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Abstract. Building an atlas from a set of anatomical data relies on (1)
the construction of a �mean anatomy� (called template or prototype) and
(2) the estimation of the variations of this template within the popula-
tion. To avoid biases introduced by separate processing, we jointly esti-
mate the template and its deformation, based on a consistent statistical
model. We use here a forward model that considers data as noisy defor-
mations of an unknown template. This di�ers from backward schemes
which estimate a template by pulling back data into a common refer-
ence frame. Once the atlas is built, the likelihood of a new observation
depends on the Jacobian of the deformations in the backward setting,
whereas it is directly taken into account while building the atlas in the
forward scheme. As a result, a speci�c numerical scheme is required to
build atlases. The feasibility of the approach is shown by building atlases
from 34 sets of 70 sulcal lines and 32 sets of 10 deep brain structures.

1 Forward vs. Backward Models for Template Estimation

In the medical imaging �eld, atlases are useful to drive the personalization of
generic models of the anatomy, to analyze the variability of an organ, to char-
acterize and measure anatomical di�erences between groups, etc. Many frame-
works have been proposed to build atlases from large database of medical images
[1,2,3,4], much fewer were proposed for anatomical curves or surfaces [5,6]. In
any case, the underlying idea remains the same: one estimates a �mean anatomy�
(called template) and one learns how this mean model deforms within a given
population. The most widely used method in medical imaging is based on a
backward model that deforms every observations back to a common reference
frame (See Fig.1). However, we prefer here to base our statistical estimation on
a forward model, as pioneered in [7,8], which considers the observations (Ti)
as noisy deformations (φi) of an unknown template (T̄ ). Formally, the forward

model can be written as:

Ti = φi.T̄ + εi (1.1)

whereas the backward model is:

φi.Ti = T̄ + εi ⇐⇒ Ti = φ−1
i T̄ + φ−1

i εi (1.2)



forward scheme backward scheme

Fig. 1. In the forward scheme, the physical observations (Oi) are seen as noisy defor-
mation (φi) of unknown template (Ō). In the backward scheme, the template is an
average of deformed observations. In the forward scheme the noise is removed from the
observations whereas it is pulled back in the common frame with the backward scheme.

The backward model considers either (Eq.1.2-left) that the template T̄ is
noisy and the observations Ti free of noise or (Eq.1.2-right) that the noise added
the observations (φ−1

i εi) depends on the observations via an unknown deforma-
tion. By contrast, the forward model (Eq.1.1) considers that the template is not
blury, as an �ideal� object, and an independent and identically distributed

noise εi is added to every observations. This models more accurately the physical
acquisitions, whereas the backward model relies on less realistic assumptions.

The observations Ti are given as discrete sampled objects. The template T̄
models an average �ideal� biological material and it is therefore supposed to
be continuous. Since in the backward model sampled observations deform to a
continuous template, an extrinsic interpolation scheme is required. By contrast,
in the forward setting, the deformed template needs only to be sampled to be
compared to the observations. This does not only reproduce more accurately the
real physical acquisition process, but also depends on less arbitrary assumptions.

Assume now that we can de�ne probabilities on objects T (images, curves,
surfaces, etc.) and on deformations φ. The statistical estimation of an atlas would
require at least to compute p(T̄ |Ti), the probability of having the template given
a training database of Ti. Once the atlas is built, one would like to know how
a new observation Tk is compared to the learnt variability model: one needs to
compute the likelihood of this observation given the template p(Tk|T̄ ). Because
φi acts di�erently in Eq.1.1 and in Eq.1.2, the computational cost of these two
steps varies signi�cantly. In the backward scheme, computing p(T̄ |Ti) should
be simpler than computing p(Ti|T̄ ) which depends on the Jacobian of φi. It
is exactly the reverse for the forward scheme. Since it is better to spend more
time to build the atlas (which is done once for all) and to keep simple the test
of any new available data, the forward model seems better suited even from a
computational point of view.

Finally, the forward model is also better understood from a theoretical point
of view. For instance, the convergence of the Maximum A Posteriori (MAP)
template estimation, when the number of available observations is growing, is
proved for images and small deformations [7]. Such proofs for the backward
model seem currently out of reach.



For all these reasons, we base here our statistical estimations on the forward
model. We show in this paper how the atlas building step, which is the most
critical step in this paradigm, is possible in case of curves and surfaces. Com-
pared to images, dealing with shapes requires speci�c numerical scheme. We take
advantage here of a sparse deconvolution scheme we introduced recently [9,10].

The paper is organized as follows. A general non parametric framework for
shape statistics is introduced in Section 2. In Section 3 we detail the optimization
procedure to estimate jointly a template and its deformations to the shapes. A
sparse deconvolution method is presented to e�ectively compute the gradient
descent. In Section 4, we show templates computed from large sets of sulcal lines
and sets of meshes of sub-cortical structures.

2 Non-parametric Representation of Shapes as Currents

As emphasized in [11,12,5], a current is a convenient way to model geometrical
shapes such as curves and surfaces. The idea is to characterize shapes via vector
�elds, which are used to probe them. A surface S is characterized by the �ux of
any vector �eld ω through it:

S(ω) =
∫

S

ω(x).(u× v)(x)dσ(x) (2.1)

where u × v is the normal of the surface, (u, v) an orthonormal basis of its
tangent plane) and dσ the Lebesgue measure on the surface. Similarly, a curve
L is characterized by the path integral of any vector �eld ω along it:

L(ω) =
∫

L

ω(x).τ(x)dx (2.2)

where τ is the tangent of the curve. More generally, we de�ne a current T as a
linear continuous mapping from a set of test vector �elds W to R. This framework
enables to de�ne addition, deformation, Gaussian noise on shapes, to measure
a distance between shapes, without assuming point correspondences between
objects. We recall here some properties of currents to give a rigorous sense of
Eq.1.1 in case of shapes. We refer the reader to [11,13,9] for more details.

As mappings from W to R, the currents build a vector space, denoted W ∗:
(T1 + T2)(ω) = T1(ω) + T2(ω) and (λ.T )(ω) = λ.T (ω). For surfaces, this means
that the �ux through two surfaces is the sum of the �ux through each surface: the
addition is equivalent to the union of surfaces. Scaling a surface means scaling
the power of the �ux through the surface.

Suppose now that we can provide the test space W with a norm that measures
the regularity of the vector �elds. We can de�ne then a norm of a current T
as the maximum �ux through T of any regular vector �elds (i.e. ‖ω‖W ≤ 1):

‖T‖2W∗ = Sup‖ω‖W≤1 |T (ω)| (2.3)

The distance between two surfaces ‖S − S′‖W∗ is therefore obtained for the
regular vector �eld that best separates the two surfaces, in the sense that the



di�erence of the �ux through the two surfaces is the largest possible. This dis-

tance between shapes does not depend on how shapes are parametrized and does

not assume point correspondences between shapes.

For computational purposes, we suppose, from now onwards, that W is a
reproducible kernel Hilbert space (r.k.h.s) with kernel K [14]. In this setting,
the space of currents is the dense span of all Dirac delta currents δα

x , which are
de�ned by δα

x (ω) = 〈ω(x), α〉R3 for any ω ∈W . A Dirac current may be seen as
a tangent (resp. normal) α entirely concentrated at point x. Although a curve
(resp. a surface) has an in�nite number of tangents (resp. normals), a polygonal
lines (resp. a mesh) may be approximated in the space of currents by a �nite
sum

∑
k δαk

xk
where xk is the center of the segment (resp. center of the mesh cell)

and αk the tangent of the line (resp. the normal of the surface) at xk.
Moreover, based on the Riesz theorem, we can show that for any current

T , the vector �eld (within Eq. 2.3) that achieves Sup‖ω‖W≤1 |T (ω)| exists and is

unique. We denote this vector �eld L−1
W (T ) and call it the dual representation

of T . LW is isometric: it provides W ∗ with an inner product:

‖T‖2W∗ = 〈T, T 〉W∗ =
〈
L−1

W (T ),L−1
W (T )

〉
W

(2.4)

On Diracs we have:

L−1
W (δα

x )(y) = K(y, x)α (2.5)

This equation shows that K is the Green kernel of LW . Applying Eq. 2.4 and
Eq. 2.5 leads to: 〈

δα
x , δβ

y

〉
W∗ = αtK(x, y)β (2.6)

This gives by linearity explicit and easily tractable formula to compute the
inner product (and then the distance) between two shapes T =

∑
i δαi

xi
and

T ′ =
∑

j δ
βj
yj : 〈T, T ′〉W∗ =

∑
i

∑
j αt

iK(xi, yj)βj . The mapping L−1
W is a sim-

ple convolution operator, as illustrated in Fig.2-a. On the contrary, �nding the
current T whose associated vector �eld γ is given (T = LW (γ)) is an ill-posed
deconvolution problem that requires speci�c numerical scheme as the one we will
present in Section 3.3.

The kernel K enables also to de�ne an associated Gaussian noise on cur-
rents ε. In in�nite dimension, ε maps every currents to a Gaussian variable such
that Cov(ε(δα

x ), ε(δβ
y )) = αtK(x, y)β. If we set a grid Λ = {xp}p=1...N , the span

of (δxp)p∈Λ de�nes a �nite dimensional space of currents. The corresponding ε is
of the form

∑
p∈Λ δ

αp
xp where (αi) are centered Gaussian variables with covariance

matrix K−1 where K = (K(xi, xj))i,j∈Λ. In this last case, ε has a probability den-

sity function (pdf) which is proportionnal to exp(−‖ε‖2W∗). For our applications
we will choose a Gaussian kernel: K(x, y) = exp(−‖x− y‖2 /λ2

W )Id.
To make sense of the model Eq.1.1, one must still specify how this mod-

elling based on currents may be coupled with a deformation framework. If φ
is di�eomorphism and S a surface, the �ux of ω through the deformed shape
φ(S), denoted for general currents (φ] ? S)(ω), is equals to the �ux through S
of the pulled-back vector �eld φ] ? ω which is given by the change of variables



formula within the �ux integral. This enables to de�ne a general push-forward
action of a di�eomorphism on any currents. This action replaces for curves
and surfaces the usual action on images: (φ ? I)(x) = I(φ−1(x)). This is here
slightly more complex since we do not transport points but tangents or normals
(di�erential 1 and 2-forms to be even more precise). On the basis elements, the
push-forward action gives:

φ] ? δα
x = δ

dxφ(α)
φ(x) (2.7)

if α is a tangent of a curve and

φ] ? δu×v
x = δ

dxφ(u)×dxφ(v)
φ(x) (2.8)

if u×v is the normal of a surface. One notices that dxφ(u)×dxφ(v) = |dxφ| dxφ−t(u×
v).

In the following, we restrict the deformations φ to belong to the group of dif-
feomorphisms set up in [15,16]: the di�eomorphisms are obtained by integration
of a time-varying vector �eld vt: ∂tφt = vt ◦φt. The geodesic �ows (φvt

t )t∈[0,1] are
completely determined by the initial vector speed v0 which belongs to a r.k.h.s.
V . The �nal di�eomorphism is denoted φv0 . How to �nd such a di�eomorphism
that best matches two sets of currents is explained in detail in [11,13].

3 Joint Estimation of Template and Deformations

3.1 A Heuristic Maximum A Posteriori in In�nite Dimension

From a Bayesian point of view, in Eq.1.1 (Ti = φi,] ? T̄ + εi), Ti are the observa-
tions, T̄ is unknown, φi are hidden variables and εi independent and identically
distributed Gaussian noise with known variance. Suppose now that we can de-
�ne Gaussian probability density functions (pdf) on the space of Currents W ∗

and on the space of initial vector �elds V : pε(ε) = Cε exp(−‖ε‖2W∗ /σ2
W ) and

pφ(v) = Cφ exp(−‖v‖2V /σ2
V ). In that case, a Maximum A Posteriori (MAP) es-

timation for independent observations maximizes maxT̄

∏N
i p(Ti|T̄ ). Formally,

p(Ti|T̄ ) =
∫

pε(Ti|T̄ , vi
0)pφ(vi

0)dv0 =
∫

pε(Ti − φ
vi
0

i T̄ )pφ(vi
0)dv0

Since the term within the integral depends on v0 by a geodesic shooting of di�eo-
morphisms, there are no closed forms for this likelihood. A usual approximation
consists in replacing the integral by the maximum of the distribution within the

integral (i.e. its �rst mode). This leads to: p(Ti|T̄ ) ∼ maxvi
0
pε(Ti − φ

vi
0

i T̄ )pφ(vi
0)

which �nally gives:

(T̄ , φvi
0) = argminT̄ ,vi

0

{
N∑

i=1

1
σ2

V

∥∥vi
0

∥∥2

V
+

1
σ2

W

∥∥∥Ti − φvi
0 .T̄
∥∥∥2

W∗

}
(3.1)

called Fast Approximation with Mode (FAM). If we already de�ned Gaussian
variables in the space of currents (Section 2), such variables have no pdf because



W ∗ and V are of in�nite dimension. A more rigorous MAP derivation could be
done considering �nite dimensional parametrization of the v0's and of the Ti's.
For instance currents may be projected into a �xed grid; but this would require to
adapt the registration scheme of [11] to account for such a discretization. Markov
Chain Monte Carlo (MCMC) approaches for sampling the posterior could be also
possible along the lines of [17] but this is still challenging and out of the scope
of this paper.

3.2 A alternated Minimization Procedure

We solve Eq.3.1 by minimizing it alternatively with respect to the template
and to the deformations. When the template T̄ is �xed, each term of 3.1 can

be minimized separately. For a given observation Ti, minimizing 1
σ2

V

∥∥vi
0

∥∥2

V
+

1
σ2

W

∥∥∥Ti − φ
vi
0

i .T̄
∥∥∥2

W∗
with respect to vi

0 is exactly a registration problem, as stated

and solved in [11,13]. This step of the minimization consists therefore of N
registrations of the template T̄ to each observation Ti.

When the deformations φi are �xed for every i = 1 . . . N , minimizing 3.1
with respect to the template T̄ leads to the minimization of:

J(T̄ ) =
1
2

N∑
i=1

∥∥φ],i ? T̄ − Ti

∥∥2

W∗ (3.2)

If all φi = Id (i.e. no deformation), the minimum is reached at the empirical

mean: T̄ = 1
N

∑N
i Ti. For arbitrary deformations, there is no closed form and

we use a gradient descent scheme. The gradient of Eq.3.2 is precisely:

∇T̄ J =
N∑

i=1

φ∗],i ? (φ],i ? T̄ − Ti) (3.3)

where φ∗] is the adjoint action of φ]:
〈
φ∗] ? T, T ′

〉
W∗

= 〈T, φ] ? T ′〉W∗ for any

currents T and T ′. This would be a matrix transpose if the action was linear. In
this non-linear setting, standard computations give φ∗] ? T = LW (φ] ? L−1

W (T )).

With the backward scheme, Eq.3.2 would be: J(T̄ ) = 1
2

∑N
i=1

∥∥T̄ − φ],i ? Ti

∥∥2

W∗ ,

whose minimum has the closed form T̄ = 1
N

∑N
i=1 φ],i ? Ti. We see here why

the atlas building step is computationally more di�cult in the forward setting.
However, computing the likelihood of any new observations p(Ti|T̄ ) will be much
simpler and faster in this setting.

The input shapes Ti are sampled objects which are approximated as �nite
set of Dirac currents. As it will appear from this minimization procedure, the
template will also always remain a �nite set of Dirac currents at every iteration.

Therefore, the current φ],i ? T̄ − Ti is of the form
∑

k δ
βi

k

yi
k

which �nally leads to

φ]
i ?L−1

W (φ],i ? T̄ −Ti) =
∑

k(dxφi)tK(φi(x), yi
k)βi

k in case of curves. Finally, the



vector �eld associated to the gradient of the energy 3.2 in case of curves can be
computed at any point x of the space:

L−1
W (∇T̄ J)(x) =

N∑
i=1

(dxφi)t

(∑
k

K(φi(x), yi
k)βi

k

)
(3.4)

For surfaces, dxφt
i must be replaced by |dxφ| dxφ−1. At this stage, we see that the

gradient descent scheme could not be performed without an e�cient numerical
algorithm to estimate the current ∇J whose associated vector �eld is given by
Eq.3.4. The sparse deconvolution method of Section 3.3 precisely provides a �nite
set of Dirac current which approximates ∇J at any arbitrary accuracy, so that
the template remains a �nite set of Dirac currents at each iteration.

We initialize the algorithm by setting φi = Id, T̄ = 1
N

∑N
i=1 Ti and by com-

puting γT̄ = L−1
W (T̄ ) via a Gaussian convolution. The current T̄ is encoded as

a list of (position, vectors) that approximate small segments or small triangles.
The dense vector �eld γT̄ is discretized at a �xed grid's points: Λ = {xp} and
therefore encoded as an image of vectors. The following variable grad is also an
image of vectors. We then iterate the following loop:

� For i = 1 . . . N , φi ← registration of T̄ to Ti.
� Until convergence do
• grad = 0
• For i = 1 . . . N do
∗ transport tangents (normals) of T̄ with φi (gives φ],i ? T̄ ).

∗ store the (yi
k, βi

k) such that φ],i ? T̄ − Ti =
∑

k δ
βi

k

yi
k

∗ Deform Λ with φi and for each p ∈ Λ compute:
· dxpφi by a �nite di�erence scheme
· G =

∑
k K(φi(xp), yi

k)βi
k (convolution)

· grad(p)← grad(p) + 2dxpφt
iG (or +2

∣∣dxpφi

∣∣ (dxpφi)−1G)
• γT̄ ← γT̄ − τgrad
• Deconvolution of γT̄ to give the new T̄ (See section 3.3).

3.3 Sparse Deconvolution by a Matching Pursuit Algorithm

Like any linear combinations of the input currents, the mean current T̄ is
stored as the set of all weighted tangents (or normals) in the database T̄ =
(1/N)

∑N
1 Ti =

∑n
1 δαk

xk
where n grows linearly with the number of observa-

tions. This heavy representation makes critical the registration of T̄ right after
the initialization step. But this representation is often far from being optimal:
it may be highly redundant at the scale λW . To integrate this redundancy, we
compute the vector �eld L−1

W (T̄ ) (Fig.2-a) by convolution. Then, an adequate
deconvolution scheme could be applied to estimate an adapted basis on which
the true solution T is decomposed in T =

∑
k′ δ

αk′
xk′ with fast decreasing terms.

The �rst terms of this series will give therefore an approximation of T̄ with an
increasing accuracy (Fig.2-b).



a- Mean of two curves b-Approximation with 3 Dirac currents

Fig. 2. Toy example in 2D illustrating the sparse deconvolution scheme. a-right: two
initial curves (L1, L2 in blue), their mean ((L1 + L2)/2) is represented by a set of 19
Dirac currents in red. a-left: a Gaussian convolution (L−1

W ) of the 19 Dirac gives the dual
representation of the mean as a dense vector �eld in W . b- The deconvolution method
estimates iteratively a set of Dirac currents (b-right after 3 steps) whose convolution
retrieves the initial vector �eld with increasing accuracy. The di�erence between the
true vector �eld and the estimated one is shown in b-left.

In Eq.3.4, we make computations on vector �elds and we do not know how
to retrieve the current T that comes from the resulting vector �eld. The solution
may require theoretically an in�nite number of Dirac currents: T =

∑∞
i=0 δαi

xi
.

Here again, we need a deconvolution scheme that estimates iteratively the most
important terms of this series. The sum of these �rst terms will provide a sparse
approximation of T at a given precision.

The deconvolution scheme we introduced in [9,10], adapts to our framework
based on currents the orthogonal matching pursuit (originally introduced in [18]
to decompose images in adapted wavelet bases). Given a vector �eld γ ∈W , the
�rst step consists in �nding the point x1 that maximizes the projection of LW (γ)
on δx1 : 〈LW (γ), δεk

x 〉W∗ = 〈γ, K(., x)εk〉W = γ(x)k (εk is an orthonormal basis of
R3). x1 reaches therefore the maximum of γ. A linear set of equation determines
α1 such that δα1

x1
is the orthogonal projection of LW (T ) into Span(δx1). We

substract then K(., x1)α1 from γ and we iterate on this residue. This builds
iteratively a series that has been proved in [10] to converge to the true solution.

4 Experimental Results

4.1 Building Atlases from Curves

We use a database of cortical sulcal landmarks (72 per brain) delineated in a
large number of subjects scanned with 3D MRI (age: 51.8 ± 6.2 years). From
34 subjects in the database, we build the template according to our estimation
method. We set the parameters λW = 12mm, λV = 25mm and γ = σ2

W /σ2
V =

0.01. The diameter of the brain is typically 120mm. Figure 3 shows the estimated
template after 2 iterations. During the gradient descent, the bias (in the sense of
our forward model Eq.1.1) is removed from the empirical mean (in red), leading



a- Sylvian Fissure (Left Hemisphere) b- All 70 sulci

Fig. 3. Estimated template from 34 subjects. Left: initial 34 Sylvian Fissure of the left
hemisphere (green), the empirical mean (red) and the estimated template (blue). In
black, the mean lines computed from B-spline parametrization of curves [19]. Right:
Same curves for 70 sulci. Although results look similar, only the template in blue is
not biased in the sense of the model Eq.1.1.

to an unbiased template (in blue). The sparse deconvolution scheme enables also
to give a light representation of the template: whereas the database contains
32643 segments (on average 960 segments per subject), the estimated template
is represented by only 1361 Dirac currents with an approximation error below
5%. This would be of great interest in the future, for example to register this
template toward any new available data.

4.2 Building Atlases from Surfaces

We use a database of 10 segmented sub-cortical structures of the brain (Caudate,
Putamen, Globus Pallidus, Amygdala and Hippocampus) in large number of
autistics and healthy children scanned with 3D MRI (age 2.7 ± 0.3) [20]. From
25 autistics and 7 controls, we build the template according to our estimation
method for surfaces. We use the parameters λW = 5mm, λV = 20mm, γ =
σ2

W /σ2
V = 0.001. The set of 10 sub-cortical structures have typically a diameter of

60mm. Figures 4-a,b show the estimated template after 2 iterations. Each Dirac
current δα

x is represented by an equilateral triangle whose center of mass is x and
non-normalized normal α. Each of the 10 meshes has 2880 cells, so that the total
number of normals is 720e3. Thanks to the deconvolution scheme, the estimated
template is represented by only 1344 normals with an approximation error below
5%. In Fig.4-c, we show the di�erence between the template of autistics and
controls approximated by the proposed matching pursuit algorithm. Note that
the anatomical di�erences between both classes are not only captured by their
respective templates but also by the main modes of the deformations φi.



a- Autistics b- Controls c- Di�erence on hippocampus

Fig. 4. Estimated templates from 25 autistics (a) and 7 controls (b) for 10 sub-cortical
structures (one per color). In (c), the blue arrows approximate the di�erence between
autistics and controls' template, superimposed with the hippocampus of a control.

5 Conclusion and Perspectives

In this paper, we proposed a statistical model which estimates jointly a tem-
plate, the deformations of the template to the observations and the noise on
these observations. This di�ers from methods that use extrinsic templates, thus
introducing a bias in the analysis of the variability. Our forward model considers
observations as noisy deformations of an unknown template. Compared to the
more commonly used backward setting, this model requires a speci�c deconvolu-
tion scheme to deal with the non-linear action of di�eomorphisms on curves and
surfaces. However, once the model is built, we can decompose any new data into
a deformation of the template and a residual noise and then measure how likely
this decomposition may be with respect to the model. This o�ers a way to clas-
sify data according to pathologies, to detect outliers in a database, to highlight
where a given observation di�ers from a model, etc. Such a statistical inference
would be more di�cult within the backward framework since the likelihood of
any new observations would involve the Jacobian of the deformations that we
take here directly into account while building the atlas.

Numerical experiments show the feasibility and relevance of our approach. In
particular, two templates were estimated from deep brain structures of autistics
children and controls. The results suggest anatomical di�erences between both
classes. However, such results should be strengthen by rigorous statistical tests.
Our future work will also evaluate the model with respect to its prediction and
classi�cation capability.
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