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Abstract. Statistical analysis of shapes, performed by constructing an
atlas composed of an average model of shapes within a population and
associated deformation maps, is a fundamental aspect of medical imag-
ing studies. Usual methods for constructing a shape atlas require point
correspondences across subjects, which are difficult in practice. By con-
trast, methods based on currents do not require correspondence. How-
ever, existing atlas construction methods using currents suffer from two
limitations. First, the template current is not in the form of a topo-
logically correct mesh, which makes direct analysis on shapes difficult.
Second, the deformations are parametrized by vectors at the same lo-
cation as the normals of the template current which often provides a
parametrization that is more dense than required. In this paper, we pro-
pose a novel method for constructing shape atlases using currents where
topology of the template is preserved and deformation parameters are
optimized independently of the shape parameters. We use an L1-type
prior that enables us to adaptively compute sparse and low dimensional
parameterization of deformations. We show an application of our method
for comparing anatomical shapes of patients with Down’s syndrome and
healthy controls, where the sparse parametrization of diffeomorphisms
decreases the parameter dimension by one order of magnitude.

1 Introduction

Shape statistics is fundamental to medical imaging studies, for instance to char-
acterize normal versus pathological structures or to highlight the effect of treat-
ments on anatomical structures. Usual methods build an average shape model,
called template, that is representative of a shape ensemble, and correspondences
between the template and each subject’s shape, altogether called an atlas. Dif-
ferences appear in the shape model used and the way shapes are put into corre-
spondence. Parametric models, such as medial axis representation [12], extract
low-dimensional shape features, which are averaged and compared across sub-
jects. Non parametric methods are often based on point correspondences across



shapes with an either fixed or optimized parameterization of the curves or sur-
faces [2, 7, 9, 13]. Homologous point positions are averaged and 3D-deformations
map the average model to the point configuration of each subject, such maps be-
ing used for deriving shape statistics [14, 11]. To alleviate the problem of finding
point correspondences across shapes, which is not always possible in practice, one
can compare shapes using the metric on currents [15]. In this framework, shape
statistics are represented by a template current and diffeomorphic 3D mappings
that map the template current to each subject’s shape.

Existing atlas construction approaches using the metric on currents [6, 4, 3]
suffer from two main limitations. First, the template current is either the super-
imposition of warped surfaces [6] or a set of disconnected normals or tangents
(Dirac currents) [4, 3] and therefore is not given as a mesh. It has never been
shown that such templates could be the approximation of a continuous sur-
face. In this sense, these approaches do not preserve the topology of the shapes,
namely the continuity of the surfaces and the number of connected components
of the shapes in the population, thus limiting its practical use for segmenta-
tion purposes, for instance. Second, the template-to-surface deformations are
parameterized by momentum or speed vectors that are at the same location as
the normal or tangent of the template current. However, there is no reason to
link the parameterization of the template shape with the parameterization of
the deformations. The most variable parts of the shape are not necessarily the
parts that require the finest sampling, e.g. the most folded ones. Therefore, the
template shape and the deformations should have independent parameterization.

In this paper, we propose to build a shape atlas using the metric on currents,
but in a way which allow the user to fix the topology of the template mesh,
namely the number of vertices and the edges connecting them, and to optimize
their position in the 3D space. This will be possible due to an optimal control
formulation of the diffeomorphic matching problem in the Large Deformation
Diffeomorphic Metric Mapping paradigm [10, 5]. In this formulation, the three
variables to optimize, namely the template shape, the control points positions
and the momentum vectors attached to them that parameterize the deforma-
tions, are seen as the initial conditions of a dynamical system. We derive here the
analytic expression of the gradient with respect to these variables. Additionally,
we use a L1 prior to select the most relevant subset of control points for the
parameterization of the shape variability. Such a sparse and adaptive parame-
terization will be particularly well suited for statistical purposes. We show an
application of our method to a study comparing anatomical features of patients
with Down’s syndrome (DS) and healthy controls, where the sparse parametriza-
tion of shape variability enable statistical analysis in lower dimensional spaces.

2 Shape Atlas Construction

2.1 Joint Estimation of Template and Deformations

The method aims to estimate a template shape X0 and template-to-subjects
deformations φi from a set of shapes X1, . . . ,XNsu . Each Xi denotes a vector



containing the positions of the vertices of the input shapes, which may be of
different sizes. X0 denotes the vertices of the template shape, whose number and
connectivity is fixed by the user. Only the positions of the vertices of the template
are optimized and not its connectivity, so that the topology of the template
is preserved during optimization. In the framework of Fréchet means [11], we
estimate one template and Nsu deformations φi that minimize the criterion:

E(X0, {φ1, . . . , φNsu
}) =

Nsu∑
i=1

D(φi(X0),Xi) + Reg(φi), (1)

where D denotes the squared distance on currents, φi(X0) the deformation of
the template shape X0 and Reg a measure of regularity of the deformations.

2.2 Parameterization of Deformations

We use a mechanical system of self-interacting particles, called control points,
to build dense diffeomorphic deformations [5]. Let c0 = {c0,k} be a set of control
points and α0 = {α0,k} a set of initial momenta of the particles, altogether
called the initial state of the system S0 = {c0,α0}. This set of particles moves
from time t = 0 to t = 1 according to following equations of motion:

ċk(t) =

N∑
p=1

K(ck(t), cp(t))αp(t)

α̇k(t) = −
N∑
p=1

αk(t)tαp(t)∇1K(ck(t), cp(t))

, (2)

which are such that the energy of the system
∑
i,j αi(t)

tK(ci(t), cj(t))αj(t)
is conserved in time. The kernel K models the interaction forces among the
particles. These equations describe the evolution of the state of the system
S(t) = {ck(t), αk(t)} and can be written in short: Ṡ(t) = F (S(t)) with the
initial condition S(0) = S0.

The motion of the control points defines a diffeomorphism of the whole 3D
space [8]. The speed at position x0 interpolates the speed of the control points:

ẋ(t) =

N∑
k=1

K(x(t), ck(t))αk(t). (3)

This equation shows that the rate of decay of the kernel determines the size of
the neighborhood that is “pulled” by each control point. It can be written in
short as ẋ(t) = G(x(t),S(t)) with the initial condition x(0) = x0. Using the
vertices of the template shape x0 as initial conditions, the integration of this
equation computes the deformation of the template shape X0 = X(0) to X(1)
that is equal to φ(X0) with φ is the diffeomorphism parameterized by S0.



2.3 Atlas Estimation

The Nsu template-to-subject deformations in the criterion (1) are parameterized
by Nsu vectors Si0. Each of these vectors serves as the initial condition in (2).
Then, the template deformation is obtained by integration of (2) followed by (3).
We choose to use the same set of control points c0 for all subjects, which defines
a common basis for the deformations parameterization. By contrast, the set of
initial momenta αi0 are subject-specific. As a regularizer of the deformations, we

use the energy of the set of particles
∑
p,q α

i
0,p

t
K(c0,p, c0,q)α

i
0,q, which is also the

geodesic distance connecting the template to the the ith shape [8]. In order to
select the most relevant subset of control points, we add a L1 penalty to (1), so
that the criterion to minimize writes:

E(X0, c0, {αi0}) =

Nsu∑
i=1

{
1

2σ2
D(Xi

0(1),Xi) +
∑
p,q

αi0,p
t
K(c0,p, c0,q)α

i
0,q + γ

∑
p

∥∥αi0,p∥∥
}

(4)
subject to: {

Ṡi(t) = F (Si(t)) with Si(0) = {c0,αi0}
Ẋi

0(t) = G(Xi
0(t),Si(t)) with Xi

0(0) = X0

(5)

The first equation in (5) is the equations of motion of the particles, like in (2). The
second equation is deformation of the template parameterized by the particles
motion, like in (3). σ2 and γ balance the data term against the regularization
terms. The variables to be optimized are: (i) the position of the vertices of the
template shape X0, (ii) the position of the control points in the template domain
c0 and (iii) the Nsu initial momenta αi0 that parameterize each template-to-
subject deformation. In practice, we also regularize the template shape defined
by X0 by applying a penalty on Gaussian curvature of the mesh.

Only the first two terms in (4) are differentiable. As shown in the supple-
mentary material accessible at the first author’s webpage, the gradient of data
term is given as:

∇αi
0
D = ξα,i(0) ∇cD =

Nsu∑
i=1

ξc,i(0) ∇X0
D =

Nsu∑
i=1

θi(0)

where the auxiliary variables ξi(t) = {ξc,i(t), ξα,i(t)} (of the same size as Si(t))
and θi(t) (of the same size as X0) satisfy the linear ODEs:

θ̇i(t) = −(∂1G(Xi
0(t),Si(t)))tθi(t) with θi(1) =

1

2σ2
∇Xi

0(1)
D(Xi

0(1),Xi)

ξ̇i(t) = −
(
∂2G(Xi

0(t),Si(t))tθi(t) + dSi(t)F (Si(t))tξi(t)
)

with ξi(1) = 0
(6)

To compute the gradient, one integrates the flow equations (5) forward in
time to build the deformations of the template shape. Then, one computes the



gradient of the residual data term ∇D, which serves as initial conditions in (6).
The ODEs (6) transport this information from each subject’s space back to the
template space, where the final value of the auxiliary variables θ(t) (resp. ξ(t))
is used to update the template (resp. the control point positions and momenta).

To optimize (4), which combines differentiable terms denoted EL2 with an
L1 penalty, we use an adapted gradient-descent scheme called Fast Iterative
Shrinkage and Thresholding Algorithm [1]. The template and control points are
not affected by the L1 term and are updated using a gradient-descent step at
each iteration. By contrast, the momenta αi0,p are updated according to:

αi0,p ← Sτγ

(∥∥∥αi0,k − τ∇αi
0,k
EL2

∥∥∥) αi0,k − τ∇αi
0,k
EL2∥∥∥αi0,k − τ∇αi

0,k
EL2

∥∥∥ , (7)

where τ is the current step-size of the gradient descent and S the usual soft-
thresholding function Sλ(x) = max(0, x − λ) + min(0, x + λ). This function
zeroes out the momenta that are too small in magnitude, thus ensuring sparsity
in the parametrization of deformations.

The parameters of the algorithm are the trade-offs σ and γ, the standard
deviation of the Gaussian kernels for the momenta σV and the currents metric
σW [15, 4]. We initialize the template shape with an ellipsoid for each connected
component of the shapes, the control points with a regular lattice of step σV ,
and the initial momenta are set to zero.

3 Results

We apply our method to a study that seeks to compare neuroimaging, genetics,
and neurotransmitter properties of patients with Down’s syndrome and healthy
controls. We construct an atlas from surfaces of three different deep brain struc-
tures: amygdala, hippocampus, and putamen (Fig. 1). We initialize the atlas
with one ellipsoid for each of the three anatomical structures, and we initialize
the control points with a regular lattice of 650 points. After the optimization, the
template shapes capture the common anatomical features across the populations
(Fig. 2-left), and are given as meshes with the same topology as the initial set
of ellipsoids. The parameterization of the template-to-subject deformations were
also optimized: control points are moved toward the surfaces (where their the-
oretical optimal locations are, as shown in [15]) and the sparsity prior selects a
subset of control points (99 out of 650) that carry a non-zero momentum vector.
Results were generated using σ = 10−4, γ = 3× 106, σV = 5, and σW = 2.

By comparison, we show the atlas built with the method of [4] in Fig. 3.
The template shape is given as a set of disconnected normals: the continuity
of the surfaces and the number of connected components of the input shapes
have not been preserved. Moreover, the template-to-subjects deformations are
parameterized with momenta located at the same place as the template normals.
By contrast, our method optimized the position and the number of the control



Down’s syndrome patients (8 in total) Control subjects (8 in total)

Fig. 1. Sample input shapes where hippocampus, amygdala, and putamen are shown
in yellow, blue, and cyan respectively.

Initial template Deformation momenta to 2 Down’s syndrome patients

Final template Deformation momenta to 2 control subjects

Fig. 2. Atlas construction: template shape (left) and parameterization of the template-
to-subject deformations (right). The template is initialized with an ellipsoid per con-
nected components (top-left). After the optimization, the template shapes still have
the same topology as the sample shapes. Simultaneously, template-to-subjects deforma-
tions are estimated, which are parameterized by the momentum vectors (red arrows).
The vectors are located at the position of the control points, which are the same for
all subjects. Control point positions were initialized as the nodes of a regular lattice,
and our algorithm moves the control points to their optimal position near the surfaces
and selects the most relevant ones according to the sparsity prior.

points independently of the vertices of the template shapes. Consequently, defor-
mations are parameterized by more than 40 times fewer momenta. Constraining
the template to remain a mesh has not introduced bias in the estimation: the
norm of the difference between the templates generated by the two methods is
3.4 × 10−5, which is much smaller than the standard deviation and below the
usual threshold of 3 times standard deviation to decide statistical significance.

We construct a common template for the combined DS and healthy popu-
lations, and perform a Principal Component Analysis (PCA) on the momen-
tum vectors for each population separately. The results in Fig. 4 show that the
two populations contain different variability at different objects and at differ-
ent locations within each object. The sparse momentum vectors enable statistical
analysis in lower dimensional space which has great potential for clinical studies.



[4] Our method [4] Our method

Fig. 3. Comparison of hippocampus template generated using [4] and our method. Ar-
rrows indicate the momenta driving the registration of the template to the first subject.
Our method generates topologically correct mesh as opposed to triangle normals, and
with momenta that are not constructed to be located at the surface triangles.

Means −λ +λ −λ +λ
DS vs Control DS Control

Fig. 4. Statistical analysis of momentum vectors for Down’s syndrome (DS) and
healthy control population. Left: template deformed according to the average momenta
for DS (red) and control (yellow). Center and Right: Templates deformed according to
the first mode of PCA on momentum vectors for DS and control population, demon-
strating the different modes of variability. Colors indicate the magnitude of displace-
ment from the population mean shape (in mm).

4 Conclusions

We propose a new method for estimating shape atlases using the currents met-
ric. In contrast to [6, 4], the template shape is given as a mesh that has the
same topology as the shapes in the population and the parameterization of the
template-to-subject deformations were optimized independently of the template
shape. We use a single gradient descent for estimating the template and the defor-
mations, in contrast to the alternating minimization in [6, 4]. This scheme is much
more efficient than using the matching pursuit technique and shows good con-
vergence properties, even with the most naive initialization. Our non-parametric
method makes use of the metric on currents, which enables the use of shapes
without point correspondences, and therefore with minimal pre-processing.

The method also provides automatic parametrization of diffeomorphisms for
mapping subjects within a population, where the parameters are constrained
to lower dimensional spaces. We demonstrated the potential for these sparse
parametrizations for performing statistical analysis on shapes from Down’s syn-
drome and healthy control population groups, which can enable future research
correlating brain function, anatomy, and neurocircuitry.



In the future, we plan to analyze the robustness and statistical power of the
parametrizations provided by our method, in particular in High Dimension Low
Sample Size (HDLSS) settings that are typical in imaging studies of populations.
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