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1 Objective Function for Atlas Construction

In this document, we provide the differentiation of the L2 part of the criterion
for shape atlas construction. With the notations of the main paper [1], the
differentiable part of the criterion (omitting the sparsity penalty) writes:

E(X0, c0, {αi0}) =

Nsubj∑
i=1

{
1

2σ2
D(Xi

0(1),Xi) + L(Si0)

}
(1)

subject to: {
Ṡi(t) = F (Si(t)) Si(0) = {c0,αi0}
Ẋi

0(t) = G(Xi
0(t),Si(t)) Xi

0(0) = X0

(2)

where

L(Si0) =

Nc∑
p,q

αi0,p
t
K(c0,p, c0,q)α

i
0,q (3)

Assuming the ambient space is of dimension 3, X is a vector of length 3Nx,
where Nx is the number of points in the template shape, c and α are two vectors
of length 3Nc each, where Nc is the number of control points, so that S is a
vector of length 6Nc.

F (S) =

(
F c(c,α)
Fα(c,α)

)
is a vector of length 6Nc, which is decomposed into

two vectors of size 3Nc. The kth coordinate (among Nc) of F c and Fα is the
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3D vector:

F c(S)k =

Nc∑
p=1

K(ck(t), cp(t))αp(t)

Fα(S)k = −
Nc∑
p=1

αk(t)tαp(t)∇1K(ck(t), cp(t))

(4)

G(X,S) is a vector of size 3Nx. Its kth coordinate (among N) is the 3D
vector:

G(X,S)k =

Nc∑
p=1

K(xk(t), cp(t))αp(t) (5)

2 Differentiation of the Objective Function

2.1 Gradient of the Objective Function

In this section, we aim to prove that the gradient of the objective function with
respect to the initial state S0,i = {c,αi} and the template shape X0 is given
as:

∇αi
0
E = ξα,i(0) +∇αi

0
L(c0,α

i
0)

∇c0
E =

Nsubj∑
i=1

{
ξc,i(0) +∇c0

L(c0,α
i
0)
}

∇X0E =

Nsubj∑
i=1

θi(0)

(6)

where the auxiliary variables ξi(t) = {ξc,i(t), ξα,i(t)} (of the same size as Si(t))
and θi(t) (of the same size as X0) satisfy the linear ODEs:{

θ̇i(t) = −(∂1G(Xi(t),Si(t)))tθi(t)

θi(1) = ∇Xi(1)DX(Xi(1),Xi)
(7)

 ξ̇i(t) = −
(
∂2G(Xi(t),Si(t))tθi(t) + dSi(t)F

tξi(t)
)

ξi(1) = 0
(8)

2.2 Proof

The differentiation of the criterion (1) can be done for each subject i indepen-
dently. Therefore, we differentiate only one term of the sum in (1) for a generic
subject’s index i that we omit in the following for clarity purposes.

A small perturbation δS0 of the initial state of the system induces a perturba-
tion of the motion of the particles δS(t), which, in turn, induces a perturbation
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of the template mapping δX(t) and of the criterion δE, which writes thanks to
the chain rule:

δE =
(
∇X(1)D

)t
δX(1) + (∇S0

L)
t
δS0. (9)

According to (2), the perturbations δS(t) and δX(t) satisfy the linearized
ODEs:

˙δS(t) = dS(t)FδS(t) δS(0) = δS0

˙δX(t) = ∂1GδX(t) + ∂2GδS(t) δX(0) = δX0

The first ODE is linear. Its solution is given by:

δS(t) = exp

(∫ t

0

dS(u)Fdu

)
δS0. (10)

The second ODE is linear with source term. Its solution is given by:

δX(t) =

∫ t

0

exp

(∫ t

u

∂1Gds

)
∂2G(u)δS(u)du+ exp(

∫ 1

0

∂1G(s)ds)δX0 (11)

Plugging (10) into (11) and then into (9) leads to: ∇S0
E =

∫ 1

0

Rt0t∂2G(X(t), S(t))tV tt1∇X(1)D +∇S0
L

∇X0
E = V t01∇X(1)D

, (12)

where we denotedRst = exp
(∫ t

s
dS(u)Fdu

)
and Vst = exp

(∫ t
s
∂1G(X(u), S(u))du

)
.

Let us denote θ(s) = Vs1
t∇X(1)D, g(s) = ∂2G(s)

t
θ(s) and ξ(t) =

∫ 1

t
R0s

tg(s)ds,
so that the gradient (12) can be re-written as: ∇S0

E =

∫ 1

0

R0s
tg(s)ds+∇S0

L = ξ(0) +∇S0
L

∇X0
E = θ(0)

.

Now, we need to make explicit the computation of the auxiliary variables
θ(t) and ξ(t). By definition of Vt1, we have V11 = Id and dVt1/dt = Vt1∂1G(t),
which implies that θ(0) = ∇X(1)D and θ̇(t) = −∂1G(t)

t
θ(t), namely (7).

For ξ(t), we notice that Rts = Id −
∫ s
t
dRus

du du = Id +
∫ s
t
RusdS(u)F (u)du.

Therefore, using Fubini’s theorem, we get:

ξ(t) =

∫ 1

t

Rts
tg(s)ds

=

∫ 1

t

g(s) + dS(s)F
t

∫ 1

s

Rsu
tg(u)duds

=

∫ 1

t

g(s) + dS(s)F
tξ(s)ds.

This last equation is nothing but the integral form of the ODE given in (8).
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3 Gradient in coordinates

In this section, we write the gradient in coordinates. Expanding the vari-
ables Si(t) = {c0,k(t), αi0,k(t)}, Xi(t) = {Xi

k(t)}, θi(t) = {θik(t)} and ξi(t) =

{ξc,ik (t), ξα,ik (t)}, we have

∇c0,k
E =

Nsubj∑
i=1

ξc,ik (0) +∇c0,k
L(Si0)

∇αi
0,k
E =

Nsubj∑
i=1

ξα,ik (0) +∇αi
k
L(Si0)

where the gradient of the regularity term is given as (from now on, we omit
the subject’s index i for clarity purposes):

∇αk
L = 2

Nc∑
p=1

Kg(ck, cp)αp

∇ck
L = 2

Nc∑
p=1

αp
tαk∇1K

g(ck, cp)

and the other terms are computed as follows.

3.1 Computation of θ̇(t)

The term ∂1G(X(t),S(t)) is a block-matrix of size 3Nc × 3Nx whose (k, p)th
3× 3 block is given as:

dXk
G(X(t),S(t))p =

Nc∑
j=1

αj(t)∇1K(Xp(t), cj(t))
tδ(p− k)

so that the vector θ(t) is updated according to:

−θ̇k(t) =

Nc∑
p=1

αp(t)
tθk(t)∇1K(Xk(t), cp(t)) (13)

3.2 Computation of ξ̇(t) = (ξ̇c(t), ξ̇α(t))

The terms ∂cgG(X(t),S(t)) and ∂αG(X(t),S(t)) are both matrices of size 3Nx×
3Nc, whose (k, p) block is given respectively by:

dckGp = αk (∇1K(ck, Xp))
t

dαk
Gp = K(ck, Xi)I3
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The differential of the function F (S) =

(
F c(c,α)
Fα(c,α)

)
can be decomposed

into 4 blocks as follows:

dS(t)F =

(
∂cF

c ∂αF
c

∂cF
α ∂αF

α

)
(14)

Therefore, the update rules for the auxiliary variables ξc(t) and ξα(t) are
given as:


− ξ̇ck(t) =

Nx∑
p=1

αk(t)tθp(t)∇1K(ck(t), Xp(t)) + (∂cF
c)tξc(t)k + (∂cF

α)tξα(t)k

− ξ̇αk (t) =

Nx∑
p=1

K(ck(t), Xp(t))θp(t) + (∂αF
c)tξc(t)k + (∂αF

α)tξα(t)k

with

(∂cF
c)tξc(t)k =

Nc∑
p=1

(
αp(t)

tξck(t) + αk(t)tξcp(t)
)
∇1K(ck(t), cp(t))

(∂cF
α)tξα(t)k =

Nc∑
p=1

αk(t)tαp(t)∇1,1K(ck(t), cp(t))
t
(
ξαp (t)− ξαk (t)

)

(∂αF
c)tξc(t)k =

Nc∑
p=1

K(ck(t), cp(t))ξ
c
j (t)

(∂αF
α)tξα(t)k =

Nc∑
p=1

∇1K(ck(t), cp(t))
t
(
ξαp (t)− ξαk (t)

)
αp(t)

In these equations, we supposed the kernel symmetric: Kg(x, y) = Kg(y, x).

If the kernel is a scalar isotropic kernel of the form Kg = f(‖x− y‖2)I, then we
have:

∇1K
g(x, y) = 2f ′(‖x− y‖2)(x− y)

∇1,1K
g(x, y) = 4f ′′(‖x− y‖2)(x− y)(x− y)t + 2f ′(‖x− y‖2)I

The ODEs are integrated by using a Euler scheme with prediction/correction
scheme. This has the same accuracy as a Runge Kutta scheme of order 2.

Given the current value of the position of the vertices of the template shape
Si0, the position of the control points c0 and the momentum vectors αi0, one
generates the subject-specific motions of the couples (control point, momentum
vector) Si(t) and the deformations of the template shape Xi(t) by integrating
the ODEs (2) forward in time. Given these trajectories, one computes the
gradient of the data term ∇Xi(1)D that indicates in which direction to move the
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vertices of the deformed template to decrease the most the residual data term.
Then, one propagates this information to the control points and momenta by
computing θi(1) and ξi(1) and flowing these variables from time t = 1 back to
time t = 0. Their values at time t = 0 is used to update the initial position of
the control points c0, the initial momentum vectors αi0 and the positions of the
vertices of the template shape X0.

The computation of the gradient uses back and forth integration to exchange
information from the template space, where the parameters to be updated live,
to the subjects’ space, where the data terms live. The gradient is entirely driven
by the gradient of the data term ∇Xi(1)D(Xi(1),Xi). The differentiation of the
residual current norm is performed as explained in [2]. Would we have point
correspondence across the shapes and would we choose the sum of squared
differences for D (D(Xi(1),Xi) =

∑Nx

k=1(Xi(1)k −Xi
k)2), then we would have

simply:

∇Xi
k(1)

D(Xi
k(1),Xi) = 2(Xi

k(1)−Xi
k).
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