R3}) de�nes a �nite dimen-

sional space of currents. The restriction of the Gaus-
sian variables on this �nite dimensional space are
real Gaussian variables of the form εΛ =

∑
p∈Λ δ

αp
xp

where (αi) are centered Gaussian variables with co-
variance matrix K−1 where K = (KW (xi, xj))i,j∈Λ.
In this case, εΛ has a probability density function
(pdf) which is proportional to exp(−‖εΛ‖2W∗ /2).

2.4. Di�eomorphic deformations of currents

To include deformations into the analysis of vari-
ability, we need to de�ne a deformation framework
and see how deformations transport curves and sur-
faces modeled as currents.
Let φ be a di�eomorphism (a smooth deformation

of the underlying 3D space, with smooth inverse)
and S a surface. As a surface, S may be deformed by
φ into φ(S) (the geometrical transportation of the
points of S). If we model S as a current, we de�ne
the push-forward current φ∗S such that the �ux of
any vector �eld ω through φ∗S is equal to the �ux of
ω through the transported surface φ(S). A change
of variable within integrals of Eq. 1 and Eq. 2 leads
to the de�nition: φ∗S(ω) = S(φ∗ω) where the pull-
back vector �eld φ∗ω is equal to dxφtω(φ(x)) for

curves and |dxφ|−1 (dxφ)ω(φ(x)) for surfaces (dxφ
denotes the Jacobian matrix of φ and |dxφ| its deter-
minant). This action replaces for curves and surfaces
the usual action on images: (φ∗I)(x) = I(φ−1(x)).
This is here slightly more complex since we do not
transport points but tangents or normals (di�eren-
tial 1 and 2-forms to be even more precise).
In practice, the push-forward action on the basis

vectors is simply given by:

φ∗δ
u×v
x = δ

dxφ(u)×dxφ(v)
φ(x) (7)

if u× v is the normal of a surface (one notices that
dxφ(u)× dxφ(v) = |dxφ| dxφ−t(u× v)). And

φ∗δ
α
x = δ

dxφ(α)
φ(x) (8)

if α is a tangent of a curve.
In the following, we restrict the deformations φ

to belong to the group of di�eomorphisms set up

in Trouvé (1998); Dupuis et al. (1998): the di�eo-
morphisms are obtained by integration of a time-
varying vector �eld vt: ∂φt(x)/∂t = vt(φt(x)). vt

is the speed vector �eld in the Lagrangian coordi-
nates. The geodesic �ows (φvt

t )t∈[0,1] are completely
determined by the initial speed vector �eld v0 which
belongs to a r.k.h.s. V . The �nal di�eomorphism
at time t = 1 is therefore denoted φv0 . As for the
currents, we choose for V a Gaussian kernel with
variance λ2

V . This parameter determines the spatial
scale at which points move coherently (Durrleman
et al., 2008c). How to �nd such a di�eomorphism
that best matches two sets of currents is explained
in detail in Vaillant and Glaunès (2005); Glaunès
(2005). However, the methodology presented in this
paper may work as well with an other group of dif-
feomorphisms, like the one presented in Marsland
and Twining (2004) for instance.

3. Mean and modes in the space of currents

3.1. Computational issue with the direct approach

We assume that we have a collection of N discrete
shapes (set of curves or surfaces): T1, . . . TN . Our
purpose is to infer the mean and covariance of this
collection of shapes in the space of currents.
Each shape is modeled as a current and is there-

fore seen as the union of their tangents or normals:

Ti =
∑

p δ
αi

p

xi
p
where xi

p is the center of each segment

(resp. mesh cell) of the curve (resp. surface) Ti, and
αi

p its segments (resp. its normals).
Since the space of currents W ∗ is a vector space,

onemay compute directly the empirical mean as T̄ =∑
i Ti/N =

∑
i

∑
p δ

αi
p/N

xi
p

. This is simply the union

of all the tangents (resp. normals) in the database,
scaled by 1/N .
Since the space of currents is provided with an

inner-product, one may compute the N-by-N empir-
ical covariance matrix Γ: Γij =

〈
Ti − T̄ , Tj − T̄

〉
W∗

(computed in practice with Eq. 6). Let V 1, . . . , V N

be the eigenvectors of Γ. The n-th principal mode
of the population of currents is therefore given by:
T̄ +

∑
i V n

i (Ti − T̄ ). Expanding this expression

leads to a double sum of the form:
∑

i

∑
p δ

wi,n
p αi

p

xi
p

for some weights wi,n
p . These expressions of the

empirical mean and modes are exact and can be
used directly to give quantitative measures of the
variability of the population. For instance, one may
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compute the projection of each observation to the
�rst mode and analyze the correlation between
modes and observations.
However, the representation of the mean and

principal modes raise several problems. Both are a
weighted sum of all the input Delta Dirac currents.
They have as many terms as the total number of
tangents and normals within the database. This
number increases as the number of subjects in
the database increase, while at the same time the
statistics converge to their true value. This num-
ber increases also as the sampling of the shapes
becomes �ner, while the discrete shapes converge
in the space of currents to continuous geometrical
objects. This representation is therefore not stable
from a computational point of view. If one wants to
deform the mean to a new subject (like for an atlas
to subject registration for instance), this represen-
tation may cause dramatic computational issues.
Moreover, from a visualization point of view, the
representation of the mean and principal modes as
the union of scaled tangents and normals is partic-
ularly di�cult to interpret.
Although this representation of these statistics

(mean and principal modes) is exact, it is often far
from being optimal. It may be highly redundant at
the scale λW , especially if the shapes are at a dis-
tance of order λW one from the others. This is partic-
ularly visible in the dual representation of the statis-
tics γ = L−1

W (T̄ ). The vector �eld γ results from
the convolution of every tangent or normal with the
Gaussian kernel KW with standard deviation λW .
Two tangents or normals closer than λW contribute
to the same mode of the Gaussian distribution γ.
This vector �eld γ integrates precisely the redun-
dancy of the mean current (or principal modes) at
the scale λW (See Fig.1-a).
Theoretically, the two representations (T̄ in the

space of current W ∗ and γ in the space of vector
�elds W ) are equivalent: one should retrieve the
original current T from its dual representation γ =
L−1

W (T̄ ). However, while L−1
W is a regularizing oper-

ator (a convolution by a Gaussian kernel), LW is an
ill-posed deconvolution problem. In general, a direct
approach to compute the current T from the vector
�eld γ is not possible and requires speci�c numerical
scheme. The idea is here to write the true solution of
the deconvolution problem (T = LW (γ)) as an in�-
nite sum (T =

∑
k δβk

ck
), but with faster decreasing

term than the initial representation (with a high but
�nite number of terms). The �rst terms of this series
provide an approximation of the true solution with

an increasing precision while the number of terms
increases. We expect that a good approximation can
be achieved with much fewer terms than the number
of tangents or normals in the initial representation.
In the next section, we will present a numerical

scheme to perform robustly this ill-posed deconvo-
lution problem. Experiments on simulated examples
(see Fig. 1 and Fig. 2), as well as on real anatomical
data will prove the relevance of our approach.

3.2. Orthogonal matching pursuit for currents

Matching Pursuit Algorithms were proposed ini-
tially in Mallat and Zhang (1993); Pati et al. (1993)
to �nd adapted wavelets bases for image decompo-
sition. We adapt here the idea of how to �nd a ba-
sis adapted to a particular signal to our framework
based on currents. The method proposed here esti-
mates iteratively points (xk) and vectors (αk) such
that the series

∑
k′ δ

αk′
xk′ approximates the solution

of the deconvolution problem: T = LW (γ) when
one knows γ and looks for T . The points and vec-
tors are chosen so that the decomposition of T has
fast decreasing terms. In this sense, the basis vectors
on which T is decomposed is adapted to the signal.
Each basis vector integrates locally the redundancy
of the signal at the scale λW .

3.2.1. The continuous case
Given a vector �eld γ ∈ W , one wants to �nd a

set of N points (xi) and N vectors (αi) such that

the current Π(T ) =
∑N

i=1 δαi
xi

is the closest possible
to T = LW (γ).
If one knows the optimal point positions (xi),

Π(T ) is the orthogonal projection of T onto the �-
nite vector space Span

(
δεk
xi

; k = 1, 2, 3, i = 1 . . . N
)

where (εk)k=1,2,3 is the canonical basis of R3. In the
following the index k always takes values k = 1, 2, 3.
The orthogonality conditions are

〈
T, δεk

xi

〉
W∗ =〈

Π(T ), δεk
xi

〉
W∗ , which gives (applying the isomet-

ric mapping L−1
W and Eq.3) the set of 3N linear

equations:

N∑
p=1

(
KW (xi, xp)αp

)
k

= γ(xi)k (9)

Solving this linear system leads to the optimal
vectors αi, once one knows the optimal positions
xi. Finding the optimal points (xi) has been proved
to be NP-hard in general (Davis et al., 1997). The
orthogonal matching pursuit algorithm is a sub-
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optimal greedy approach to this problem: the �rst
point x1 is the one for which the projection of T
on Span(δεk

x ) is maximal. δx1 is the basis vector
which enables to explain the largest part of the sig-
nal. Since 〈LW (γ), δεk

x 〉W∗ =
〈
γ, KW (., x)εk

〉
W

=
γ(x)k, x1 is a point where ‖γ(x)‖R3 is maximal.
Solving Eq.9 gives α1

1 = KW (x1, x1)−1γ(x1). Then
we remove from γ its orthogonal projection on
L−1

W (δεk
x1

) (i.e. the �rst basis vector in the space
W ). We iterate then the procedure on the resid-
ual: γ1(x) = γ(x) − KW (x, x1)α1

1. Eventually, the
algorithm can be written as:

Algorithm 1 Orthogonal Matching Pursuit for
Currents
Input: a vector �eld γ, a threshold η > 0
γ0 = γ, N = 0
while ‖γN‖∞ ≥ η do
-xN+1 = argmaxx∈R3 ‖γN (x)‖R3

-Find (αN+1
i )1≤i≤N+1 by solving∑N+1

p=1

(
KW (xi, xp)αN+1

p

)
k

= γ(xi)k

-γN+1 = γ −
∑N+1

i=1 KW (., xi)αN+1
i

-N ← N + 1
end while

Output: list of (xi, α
N
i )i=1...N

After N steps, the algorithm gives an approx-
imation of T = LW (γ) with N delta Dirac cur-

rents: ΠN (T ) =
∑N

i=1 δ
(αN

i )
xi . The couples (xi, αi)

are called momenta in the sequel. We prove in Ap-
pendix A that ΠN (T ) converges to T as N tends
to in�nity (e.g. ‖ΠN (T )− T‖W∗ −→ 0). The aux-
iliary variable γN = γ − L−1

W (ΠN ) stores the resid-
ual vector �eld that remains to be explained. We
prove also in Appendix A that the L∞-norm of this
residue tends towards zeros as N tends towards in-
�nity (e.g. ‖γN‖∞ = supx∈R3 |γN (x)| −→ 0). This
means, in particular, that the norm of the residue
is below any positive threshold in �nite time, thus
proving that the algorithm �nishes.

3.2.2. Computations in a discrete setting

In the continuous setting, �nding the maximum
of γN over the whole 3D space (step 1) and comput-
ing γN at every point of the 3D-space (step 3) might
be di�cult and time-consuming. To e�ciently im-
plement the algorithm, we set a linearly spaced grid
Λ = {xλ} (supposed to be large enough to assume
periodic boundary conditions) with step ∆. Since
the input vector �eld γ is band-limited (it results

from a convolution with a Gaussian kernel), we sam-
ple it on the grid Λ. For this purpose, we assume
that ∆/λW is small (typically less than 1/5). γ can
be stored therefore as an image of vectors [γ]λ =
γ(xλ)).
At step 1 of the algorithm, we look for the maxi-

mum of γN only at the points of the grid. As a re-
sult, every estimated point xi is on the grid Λ. Since
KW is a translation invariant scalar kernel (i.e. of
the form KW (x, y) = k(‖x− y‖)Id), the vector �eld
L−1

W (ΠN )(x) =
∑N

i=1 KW (x, xi)αN
i sampled at the

points of the gridmay be computed by a circular con-
volution between the image [k]λ = k(λ∆) and the
image [α]λ, where [α]λ = αN

p if xλ = xp and 0 oth-
erwise. This circular convolution may be computed
e�ciently by Fast Fourier Transforms (FFTs). Note
that the Fourier transform of the image [k]λ can be
pre-computed once for all. As a consequence, at step
3 one needs to (1) project the momenta (xi, αi) on
the grid's nodes (such that the tri-linear interpola-
tion of the vectors on the grid's node retrieves αi at
point xi), (2) compute a FFT of this image of vec-
tors and multiply it with the FFT of the kernel, and
(3) compute the FFT inverse of the resulting image
of vectors. The output ΠN is stored as a list of mo-
menta (xi, α

N
i )i=1...N .

The threshold η has to be speci�ed for every
application. If T is a linear combination of N
currents T1, . . . , TN (such as mean current, princi-
pal mode, di�erence between two currents, etc.),
we can choose η as a �xed ratio of the standard
deviation of the set of currents: η = τσ where

σ2 = 1
N−1

∑N
i=1

∥∥Ti − T̄
∥∥2

∞ and T̄ = 1
N

∑N
i=1 Ti

(for sake of simplicity, ‖T‖∞ denotes
∥∥L−1

W (T )
∥∥
∞).

This means that the algorithm �nishes when the
maximum approximation's error is smaller than τ%
of the standard deviation. In our applications, we
usually �x this sparsity parameter τ = 5%.
Finally, for a given current T , we have 3 distinct

representations: the initial one with NT momenta
(the total number of segments or mesh's cells in the
set of currents), the projection of T onto the grid
with a priori Ngrid momenta (which depends on
both the spreading of the input data and the step ∆
supposed to be smaller than λW /5) and our sparse
representation with Nmom momenta. Depending on
the number of input points, their spreading and re-
dundancy at the scale λW , these 3 representations
can vary dramatically in size.
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3.3. Application to a simulated example

We show here how thematching pursuit algorithm
helps to approximate statistics on currents, and to
give them a visual representation that we can inter-
pret. We choose the mean of two 2D curves as a sim-
ulated example. In Fig. 1, we show the initial mean
in the space of currents and the �rst and third iter-
ations of the algorithm, which builds iteratively an
approximation of the mean. The approximation er-
ror tends to zero as the algorithm goes on. In Fig.
2 we show how the number of momenta needed to
represent the mean of the two curves vary with re-
spect to the standard deviation of the kernel (λW )
for the a �xed approximation error. The greater λW ,
the closer the two curves in the space of currents
(i.e. their di�erences become small perturbations at
the scale λW , the smaller the number of Delta Dirac
currents needed to represent the mean for the same
accuracy (i.e. the faster the terms of the series de-
crease).

4. Joint statistics on deformations and

residual currents

In the previous section, we presented a method to
perform statistics on a population of shapes. How-
ever, this statistical analysis may not be relevant
with unregistered shapes. A common practice in
medical imaging is �rst to register shapes into a
common reference frame and then to perform statis-
tics on the residues which remain after registration,
as in voxel-based morphometry. Nevertheless, such
an approach is not completely satisfactory since de-
formations may also capture interesting anatomical
features. One wants to perform statistics on the de-
formations as well, like in tensor-based morphom-
etry. In this section, we propose a unifying frame-
work which estimates jointly a prototype shape (also
called template or atlas in the literature) and the
deformations of this template to each observation.
We can then compute consistently statistics both on
the deformations and on the residual shapes in the
space of currents.

4.1. Forward versus backward models for template

estimation

In the medical imaging �eld, atlases are used to
drive the personalization of generic models of the
anatomy, to analyze the variability of an organ, to

characterize and measure anatomical di�erences be-
tween groups, etc. Many frameworks have been pro-
posed to build atlases from large database of medi-
cal images (Joshi et al., 2004; Avants and Gee, 2004;
Marsland and Twining, 2004; Zollei et al., 2005),
much fewer were proposed for anatomical curves
or surfaces (Chui et al., 2004; Glaunès and Joshi,
2006; Durrleman et al., 2008a). In any case, the
underlying idea remains the same: one estimates a
�mean anatomy� (called template) and one learns
how this mean model deforms within a given pop-
ulation. The most widely used method in medical
imaging is based on a backward model that deforms
every observation back to a common reference frame
(See Fig.3). However, we prefer here to base our sta-
tistical estimation on a forward model, as pioneered
in Allassonnière et al. (2007); Ma et al. (2008), which
considers the observations (Ti) as noisy deforma-
tions (φi) of an unknown template (T̄ ). Formally,
the forward model can be written as:

Ti = φi∗T̄ + εi (10)

whereas the backward model is:

φi∗Ti = T̄ +εi ⇐⇒ Ti = φ−1
i ∗T̄ +φ−1

i ∗εi (11)

The backward model considers either that the
template T̄ is noisy and the observations Ti free
of noise (Eq.11-left), or that the noise added the
observations (φ−1

i ∗εi) depends on the observations
via an unknown deformation (Eq.11-right). By con-
trast, the forward model (Eq.10) considers that the
template is not blurry, as an �ideal� object, and an
independent and identically distributed noise εi is
added to every observation. This models more accu-
rately the physical acquisitions, whereas the back-
ward model relies on less realistic but more practical
assumptions, as we shall see below.
The observations Ti are given as discrete sampled

objects. The template T̄ models an average �ideal�
biological material and it is therefore supposed to
be continuous. In the backward model, sampled ob-
servations deform a continuous template: an extrin-
sic interpolation scheme is required. By contrast, in
the forward setting, the continuous template is de-
formed to the subject's space and then needs only
to be sampled to be compare the observations. This
does not only reproduce more accurately the real
physical acquisition process, but also depends on less
arbitrary assumptions.
Assume now that we can de�ne probabilities on

objects T (images, curves, surfaces, etc.) and on de-
formations φ. The statistical estimation of an atlas
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(a) Initial Con�guration (b) iteration 1 (‖R1‖∞ = 0.51σ) (c) iteration 3 (‖R3‖∞ = 0.11σ)

Figure 1. A sparse deconvolution scheme for currents: (a) the initial con�guration. right: two curves in blue and their mean in
red: the collection of all tangents scaled by 0.5, seen as momenta in the space of currents W ∗. left: the Gaussian convolution
(L−1

W ) of the initial momenta gives the dual representation of the mean as a dense vector �eld in W (λW = 15). (b) (resp.
(c)): �rst (resp. third) iteration of the matching pursuit algorithm: estimated momenta on the right panel, residual vector �eld
on the left panel (what remains to be explained by the forthcoming momenta). The momenta converge to the true solution
while the residual vector �eld tends to zero. ‖Rn‖∞ denotes the norm of the residual vector �eld at step n and σ the standard
deviation: ‖L− L′‖∞ /

√
2

(a) Initial mean current (b) λW = 10 (c) λW = 15 (d) λW = 20

Figure 2. Impact of λW . (a)- Two curves in blue and their mean in the space of currents in red. (b) to (d) the approximation
of the mean of two curves for increasing size of the kernel λW and �xed precision τ = 5% (de�ned as the ratio between the
residual norm and the standard deviation ‖L− L′‖∞ /

√
2). The greater λW , the closer the two curves in the space of currents,

the more redundant the initial momenta at the scale λW , the sparser the estimated decomposition.

would require at least to compute the probability
of having the template given a training database of
Ti: p(T̄ |Ti). Once the atlas is built, one would like
to know how a new observation Tnew is compared to
the estimated variability model: one needs to com-
pute the likelihood of this observation given the tem-
plate p(Tnew|T̄ ). Because φi acts di�erently in Eq.10
and in Eq.11, the computational cost of these two
steps varies signi�cantly. In the backward scheme,
computing p(T̄ |Ti) is much simpler than computing
p(Tnew|T̄ ) which depends on the Jacobian of the de-
formations φi. It is exactly the reverse for the for-
ward scheme: computing the atlas is more di�cult
than to compare a new observation to the estimated

variability. Since it is better to spend more time
to build the atlas (which is done once for all) and
to keep simple the test of any new available data,
the forward model seems better suited even from a
computational point of view. The backward scheme
seems simpler as long as one does not compute joint
statistics on the deformation φ and the residual per-
turbation ε.
Finally, the forward model is also better under-

stood from a theoretical point of view. For instance,
the convergence of the Maximum A Posteriori
(MAP) template estimation, when the number of
available observations is growing, is proved for im-
ages and small deformations (Allassonnière et al.,
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forward scheme backward scheme

Figure 3. In the forward scheme, the physical observations (Oi) are seen as noisy deformation (φi) of unknown template (Ō).
In the backward scheme, the template is an average of deformed observations. In the forward scheme the noise is removed
from the observations whereas it is pulled back in the common frame with the backward scheme.

2007). Such proofs for the backward model seem
currently out of reach.
For all these reasons, we base here our statistical

estimations on the forward model. In the sequel, we
show how the atlas building step, which is the most
critical step in this paradigm, is possible in case of
curves and surfaces. For this purpose, we take ad-
vantage of the Matching Pursuit Algorithm for cur-
rents, introduced previously in the section 3.2.
Joint statistics on deformations and residues will

be used to give a complete description of the anatom-
ical variability of white matter �ber bundles. Nu-
merical simulations on simulated examples will also
show how the atlas may be used for group classi�-
cation in the context of supervised learning.

4.2. Joint estimation of template and deformations

4.2.1. A Heuristic Maximum A Posteriori in

in�nite dimension

From a Bayesian point of view, in Eq.10 (Ti =
φi,∗T̄ +εi), Ti are the observations, T̄ is unknown, φi

are hidden variables and εi independent and iden-
tically distributed Gaussian noise with known vari-
ance σ2

W . To de�ne statistics on deformations, we
take advantage of the tangent-space representation
of the di�eomorphisms. As explained in section 2.4,
the di�eomorphisms are completely determined by
their initial speed vector �elds v0 which belong to a
Hilbert space V .
Let us assume now that we can de�ne Gaussian

probability density functions (pdf) on the space of
Currents W ∗ and on the space of initial vector �elds
V : pε(ε) = Cε exp(−‖ε‖2W∗ /2σ2

W ) and pφ(v) =
Cφ exp(−‖v‖2V /2σ2

V ). In that case, a Maximum A

Posteriori (MAP) estimation for independent obser-

vations maximizes
∏N

i=1 p(Ti|T̄ ) over T̄ . Formally,

p(Ti|T̄ ) =
∫

pε(Ti|T̄ , vi
0)pφ(vi

0)dv0

=
∫

pε(Ti − φ
vi
0

i ∗T̄ )pφ(vi
0)dv0

(12)

Since the term within the integral depends on v0 by
a geodesic shooting of di�eomorphisms, there are no
closed forms for this likelihood. A usual approxima-
tion consists in replacing the integral by the maxi-
mum of the distribution within the integral (i.e. its
�rst mode). This leads to: p(Ti|T̄ ) ∼ maxvi

0
pε(Ti −

φ
vi
0

i ∗T̄ )pφ(vi
0) which �nally gives:

(T̄ , φvi
0) =argminT̄ ,vi

0{
1

σ2
W

∥∥∥Ti − φvi
0∗T̄

∥∥∥2

W∗
+

1
σ2

V

N∑
i=1

∥∥vi
0

∥∥2

V

}
(13)

called Fast Approximation with Mode (FAM).
However, as explained in Section 2.3, the Gaus-

sian variables have no pdf in the in�nite dimensional
Hilbert spaces, such as the space of currents W ∗ and
the space of initial vector �elds V . Nevertheless, the
restriction of these variables to �nite dimensional
spaces does have a Gaussian pdf. Therefore, a more
rigorous MAP derivation could be done considering
�nite dimensional parameterization of the v0's and
of the Ti's. For instance currents may be projected
into a �xed grid; but this would require to adapt the
registration scheme of Vaillant and Glaunès (2005)
to account for such a discretization. Moreover, to
avoid the approximation with mode (FAM), Markov
Chain Monte Carlo (MCMC) approaches for sam-
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pling the posterior could be also possible along the
lines of Allassonnière and Kuhn (2009) but this is
still challenging and out of the scope of this paper.

4.2.2. An alternated minimization procedure

We solve Eq.13 by minimizing it alternatively
with respect to the template and to the deforma-
tions.When the template T̄ is �xed, each term of Eq.
13 can be minimized separately. For a given observa-

tion Ti, minimizing 1
σ2

V

∥∥vi
0

∥∥2

V
+ 1

σ2
W

∥∥∥Ti − φ
vi
0

i ∗T̄
∥∥∥2

W∗

with respect to vi
0 is exactly a registration problem,

as stated and solved in Vaillant and Glaunès (2005);
Glaunès (2005). This step of the minimization con-
sists therefore of N registrations of the template T̄
to each observation Ti.
When the deformations φi are �xed for every i =

1 . . . N , minimizing Eq. 13 with respect to the tem-
plate T̄ leads to the minimization of the convex func-
tion:

J(T̄ ) =
1
2

N∑
i=1

∥∥φi∗T̄ − Ti

∥∥2

W∗ (14)

If all φi = Id (i.e. no deformation), the minimum is

reached at the empirical mean: T̄ = 1
N

∑N
i Ti. For

arbitrary deformations, there is no closed form and
we use a gradient descent scheme. The gradient of
Eq.14 is precisely:

∇T̄ J =
N∑

i=1

φi
†
∗(φi∗T̄ − Ti) (15)

where φ†∗ is the adjoint action of φ∗ de�ned by:〈
φ†∗T, T ′

〉
W∗

= 〈T, φ∗T
′〉W∗ for any currents T

and T ′. This would be a matrix transpose if the
action were linear (like for an a�ne deformation
points for instance). In this non-linear setting, stan-

dard computations lead to φ†∗T = LW (φ∗L−1
W (T )).

In the backward scheme, Eq.14 would be: J(T̄ ) =
1
2

∑N
i=1

∥∥T̄ − φi∗Ti

∥∥2

W∗ , whose minimum has the

closed form T̄ = 1
N

∑N
i=1 φi∗Ti, which is the mean

of the observations pulled back into the current
template con�guration. By contrast, in our forward
setting, the estimation of the template involves the
Jacobian matrix of the deformations (via φ∗ as
we will see below). However, computing the likeli-
hood of any new observations p(Ti|T̄ ) will be much
simpler and faster in this setting.
We must now make explicit the computation of

the gradient in Eq. 14. The input shapes Ti are sam-
pled objects which are approximated as �nite set

of Dirac currents. As it will appear from this min-
imization procedure, the template will also always
remain a �nite set of Dirac currents at every iter-
ation. Therefore, the current φi∗T̄ − Ti is of the

form
∑

k δ
βi

k

yi
k

which gives �nally φ∗iL
−1
W (φi∗T̄−Ti) =∑

k(dxφi)tKW (φi(x), yi
k)βi

k in case of curves. Fi-
nally, the dual representation of the gradient in the
space of vector �eld W is given at any point x by:

L−1
W (∇T̄ J)(x) =

N∑
i=1

(dxφi)t

(∑
k

KW (φi(x), yi
k)βi

k

)
(16)

in case of curves. For surfaces, dxφt
i must be re-

placed by |dxφi| dxφ−1
i . Thus, we see that we know

how to compute the dual representation of the gra-
dient (a vector �eld) but not the gradient itself (a
current). At this stage, we see that the gradient de-
scent scheme could not be performed without an ef-
�cient numerical algorithm to estimate the current
∇J whose associated vector �eld is given by Eq.16.
The sparse deconvolution method of Section 3.2 pre-
cisely provides a �nite set of Dirac current which ap-
proximates ∇J at any accuracy. As a consequence,
the template remains a �nite set of Dirac currents
at each iteration.
We initialize the algorithm by setting φi = Id,

T̄ = 1
N

∑N
i=1 Ti and by computing the vector �eld

γT̄ = L−1
W (T̄ ) associated to T̄ via a Gaussian convo-

lution (computed with FFT's on images of vectors
as in Section 3.2.2). The current T̄ is encoded as a
list of (position, vectors) that approximates small
segments or small triangles. The dense vector �eld
γT̄ is discretized at a the points of a �xed grid: Λ =
{xp} and is therefore encoded as an image of vec-
tors. The template estimation algorithm is written
as in Algorithm 2, where the auxiliary variable grad
is also encoded as an image of vectors.
As a result, the algorithm returns (1) an unbiased

template T̄ and (2) the deformations of this template
to every observation Ti. The residues are given in the
space of currents by Ti−φi∗T̄ . The methodology de-
veloped in Section 3 can be used therefore to perform
statistics on such residual currents. These residues
model the variability which are not captured by reg-
ular deformations such as topology changes, matter
creation or deletion, numerical or physical noise, etc.

4.3. Atlas construction on simulated 2D-curves

We illustrate here the template estimation proce-
dure on a simulated example of 2D curves, and show

12



Algorithm 2 Atlas Construction

Input: N shapes Ti (stored as a list of oriented points (tangents or normals): Ti = (xp
i , α

p
i )), a grid Λ.

List T̄ = (x̄k, ᾱk)← concatenation of all (xp
i , α

p
i /N) (encodes

∑N
i=1 Ti/N)

Image of vectors γT̄ ← L−1
W (T̄ ) (Convolution: ∀xp ∈ Λ, γT̄ (xp) =

∑
k KW (xp, x̄k)ᾱk)

repeat

for i = 1 . . . N do

φi ← registration of T̄ to Ti.
end for

repeat

Image of vectors grad = 0
for i = 1 . . . N do

Deform T̄ with φi: φi∗T̄ = (φi(x̄k), dx̄k
φi(ᾱk)) (curves) or (φi(x̄k), |dx̄k

φi| dx̄k
φ−t

i (ᾱk)) (surfaces).
Concatenate the list (xp

i ,−αp
i ) with the previous one to give (yi

k, βi
k) (encodes φi∗T̄ − Ti).

Deform Λ with φi

for all xp ∈ Λ do

Compute dxpφi by a �nite di�erence scheme
Compute G =

∑
k KW (φi(xp), yi

k)βi
k (convolution)

grad(xp)← grad(xp) +

 2dxpφt
iG for curves

2
∣∣dxpφi

∣∣ (dxpφi)−1G for surfaces
end for

end for

γT̄ ← γT̄ − τgrad
Deconvolution of γT̄ to give the new T̄ = (x̄k, ᾱk) (See section 3.2).

until convergence
until convergence
Output: One template T̄ , N deformations φi, N residues φi∗T̄ − Ti (stored as a list of momenta)

how this atlas can be used for group comparison. We
build a synthetic database with two classes made of
40 curves each (see Fig. 4). First, we construct the
atlas (template and the variations of this template in
the population) from all 80 curves. The parameters
used for this simulation are the scale of deformations
λV = 0.4, the spatial scale of currents λW = 0.05,
the trade-o� between regularity and �delity-to-data
(for registrations) γ = 10−4 and the sparsity num-
ber τ = 5%. The iterative construction of the atlas
is shown in Fig. 5. The di�erence between the esti-
mated template and true template (used to create
the database) is equal to 0.24 times the standard
deviation (the norm being computed in the space of
currents). With 80 samples, the t-statistics is equal
to
√

80 ∗ 0.24 = 2.15, which is below the usual 3σ
threshold to decide statistical signi�cance.
Along with the template, we estimate the di�eo-

morphisms that map the template to each observa-
tion. These di�eomorphisms are entirely determined
by their initial speed vector �elds at the points of

the template (Vaillant et al., 2004). We can use this
tangent-space representation of di�eomorphisms as
a feature to perform group statistics. First, to re-
duce the dimensionality of the feature space (we
have much fewer observations than the dimension of
the feature space which is three times the number
of points of the template), we perform a PCA on all
data together and keep the Nmodes �rst principal di-
rections. Then, we project the initial speed vector
�elds onto this subspace and estimate, for each class,
the mean and empirical covariance matrix. We end
up therefore with two estimated Gaussians laws on
the same subspace which characterize the geometri-
cal variability of each class.
To evaluate the performance of our statistical

model, we measure how well it can separate pop-
ulations. Given any new observations, we register
the template to this observation. According to our
forward setting, the likelihood of such a registration
is given directly by the likelihood of its initial vec-
tor �eld (de�ned in the common template space)
with respect to the estimated law. By contrast,
in a backward scheme, the initial vector speed of
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Figure 4. Five samples among the 40 samples for each class. Our goal is to show that our atlas estimation allows us to �nd
the geometrical discriminative features between both classes.

a- mean current b- iteration 1 c- iteration 2

Figure 5. Atlas construction from 80 samples. At each iteration the algorithm register the template (shown here) to each sample
and update the template according to the deformations. The �gures show the dual representation of the template in the space
W at each iteration until convergence (we removed here the direction of the tangents and take only points into account: the
dual representation is therefore a scalar �eld (shown here) instead of a vector �eld. Colors correspond to the magnitude of
this scalar �eld). The initial template is the empirical mean current (a). The next 2 iterations are shown in (b) and (c). Along
with the iterations, the bias is removed from the template. As a result, the template appear to be less and less blurred.

the deformation is de�ned in the subject's space
and must be therefore transported on the template
space before being compared with the estimated
variability model: this requires to deal with the
Jacobian matrix of the deformation. In our case,
the Mahalonobis distance between the initial speed
vector �eld of this registration (projected onto the
common subspace) and the mean of each group de-
termines which population this new observation is
the more likely to belong to. If the di�erence of the
two Mahalanobis distances is below some thresh-
old, we associate the observation to a given class.

To evaluate the classi�cation power of our atlas,
we test 100 new observations for each class. For a
given threshold, we compute the false positive rate
and the true negative rate. The entire ROC curve,
computed for all possible thresholds, is shown in
Fig. 6. In these experiments, Nmodes = 26 modes.
The maximum good classi�cation ratio (mean of
the rate of false positive rate and true negative) is
of 94%. If we train a Support Vector Machine on
the initial vector speed instead of performing PCA,
we can achieve a good classi�cation ratio of 97%.
This shows that our atlas estimation allows us to
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Figure 6. ROC curves measuring the capability of the statis-
tical analysis to classify shapes. The prediction is based on
the di�erence of Mahalanobis distances for each class. 100
data per class were used in the testing step (40 data per
class in the training step). Crosses correspond to the classi-
�cation results based on Support Vector Machines (SVM).
In blue, our unbiased atlas was used. In red, one particular
subject was used as template. In green, the mean current
(initial template in our iterative estimation scheme) is used
as template. This shows that the unbiased template better
discriminates between both classes.

predict the class of any observations with an error
of order 3%.
The same statistics on the deformations may be

conducted when we replace our template by the
mean current (used for the initialization of our algo-
rithm). Fig. 6 shows that the mean current, which is
biased according to our model, leads to worse clas-
si�cation results. If one chooses randomly one sam-
ple in the database as template, the classi�cation
results are even worse. This shows that computing
the statistics in a consistent framework increases the
discriminative power of the method.
Our method allows us not only to perform quan-

titative tests, but also to describe the di�erence be-
tween both classes. The classi�cation can be per-
formed using only one mode for each class. Among
the 26 modes of each class, we �nd the two modes
(one in each class) which enables to achieve the best
classi�cation ratio. In some sense, these two modes
are the ones which best discriminate the two pop-
ulations. In our example, the two most discrimina-
tive modes enables to achieve a good classi�cation
ratio of 91% (to be compared with the 97% ratio
achieved with all possible modes (26)). Deforming
the template according to these two modes gives a
visual representation of the main di�erence between
the two classes: the torque of the upper right part of

7th mode of the blue class

15th mode of the red class

Figure 7. The two most discriminative modes for each class.
The main di�erences between the two populations is a torque
at the upper-right part of the shape (if consider the blue
class as reference). This shows how the proposed statistical
analysis may detect reproducible features across the obser-
vations, whereas this signal is hidden by a high random de-
formation noise. For instance, this signal cannot be detected
visually from the input shapes in Fig. 4

.

the shape (if we consider the blue class as reference),
as shown in Fig. 7. This di�erence was detected as
a reproducible feature across the observations, al-
though it is almost impossible to guess it from a vi-
sual inspection of the initial data in Fig. 4.
At this stage, many other statistical computations

may be conducted to quantify and describe the dif-
ferences between both classes. Our purpose here was
only to illustrate the potential of our method for the
analysis of anatomical shapes.We proposed a consis-
tent framework to estimate template, deformations
of this template within the population and resid-
ual shapes (which were not used in this section, but
will be used in the next ones). The results on simu-
lated examples tend to show that such an atlas may
put into evidence signi�cant anatomical variations
between populations, although these di�erences are
hidden by the normal variability of the structures
within the populations.
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5. Numerical experiments on real

anatomical data

5.1. Choice of parameters

Thewhole framework dependsmostly on 4 param-
eters: λW , λV , γ, τ . The spatial scale of the currents
λW is the typical distance at which di�erences be-
tween shapes are considered as noise. It compares to
the size the features of interest of the input shapes.
The spatial scale of the deformations λV is the typ-
ical distance at which points move consistently dur-
ing registration. It is related to the degree of rigid-
ity of the deformation and must be therefore com-
pared to the diameter of the data. If λV is large
compared to the diameter of the data, the deforma-
tions would move the shape almost rigidly. On the
contrary, small values of λV will favor uncorrelated
motion of small parts of the shape while increasing
the cost of a rigid motion. The trade-o� γ is the
ratio σ2

W /σ2
V in Eq. 13: it balances the �delity-to-

data against the regularity of the deformation. In
practice, these three parameters may be adjusted
by computing registrations between pairs of input
data. More discussions about the impact of each of
these parameters on the registrations may be found
in Durrleman et al. (2008c). The sparsity threshold
τ is a fraction of the standard deviation of the input
shape, which determines the approximation error as
explained in Section 3.2.2. As a fraction of the stan-
dard deviation, this value does not depend much on
the data and can be �xed for every application. Usu-
ally, it is set to 5%. A value of 1%may be used, but it
increases the number of points of the template and
therefore slows down the computation of the atlas.
In this current stage of the work, it is up to the user

to estimate manually the values of these parameters,
depending on the data and the application. These
values may be assessed according to the diameter
of the data and the size of the feature of interest.
In the following, we give the typical values of these
parameters for each experiment.

5.2. Statistics on sulcal lines

The sulci are the �ssures on the brain surface and
they are often used to measure anatomical di�er-
ences between subjects (Thompson et al., 1996). We
perform here statistics on a set of 70 sulci delineated
in Nobs = 34 subjects. These data were provided

Sylvian Fissure (right hemisphere)

All 70 sulci (top view of the brain)

Figure 8. Statistics for 70 sulci in 34 subjects
(λW = 12mm, τ = 5%). Top: every subject's Sylvian �s-
sure (black), the mean (red) and the �rst eigenmode at
+σ (green) showing the spreading of the set of lines. Bot-
tom: Mean currents (red) compared to the mean lines (blue)
computed from B-spline parameterization of curves (Fillard
et al., 2007b). Results are in good agreement.

by Paul Thompson (Laboratory of NeuroImaging,
University of California, Los Angeles) as part of the
collaborative project Brain-Atlas.
For each sulcal line, we approximate themean cur-

rent L̄ = 1
Nobs

∑Nobs

i=1 Li for the scale of kernel λW =
12mm and sparsity parameter τ = 5%. Results are
shown in Fig.8 for the Sylvian Fissure of the right
hemisphere and for all 70 sulci. The initial number
of momenta for the mean �ssure was NT = 899 (i.e.
the number of segments of all lines) whereas the �nal
approximation needs only Nmom = 54 momenta. In
this case, the compression ratio is of 94%. Consid-
ering all sulci, the compression rate is on average:
94.8%± 0.02. Each line's grid has a step ∆ = 2mm
and typically Ngrid = 105 points. Our mean is visu-
ally in good agreement with other mean curves com-
puting from B-spline representation (Fillard et al.,
2007b).
Then, we compute the eigenmodes of the lines

sets. We �nd the eigenvectors (Vk) of theNobs×Nobs
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(a) Deep brain structures of 2 autistics (b) Mean of 50 autistics (c) Mean of 7 controls

Figure 9. Sparse approximation of the mean current for 10 meshes segmented in 50 autistics patients (b) and 7 controls (c).
λW = 5mm, τ = 5% and the diameter of the data is 60mm.

matrix Σ =
(〈

Li − L̄, Lj − L̄
〉

W∗

)
i,j=1...Nobs

. The

kth eigenmode is given by the linear combination
of input currents: mk = L̄ ±

∑
i(Vk)i(Li − L̄). We

approximate the �rst eigenmode at +σ of the Syl-
vian Fissure of the right hemisphere (Fig.8-top): this
mode captures mainly the spreading of the lines set
around its mean.

5.3. Statistics on surfaces of brain structures

In this section, we turn to statistics on 10 meshes
of deep brain structures (Caudate, Putamen,
Globus Pallidus, Amygdala and Hippocampus for
each hemisphere) segmented from a population of
50 autistics patients and 10 controls (Hazlett et al.,
2005). These data were kindly provided by Guido
Gerig (Scienti�c Computing and Imaging Institute,
University of Utah) and Martin Styner (Computer
Science Department, University of North Carolina,
Chapel Hill).
We compute the mean meshes for each popula-

tion and approximate these means with the Match-
ing Pursuit Algorithm. Results are presented in Fig.
9. Note that for surfaces, we represent the estimated
momenta (normal of an in�nitesimal mesh cell) as
equilateral triangles whose normals is the momenta.
The di�erence between both means is still a current
that we approximate: the arrows of Fig.10 are the
10 �rst estimated momenta of this di�erence, sug-
gesting that the autistic mean is more curved at the
Hippocampus' extremity and thicker in the middle.
Such results still need to be con�rmed by rigorous
statistical tests.
Within the autistic group, the compression ratio

Figure 10. The arrows represent the di�erence between the
mean of autistics and the mean of controls (shown in Fig. 9.
They are superimposed with the Hippocampus of a control.
This shows that the mean from autistics is more curved at
hippocampus' extremity (area 1) and thicker in area 2.

Figure 11. We approximate each of the 10 meshes for ev-
ery autistics with λW = 5mm (see Fig.9). The graph shows
the evolution of the approximation error when the number
of momenta is increasing. Very high compression rate can
be achieved while the approximation error remains small.
Red points correspond to the approximation error equal to
τ = 5% of the variance of the structures within the popula-
tion.

17



Figure 12. Cortico-bulbar tract segmented in 6 subjects. Original data (top row) and their approximations (bottom
row) obtained from the Matching Pursuit Algorithm with the spatial scale of currents λW = 3mm (diameter of the data are
100mm) and sparsity number τ = 5%. For visualization purposes, the segments of the approximations have been scaled by
0.1. The length of these segments encode the local redundancy of the initial bundles at the scale λW .

(a) def. mode at −σ (b) template (c) def. mode at +σ

φ−mv
∗ B̄ B̄ φ+mv

∗ B̄

Figure 13. First deformation mode at ±σ of the corticobulbar bundle (view from top). This mode captures the
di�eomorphic variability of the population around the prototype bundle (b). It shows a torque at the basis of the bundle and
a stretching/shrinking e�ect of the left and right parts of the bundle.

between NT and Nmom for the 10 structures is on
average of 99.96%±10−4. The grid of each structure
has a step ∆ = 1mm and for one structure we have
the following typical values: NT = 50×3000 = 1.5×
105, Ngrid = 3×105 and Nmom = 100. Fig.11 shows
that the quality of approximation remains good until
very high compression ratio.

5.4. Anatomical variability of white matter �ber

bundles

In this section, we apply our method to white
matter �ber bundles. Di�usion Tensor Images
(DTI) of 6 healthy subjects were provided by De-
nis Ducreux (Hôpital du Kremlin Bicêtre, Paris)
and processed by Pierre Fillard (CEA, Neurospin,

Saclay). Fiber tractography was performed using
MedINRIA 3 (Toussaint et al., 2007), which includes
a robust tensor estimation and a streamline tractog-
raphy algorithm using log-Euclidean tensor inter-
polation (Fillard et al., 2007a). From all extracted
�bers, the cortico-bulbar bundle was selected for
our study.
Each extracted cortico-bulbar bundle is a set of

curves. It can be represented naturally as the sum of
the currents of each individual curve. This represen-
tation, in particular, is robust to change of connec-
tivity, �ber interruption or reconnection within the
bundle. It takes into account the local orientation of
the �bers at each point of the bundle.

3 www-sop.inria.fr/asclepios/software/MedINRIA
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(a) texture mode at −σ (b) template (c) texture mode at +σ

B̄ −mε B̄ B̄ + mε

Figure 14. First �texture" mode at ±σ of the corticobulbar bundle. This mode captures the residual variability of
the population, once the di�eomorphic variability has been discounted. This mode is added to (c) or removed from (a) the
prototype bundle (b). The mode at +σ (resp. −σ) shows that the left (resp. right) part of the bundle becomes thicker, while
its right (resp. left) part becomes thiner. Further investigation should determine whether this asymmetry is a true anatomical
feature or an artifact of the tracking method.

(a) template (b) def. mode at +σ (c) def. mode + texture mode

B̄ φ+mv
∗ B̄ φ+mv

∗ B̄ + mε

Figure 15. Simulation of synthetic corticobulbar bundle. Our statistical model learn how to generate new bundles from
the prototype, which compare to the data. First we deform the template (a) according to the �rst mode of deformation (b).
We then add the �rst texture mode to this deformed template, to give a new instance of the bundle (c). Such simulations
reproduce the common features that our model detect across the subjects.

First, we approximate each bundle via the Match-
ing Pursuit Algorithm with the spatial scale of cur-
rents λW = 3mm and the sparsity parameter τ =
5%. This reduces the total number of segments in
the database from 26011 to 2927, namely a reduc-
tion of 88.7% while the approximation error remains
below 5% of the variance. The approximated mo-
menta, represented by segments in Fig. 12, account
for the redundancy of the �bers at the scale λW .
This approximation allows us to speed up the regis-
trations.

The application of our atlas estimation method
leads to the computation of a template bundle,
the deformations of this template to each subject
and the residual perturbations that cannot be ex-
plained by these smooth deformations. Analyzing
the deformations and the residual �texture" enables
to describe the variability in terms of smooth de-
formations (torque, stretching, shrinking, etc.) and
in terms of non di�eomorphic variations (matter
creation or deletion, change of topology, etc.) For
this experiment, we set the spatial scale of deforma-
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tions to λV = 20mm, the spatial scale of currents
λW = 5mm, the trade-o� between regularity and
�delity-to-data: γ = 10−4 and the sparsity parame-
ter to τ = 5%.
The �geometrical" variability is captured by the

deformations. As a result of the MAP estimation,
the deformations appear to be centered: the norm
of the mean parameters is 0.42 times the standard
deviation, which is not signi�cantly di�erent from 0
(t-statistics is equal to

√
6 ∗ 0.42 = 1.03). The �rst

mode of the deformations at ±σ is shown in Fig. 13.
Variations are mostly a torque of the frontal part
of the bundle, as well as a stretching/shrinking of
its lateral parts. Further investigation should deter-
mine whether this torque is related to the one of the
occipital lobe of the cortex.
The variability in terms of �texture" is captured

in the residual perturbations. The residues are cen-
tered: the mean current is 0.36 times its standard
deviation, which is not signi�cantly di�erent from
0. The �rst residual mode mε is shown in Fig. 14.
It shows an asymmetry in terms of the number of
�bers in each lateral part of the bundle. This result
shows, undoubtedly, that the variability left aside
from the di�eomorphisms is not pure noise, but may
contain interesting anatomical feature. In our case,
further investigation is needed to determine whether
this �ber creation/deletion e�ect is due to a true
anatomical variability or to an artifact of the track-
ing algorithm.
Our statistical model is generative: we can com-

bine the deformation and the texture variability to
simulate new data. This procedure is shown in Fig.
15: The template is deformed according to the �rst
mode of deformation, and the �rst texture mode is
added to the result. This new synthetic bundle can
be compared to the input data in order to get an
insight into the common features which has been
detected in the population. More details on the ap-
plication of our methodology to white matter �ber
bundles can be found in Durrleman et al. (2009).

6. Discussion and conclusion

In this paper, we proposed a Matching Pursuit al-
gorithm for currents to give a sparse representation
of any currents. This sparse representation, in some
sense, is the optimal representation of the currents
for a given spatial scale λW . It allows us to give a
stable representation of mean and modes of a pop-
ulation of currents, even if the number of observa-

tions is growing in the database, or if the sampling
of the shapes becomes �ner. This representation en-
ables also a better visualization and therefore in-
terpretation of the statistics on currents. Moreover,
this light-weighted representation of currents is used
to integrate the representation of shapes as current
into a general atlas estimation scheme. We de�ne a
statistical model in which data are seen as random
deformations of an unknown template plus a random
perturbation in the space of current. A Maximum
A Posteriori approach leads to a consistent estima-
tion of the template (in the space of currents), the
deformations of the template to each data and the
residual perturbations. Statistics on the di�eomor-
phic deformations describe the variability in terms of
smooth variations like torque, elongation or shrink-
ing e�ect. Statistics on the residual perturbation in
the space of currents describe the variability that
cannot be captured by smooth deformations: topol-
ogy changes, matter creation or deletion, physical or
numerical noise, etc. In some sense, this framework
completes the instance of the Grenander's pattern
theory of shapes (which amounts to do statistics on
the deformations only) for the analysis of shape vari-
ability. The method is very versatile and may be ap-
plied to any kind of geometrical data like point sets,
curves, surfaces or volumes.
This framework depends on mainly 4 parameters:

the spatial scale of the currents λW which gives the
typical scale at which anatomical features are taken
into account (far below this scale geometric varia-
tions are considered as noise), the scale of the defor-
mation λV which measure the typical scale at which
a structure may deform (this controls the rigidity
of the transformation used in our framework) and
the trade-o� γ which controls the decomposition of
the variability into smooth variations and residual
perturbations which remain after registration. As a
consequence, the template is the representation of
a shape with no geometrical details at a scale much
smaller than λW . If γ tends to in�nity, deformations
are more and more constrained to remain close to
the identity (no deformation), more and more vari-
ability are captured by the residuals, less and less
by the deformations. These parameters determine
therefore the decomposition of the variability in a
geometrical part and a �texture" part. In this work,
the parameters were set manually for every applica-
tion, taking into account the size of the data and the
size of the features of interest. However, future work
would focus on a statistical estimation of the best pa-
rameters in the sense of maximum likelihood. Such
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an estimation has been performed for images and
small deformations in Allassonnière et al. (2007).
This would provide an optimal decomposition of the
variability. Finally, the sparsity parameter τ controls
the numerical precision of the template estimation.
The smaller, the more precise the computations, the
more points in the representation of the template,
the slowest the computation of the atlas.
The Orthogonal Matching Pursuit adapted to our

framework of currents allows us to achieve very good
compression ratio, while ensuring small approxima-
tion errors. However, even better compression ra-
tio could be achieved, for instance by adding more
vectors in the basis on which the signal is decom-
posed. In this paper, we consider the basis made of
the Delta Dirac currents δα

x which models in�nites-
imal segments or normals. One way to extend this
basis is to include the directional derivative of the
Delta Dirac currents ∂uδα

x (de�ned by ∂uδα
x (ω) =

αt dω(x)
dx u for any vector u), which model torques.

We could also take advantage of the recent develop-
ments of thematching pursuit techniques such as the
Compressive Sampling Matching Pursuit of Needell
and Tropp (2008), the subspace Matching Pursuit
of Dai and Milenkovic (2008) or the stagewise Or-
thogonal Matching Pursuit of Donoho et al. (2006)
for instance.
The approximation of currents based on match-

ing pursuit techniques allows us to give a represen-
tation of mean and modes which is much more inter-
pretable than their initial representation (the union
of all weighted tangents or normals in the database).
However, from a pure visualization point of view,
this representation is not completely satisfactory,
since the mean of a surface modeled as currents is
represented visually by sets of small triangles, mean
of a �ber tracts with sets of unconnected segments.
One would like to have a better rendering of the cur-
rents. Several ideas may be followed: approximat-
ing the current with a smooth surface via minimal
surfaces or using computer graphics tools like splats
for instance. This would be useful if one wants to
use these statistics to constraint the segmentation of
anatomical structures in images via atlas to subject
registration.
Our �rst results on real anatomical data shows the

relevance of this description of the variability. Even
if there were obtained with relatively small datasets,
our variability analysis could be interpreted from an
anatomical point of view. Of course, this interpreta-
tion should be strengthen by using larger datasets.

In this case, we can expect new anatomical knowl-
edge to come up. Last but not least, the descrip-
tion of the variability of population of patients may
drive the search of anatomical characterization of
pathologies, as illustrated by our experiments on sul-
cal curves, deep brain structures and white matter
�ber bundles. In turn, this analysis could be used to
perform discrimination between healthy and patho-
logic subjects, or automatic classi�cation of patients
according to their pathologies. Unsupervised clus-
tering on the deformations and residual perturba-
tions may also lead to the decomposition of patholo-
gies into consistent subtypes.
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Appendix A. Proof of convergence of the

orthogonal matching pursuit algorithm

Given a vector �eld γ = L−1
W (T ), the algorithm

detailed in Section 3.2 estimates at each step n
a current Πn that is supposed to approximate
the true solution T . To prove this fact, we show
that the in�nite norm of the residual vector �eld∥∥L−1

W (Πn)− γ
∥∥
∞ as well as the W ∗-norm of the

residual current ‖T −Πn‖W∗ (=
∥∥γ − L−1

W (Πn)
∥∥

W
)

tends to zero as n tends towards in�nity.
We denote by En

.= Span(δα
xi

; 1 ≤ i ≤ n, α ∈
Rd) for the iteratively estimated points (xi). The
estimated currentΠn is de�ned as theW -orthogonal
projection onto En. We denote Rn the residue so
that LW (γ) = Πn +Rn. The corresponding residual
error in W is denoted by γn = L−1

W (Rn). K denotes
here a generic kernel.

A.1. Convergence for the L∞ norm

We assume that there is a constant c < 0 such
that 〈K(x, x)u, u〉 ≥ c|u|2 for any x, u ∈ Rd. This
is the case if K is translation invariant and de�nite
positive since then K(x, x) = K(0) > 0. At each
iteration, due to the numerical implementation, we
choose xn+1 = x∗ so that

|γn(x∗)| ≥ max
x∈R3

|γn(x)| /2 (A.1)
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instead of the point that reaches exactly the maxi-
mum.
For any α ∈ Rd, since Πn + δα

x∗
∈ En+1

‖Rn+1‖2W∗ ≤
∥∥Πn + δα

x∗
− T

∥∥2

W∗ (A.2)

Minimizing the right-hand side of Eq.A.2 with
respect to α leads to α∗ = K(x∗, x∗)−1γn(x∗)
for which

∥∥Πn + δα∗
x∗
− T

∥∥2

W∗ =
∥∥Rn + δα∗

x∗

∥∥2

W∗

= ‖Rn‖2W∗ − 〈K(x∗, x∗)−1γn(x∗), γn(x∗)〉 ≤
‖Rn‖2W∗ − c|γn(x∗)|2. Thus we get from (A.1) and

(A.2) that ‖Rn+1‖2W∗ ≤ ‖Rn‖2W∗ − c‖γn‖2∞/2.
Therefore the series ‖Rn‖W∗ is monotonically de-
creasing and hence converges.Moreover, c

2

∑∞
k=1 ‖γk‖2∞ ≤

‖T‖2W∗ and ‖γn‖∞ → 0.

A.2. Convergence for the W norm

Introducing Fn such that En+1 = En

⊥
⊕ Fn and

pn the W -orthogonal projection on Fn we have
for n ≥ m : ‖Rn −Rm‖2W∗ = ‖Πn −Πm‖2W∗ =∑n−1

k=m ‖pk‖2W∗ ≤ ‖T‖2W∗ . Writing Rm =
∑m

i=1 δαi
xi
,

we get ‖Rn‖2W∗ ≤ 〈Rn, Rm〉W∗ + 〈Rn, Rn −
Rm〉W∗ ≤

∑m
i=1 |αi|‖γn‖∞+‖T‖2W∗

∑∞
k=m ‖pk‖2W∗ .

Thus, lim ‖Rn‖2W∗ ≤ ‖T‖2W∗
∑∞

k=m ‖pk‖2W∗ . Since∑∞
k=0 ‖pk‖2W∗ <∞ we get the result for m→∞.
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