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Abstract. The purpose of this paper is to measure the variability of a
population of white matter fiber bundles without imposing unrealistic
geometrical priors. In this respect, modeling fiber bundles as currents
seems particularly relevant, as it gives a metric between bundles which
relies neither on point nor on fiber correspondences and which is robust
to fiber interruption. First, this metric is included in a diffeomorphic
registration scheme which consistently aligns sets of fiber bundles. In
particular, we show that aligning directly fiber bundles may solve the
aperture problem which appears when fiber mappings are constrained by
tensors only. Second, the measure of variability of a population of fiber
bundles is based on a statistical model which considers every bundle as a
random diffeomorphic deformation of a common template plus a random
non-diffeomorphic perturbation. Thus, the variability is decomposed into
a geometrical part and a “texture” part. Our results on real data show
that both parts may contain interesting anatomical features.

1 Introduction

The primary goal of Computational Anatomy is to study the variability of
anatomical structures in populations. This analysis can be used to classify popu-
lations (e.g. pathologic versus control), or to drive the segmentation of anatom-
ical structures in new images. Variability measures usually rely on correspon-
dences determined by registration. More generally, shape differences can be cap-
tured by the geometrical deformation of one structure onto another. These de-
formations are used to learn how a prototype structure (called also atlas or
template) deform within a population. This requires to define a proper regis-
tration method and to infer a statistical model on the deformations between an
atlas (to be estimated) and each subject in the population.

While such statistical analysis have already been proposed for sulcal lines
[1, 2], and subcortical structures [3, 4], much fewer tools are available for white
matter fiber bundles obtained in diffusion MRI. These structures are of great
importance as they may contribute to map brain connections between functional
areas, or to understand effects of neurological pathologies (like Alzheimer’s dis-
ease) onto the brain white matter. Most recent approaches are based on the



nonlinear registration of fractional anisotropy (FA) maps [5, 6] or tensor images
[7, 8]. The deformation resulting from this image registration is then applied to
fibers. In these methods, one may question if the fiber bundles are correctly
aligned since the bundling information is not visible in FA or tensor images.
Fibers which belong to the same bundle connect specific brain regions together
and should therefore be preserved during registration. For this reason, we pro-
pose here to use directly fiber bundles as constraints to drive the registration.

Recent approaches measuring variability of fiber bundles rely on point or fiber
correspondences between bundles [9–11]. However, tractography algorithms were
never shown to produce stable and reproducible results. Thus, the comparison
of bundles should not rely on individual fibers or points but rather on the global
shape of the bundles. Furthermore, tractography might be valid only locally: the
true neuronal pathway may correspond to the union of several pieces of fibers
and one should not blindly consider sets of connected points produced by trac-
tography as true fibers. The solution of considering a bundle as an unconnected
cloud of points is not satisfactory either, since it does not take into account the
local orientation of the bundles encoded by the tangents of the fibers. There-
fore, an ideal framework for fiber bundles should be robust to curve connectivity
and sampling, and should take into account the local orientation of the bundle.
Similarly, a distance between bundles (used as a dissimilarity measure during
registration) should rely neither on point nor on fiber correspondences. In this
paper, we propose to use the framework based on currents, that precisely mod-
els curves as a set of unconnected oriented points. This framework is robust to
fiber interruption and provides a dissimilarity metric on curve sets that does not
assume any kind of correspondences. Conversely, it is sensitive to the local fiber
orientation and to the point density: a single fiber will be unlikely to influence
registration, which makes currents naturally robust to outliers. Finally, currents
are compatible with the diffeomorphic registration method in [12], and therefore
can be used for pairwise registration of fiber bundles.

Once a registration framework of fiber bundles modeled as currents is de-
fined, it can be used to define a statistical model of variability. From the per-
spective of the deformable models, we consider the bundles of different subjects
as random diffeomorphic deformations of an unknown template perturbed by
non-diffeomorphic variations (called residues in the sequel). Following the work
of [4], we jointly estimate this prototype bundle along with its deformations
onto each subject’s anatomy. In a second time, statistical analysis of bundles
is achieved by a principal component analysis (PCA) of the diffeomorphic de-
formations and the residues to extract their principal modes of variations. The
former accounts for the smooth variations of the template within the popula-
tion: stretching, shrinking, dilation or torsion, while the later accounts for all
variations that cannot be captured by regular diffeomorphisms, called texture in
the sequel: fiber creation or topology changes. This model is not based on strong
assumptions and can therefore retrieve a large range of geometrical variations.

The paper is organized as follows. Sec. 2 shows how currents are used to
model fiber bundles and how they are interfaced with a diffeomorphic registration

2



scheme. The statistical model is developed in Sec. 3. In Sec. 4, we evaluate the
method on real data. We compare pairwise registrations of 5 fiber bundles with
the alignment obtained from FA and tensors images. Finally, we build the atlas
from 6 subjects and analyze the variability of the corticobulbar tract.

2 Fiber Bundles Registration based on Currents

2.1 Fiber Bundles Modeled as Currents

Currents are geometrical objects originally introduced in medical image analysis
to model curves and surfaces [12]. In this section, we recall the properties which
are relevant for our topic and refer the reader to [12, 13, 4] for more details.

In the framework of currents, a set of fibers is characterized by the way it
integrates vector fields. Given ω a square integrable 3D vector field, a bundle B
made of several fibers Fi integrates ω thanks to:

B(ω) =
∑

Fi∈B

∫
Fi

ω(x)tτi(x)dx, (1)

where τi(x) is the oriented tangent vector of the fiber Fi at point x. A fiber
bundle may be seen as a set of wires sending information in one direction at a
constant rate. Eq. 1 computes the total rate of information that goes through
the orthogonal sections (i.e. equipotential surfaces) of ω. To characterize a fiber
bundle, we measure how this quantity varies while the equipotentials of ω varies.
For this purpose, we define the test space W , in which ω varies, as the set of
the convolutions between any square integrable vector fields and a smoothing
kernel. This excludes from W the vector fields with too high spatial frequen-
cies. Formally, W is the reproducing kernel Hilbert space (r.k.h.s.) whose kernel
KW is Gaussian: KW (x, y) = exp(−‖x− y‖2

/λ2
W )I3 for any points (x, y)4. The

standard deviation, λW , is the typical scale at which the vector fields ω varies
spatially. In this setting, any set of smooth curves is a continuous linear mapping
from W to R. The space of currents W ∗ is the space containing such objects.

W ∗ is a vector space. The addition of two pieces of curves is simply the union
of them. In Eq. 1, each fiber Fi or each piece of these fibers can be seen as a
current individually: the union of them (their addition) is still a current. For
instance, Eq. 1 would not change if each Fi were split into a collection of small
segments. It does not depend on the connectivity of the fibers within the bundle.

Any current in W ∗ may be decomposed into an infinite sum of delta Dirac
currents, which play the role of basis vectors. A Dirac current δτ

x is defined by:
δτ
x(ω) = τ tω(x). It models an oriented point and encodes the direction τ of

the fiber bundle at point x. Each segment of the polygonal lines returned by
tractography is approximated by a Dirac current δτ

x where x is the center of
the segment and τ its direction. This approximation converges in the space of
4 KW is the Green’s function of LtL for some differential operator L. The inner prod-

uct in W is defined then by 〈ω, ω′〉W = 〈L(ω), L(ω)〉L2 . See [14] for more details.
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currents as the sampling of the curves becomes finer. In this sense, the modeling
is weakly sensitive to the sampling of the fibers. As a consequence, a bundle B
is approximated by a finite sum over all segments within the bundle:

∑
i δτi

xi
.

In addition, the space of currents W ∗ is provided with a norm and an inner
product, which define a distance between two bundles B and B′ as: ‖B −B′‖W∗ =
sup‖ω‖W≤1 |B(ω)−B′(ω)|. Following our analogy, this measures the rate of in-
formation along the wires of B and the wires of B′ that goes through the or-
thogonal sections of the same ω. We look for the regular ω (‖ω‖W ≤ 1) which
makes this difference the largest possible, i.e. that captures the more differences
between the two structures. This geometric distance compares bundles globally,
without assuming any kind of fiber or point correspondences between them. The
smaller the standard deviation λW , the smaller the scale at which ω varies, the
finer the geometrical details captured by this distance.

This distance has a closed form. On the Dirac currents, the inner product
is given by

〈
δα
x , δβ

y

〉
W∗ = αtKW (x, y)β. By linearity, the inner product between

two bundles B =
∑n

i=1 δτi
ci

and B′ =
∑m

j=1 δ
τ ′

j

c′j
is given by:

〈B,B′〉W∗ =
n∑

i=1

m∑
j=1

τ t
i K

W (ci, c
′
j)τ

′
j (2)

This inner product (and hence the distance ‖B −B′‖W∗) does not require any
condition on the curves sampling (n may not equal m, for instance). It compares
all pairs of tangents (τi, τ

′
j) weighted by a function of their distance

∥∥ci − c′j
∥∥.

Since the space of currents is a vector space provided with an inner product,
we can directly compute the mean and the covariance matrix of a population
of fiber bundles. However, this statistical analysis would not be relevant with
unregistered fiber bundles. This will be used, instead, to perform PCA on the
residuals that remain after registration.

2.2 Spatially Consistent Registration of Fiber Bundles

Our goal is to align two sets of fiber bundles segmented in images of two different
subjects. The algorithm introduced in [12] finds precisely a consistent deforma-
tion of the underlying 3D space that best matches two sets of labeled currents.
The deformations are chosen as 3D diffeomorphisms (smooth deformations with
smooth inverses), solution at time t = 1 of the flow equation: ∂φt(x)

∂t = vt(φt(x)),
with initial condition φ0 = Id (no deformation). The time-varying vector field
(vt)t∈[0,1] is the speed vector field of the deformation, which is supposed to be-
long to a r.k.h.s. V with Gaussian kernel KV . The standard deviation of KV ,
λV , determines the typical scale of the deformation: the greater, the smoother
the deformation. The regularity of the final deformation φv

1 is measured by inte-
grating the norm of the speed vector field over time: d2

V (Id, φv
1) =

∫ 1

0
‖vt‖2

V dt.
The registration consists therefore in minimizing:

J(v) =
N∑

i=1

∥∥φv
1 ? Bi −B′

j

∥∥2

W∗ + γd2
V (Id, φv

1) (3)
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where γ is the usual trade-off between fidelity to data and regularity. φ?B denotes
the geometrical transportation of the fiber bundle B by the diffeomorphism φ:
each point x moves to φ(x) and each tangent τ is transformed into dxφ(τ), where
dxφ is the Jacobian matrix of φ. This geometrical transportation is conveyed in
the space of currents thanks to (φ ? B)(ω) = B((dφ)tωoφ), which results simply
from a change of variable in Eq. 1. On Dirac currents, we have φ ? δτ

x = δ
dxφ(τ)
φ(x) .

It is proved that the speed vector field minimizing Eq. 3 is parametrized by
momenta αk(t) at the points xk(t) of the moving bundle B: vt(x) =

∑
k KV (x, xk(t))αk(t)

[12, 15]. Once time is discretized, Eq. 3 is therefore minimized via a gradi-
ent descent on the parameters: (αk(tp)). Moreover, the resulting diffeomor-
phisms are geodesic. Thanks to Euler-Lagrange equations [15], they are en-
tirely determined by their initial momenta αk(0): the tangent-space represen-
tation of the diffeomorphism. The metric on this tangent space is given by
‖α(0)‖2 = ‖v0‖2

V = α(0)tkV α(0) where kV is the matrix (KV (xi, xj))i,j . From
now on, we denote φα the diffeomorphism φv

1 with initial momenta α.
Applying this registration framework directly to fiber bundles, which may

have up to 105 segments, raises computational issues. The computation of the
data fidelity term in Eq. 3 (‖φv

1 ? B −B′‖W∗) requires to compare every seg-
ments of B with every segments of B′, as shown in Eq. 2. Hopefully, this com-
plexity is reduced thanks to the approximation scheme of [13].

3 A Statistical Model of Fiber Bundles

In this section, we show how to use the modeling based on currents and the
previous registration tool to define a statistical model on fiber bundles. Following
[16, 4], we model our observations as deformations of an unknown prototype
bundle (also called template or atlas) perturbed by non-diffeomorphic variations
(the residues). Formally, we consider the bundles (Bi)i=1...N (the same bundle
for N different subjects) as instances of the following process:

Bi = φi ? B̄ + εi (4)

where the bundles Bi are seen as currents, φi are diffeomorphisms that deform
the unknown template B̄ supposed to be a current as well. εi are the residual
perturbations which account for everything that cannot be captured by a regu-
lar deformation. The εi’s are supposed to be i.i.d. zero-mean Gaussian random
variables in the space of currents. To infer a random model on the deformations
φi, we use their tangent-space representation: an instance φα is simulated by
shooting geodesically an instance of the momenta α (vector of finite dimension).

We estimate the template B̄, the deformations φi and the residues εi with a
Maximum A Posteriori approach with an approximation, as in [4]. As a result,
we minimize:

min
B̄,αi

{
N∑

i=1

∥∥φαi ? B̄ −Bi

∥∥2

W∗ + γd2
V (Id, φαi)

}
(5)
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We start by setting φi = Id (i.e. αi = 0, no deformation) and B̄ =
∑N

i=1 Bi/N ,
the empirical mean in the space of currents. Then, we minimize the functional
by considering that B̄ and the αi’s are fixed alternatively. The first step consists
in registering B̄ to each Bi, leading to initial momenta (αi). The second step
consists in updating B̄ by minimizing J(B̄) =

∑N
i=1

∥∥φαi ? B̄ −Bi

∥∥2

W∗ . This
last minimization benefits from the approximation scheme of [13, 4].

Eventually, the algorithm returns an unbiased template B̄ =
∑nB

k=1 δτk
xk

and
the deformations φαi of B̄ to each Bi. We perform a PCA on the momenta (αi),
and another PCA on the residual perturbations εi = φαi ? B̄ − Bi. We shoot
geodesically in the direction (resp. in the opposite direction) of the first mode of
momenta, mα (resp. −mα), to give the first mode of deformation at +σ (resp.
−σ): φ±mα . The PCA on residues is performed in the space of currents. This
leads to the mean ε̄ =

∑
i εi/N and the first mode at ±σ: mε = ε̄±

∑
i Ei(εi− ε̄),

where E is the first eigenvector of the covariance matrix (〈εi − ε̄, εj − ε̄〉W∗)i,j .
As linear combinations of the input currents, the mean and the first mode can
be approximated using the scheme of [13] for a better visualization.

This joint statistical modeling accounts for both diffeomorphic and non-
diffeomorphic variability. It is not biased by arbitrary point or fiber correspon-
dences between different subjects. It does not impose strong prior on the nature
of the variability. For instance, it does not assume that fibers of a bundle come
from a mean line whose samples have been randomly moved, as in [9]. The major
prior of our model consists in where to put the separation between the geomet-
rical part (captured by the diffeomorphisms) and the texture part (contained
in the residues). This separation is determined by the regularity parameters:
λV , λW and the trade-off γ. In this paper, we set these parameters manually,
whereas they could be set automatically along the lines of [16] for instance.

4 Experiments

Six brain DTI data sets acquired on a 1.5T GE scanner on healthy volunteers
were used in this study. Image dimensions are 128× 128× 30, and resolution is
1.8×1.8×4mm. 25 non-collinear diffusion gradients and a b-value of 1000s.mm−2

were used. Fiber tractography was performed using MedINRIA 5, which includes
a robust tensor estimation and a streamline tractography algorithm using log-
Euclidean tensor interpolation [17]. Manual segmentation of five fiber bundles
was done: the entire corpus callosum, the corticospinal and the corticobulbar
tracts, and the left and right arcuate fasciculi (Fig. 4-a).

First, we evaluate the methodology developed in Sec. 2 by registering the
bundles of two subjects and comparing the result with FA and tensor registration
(Sec. 4.1). Second, our framework for atlas construction is evaluated with the
construction of a diffeomorphic atlas of the five bundles of our data set (Sec.
4.2) and the statistical analysis of the corticobulbar tract (Sec. 4.3).

5 http://www-sop.inria.fr/asclepios/software/MedINRIA/
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a) Initial b) FA c) Tensors d) Currents

Fig. 1. Diffeomorphic registration of two corpus callosum fibers. Bottom images are a
closeup on the green squared region. Initial tracts (a) and registered tracts using FA
(b), tensors (c) or bundles (d) as constraints. Overlap of blue and red fibers is greater
using currents, especially in the left and right parts of the genu of the corpus callosum.

4.1 Fiber Bundle Registration

Diffeomorphic registration of fiber bundles using currents is compared to non-
linear registration of FA [18] and tensor [8] images. Pairwise registrations of 5
fiber bundles segmented in 2 subjects are conducted. For FA and tensor-based
bundle registration, deformation fields were computed between images and ap-
plied to bundles afterwards: bundles were not tracked again after registration.
Note that the three methods produce diffeomorphic transformations and can be
compared. The parameters were adjusted to produce deformations of about the
same smoothness. Concerning our registration scheme, we set the regularity of
the deformation λV = 20mm, the spatial scale of the currents λW = 5mm and
the trade-off between regularity and fidelity-to-data: γ = 10−4. For clarity pur-
pose, we present registration results of two bundles only: the corpus callosum
(CC) (Fig. 1) and the corticospinal tract (CST) (Fig. 2), since they highlight
the most striking differences between methods.

Fig. 1 a) shows two misaligned CC. Fig. 1 b) and c) present the registration
of those bundles computed using respectively FA and tensor images. The regis-
tration of the fiber bundles with our method (Fig. 1 d) shows a greater overlap,
synonym of a better alignment. Local improvements are noticeable in the left
and right parts of the genu. This result shows that the bundle information acts
as a stronger prior to align fiber tracts than the tensor image. Moreover, one
can still notice few red fibers not aligned with the blue bundle in the exterior of
the tract, which illustrates the robustness of our methodology to outliers.
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a) Initial b) FA c) Tensors d) Currents

Fig. 2. Registration of two corticospinal tracts. Bottom images are a closeup on the
green squared region. Initial tracts (a) and registered tract using FA (b), tensors (c) or
bundles (d) as constraints. Currents better warp the red fibers in the anterior part of the
tract, highlighting the aperture problem inherent to FA and tensor-based approaches.
Registration in the posterior part is mainly constrained by the corpus callosum which
strongly pushes the fibers toward the posterior part of the brain.

a b c d

Fig. 3. Illustration of the aperture problem in FA and tensor registration. a and b:
Tensor fields of two subjects overlapped with FA images are shown (sagittal slice,
inside the corona radiata). Without any prior, it is impossible to determine whether
the rectangle in image a matches with any in image b: this is the aperture problem.
c and d: two schematic fiber bundles in red and blue were added. It becomes clearer
that the rectangle of image c has a unique correspondence in image d. The aperture
problem is partly solved using the bundles as priors.

Registration of two CST shows similar effects, especially in the anterior part
expanded in a green square in Fig. 2. In those regions, multiple bundles may
coexist whereas FA and tensor images are uniform, as shown in Fig. 3. Therefore,
image-based registration is unable to correctly align the bundles, since bundle
boundaries are not visible in images. This is an aperture problem inherent to FA
and tensor-based methods. The bundling information is an extra information
brought either by experts or by automatic bundling methods with anatomical
priors. During our global registration, the CC acts as a stronger constraint than
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(a) One subject (b) template (occipital view) (c) template (lateral view)

Fig. 4. Template of five bundles: the corticospinal tract (blue), the corticobulbar
tract (yellow), the callosal fibers (red), the left and right arcuates (green). (a): one
subject among the six of the data set. (b,c) the estimated unbiased atlas. Data result
from a random deformation on the atlas, plus a random perturbation.

CST since it has much more fibers. This impacts the registration of the posterior
part of the CST in Fig 2, whose fibers are pushed by the CC toward the posterior
part of the brain. Although the method enables to adjust the weight of each
bundle during registration, the choice of such weights still remain arbitrary.

4.2 Fiber Atlas Construction

As explained in Sec. 3, we estimate a template such that the input data result
from random deformations of this template added with random perturbations
in the space of currents. As emphasized in Section 2.2, there is only one global
deformation acting on all 5 bundles together, and 5 independent perturbations
for each bundle. The template consists of five prototype bundles shown in Fig.
4. It has been computed by fixing the parameters of currents λW = 5mm, of
deformations λV = 20mm and the trade-off γ = 10−4.

4.3 Variability Analysis of the Corticobulbar Tract

We show here how the first mode of deformations and the first mode of residues
describe the variability of the corticobulbar tract within the studied population.
The “geometrical” variability is captured by the deformations. As a result of the
MAP estimation, the deformations appear to be centered: the norm of the mean
parameters is 0.42 times the standard deviation, not significantly different from 0.
The first mode of the deformations at±σ is shown in Fig. 5, first row. It shows the
variability of the template which was captured by the regular diffeomorphisms.
The main variations are a torque of the frontal part of the bundle, as well as a
stretching/shrinking of its lateral parts. Further investigation should determine
whether this torque is related to the well-known brain torque.

The variability in terms of “texture” is captured by the residual perturba-
tions. The residues are centered: the mean current is 0.36 times its standard
deviation. The first residual mode mε is shown in Fig. 5, second row. It shows
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def. mode at −σ template def. mode at +σ

texture mode at −σ template texture mode at +σ

Fig. 5. Variability of the corticobulbar bundle (view from top) Row 1: First de-
formation mode at ±σ. The diffeomorphic variability of the population around the
prototype bundle (middle) is mainly a torque at the basis of the bundle and a stretch-
ing/shrinking effect of the left and right parts of the bundle. Row 2: First “texture”
mode at ±σ. The texture mode (what remains once the diffeomorphic variability is
discounted) at +σ (resp. −σ) shows that the left (resp. right) part of the bundle be-
comes thicker, while its right (resp. left) part becomes thinner.

an asymmetry in the number of fibers in each lateral part of the bundle. This
result shows, undoubtedly, that the variability left aside from the diffeomor-
phisms is not pure noise, but still contains some interesting anatomical features.
In our case, further investigation is needed to determine whether this fiber cre-
ation/deletion effect is due to a true anatomical variability or to an artifact of
the tracking algorithm. In any case, this shows how our modeling analyzes all
the geometrical information without imposing strong priors on the kind of the
variations we are looking for.

5 Discussion and Conclusion

In this paper, we proposed a novel framework for the statistical analysis of
fiber bundles using currents. Our methodology does not impose point-to-point
or fiber-to-fiber correspondences, a crucial feature in regards to the variability
of tractography algorithms outputs. It is also robust to outliers and weakly
dependent of the fiber sampling. Diffeomorphic registrations produce smooth
and invertible deformation fields which match consistently a set of fiber bundles
of one subject onto another. This registration scheme is further extended by a
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statistical model of fiber bundles, which estimates a template and its variability
in a population. The variability is, in turn, decomposed into a geometrical part
accounting for smooth deformations and a texture part which accounts for non-
diffeomorphic changes in a population.

Pairwise registration shows that FA and tensor-based registration are less
adapted than currents for fiber bundles registration, as bundle boundaries are
not visible in those images (aperture problem). A misalignment of bundles may
result in a loss of statistical power in group comparisons since contributions
of several unrelated fiber bundles may be confounded. The method presented
here optimally uses the strong prior that fibers belong to consistent bundles and
ensure a proper alignment of those for statistical comparisons. This statistical
analysis was evaluated on five fiber bundles extracted in six subjects. It shows
consistent results with known anatomical variability (brain torque), which is
put in evidence for the first time on fibers. Even with such a small dataset, our
analysis managed to decompose the variability into two parts that are likely to
describe relevant anatomical features.

The method, however, raises several questions. First, it is sensitive to the
total number of fibers of a bundle, or fiber density, that may vary between two
subjects. These variations may be caused by the tractography algorithm itself, as
fiber density is generally an arbitrary parameter set by the method. One solution
would consist in normalizing this density by relying the fiber density to physical
properties of the neural fibers, like the neural flux transported by the bundle.
Second, our method requires all fibers in a bundle, and by extension all bundles
of different subjects, to have a consistent orientation: all fibers should start at the
same cortical region and end in the same region. We cannot reasonably assume
that tractography algorithms produce consistently oriented fibers. In this work,
reorientation was performed with an empirical procedure. For larger datasets,
an automatic reorientation procedure has to be included, or the modeling based
on currents has to be adapted to account for non-oriented curves.

Future work will focus on evaluating the method on much larger dataset to
strengthen the interpretation of our results. Automatic bundling can be used
to produce a complete set of anatomically relevant fiber bundles, as in [19, 20].
Then, our measure of variability could be used to segment fiber bundles in new
images. It could be used also to classify patients according to pathologies, to
find consistent sub-groups within populations, to detect abnormalities via devi-
ations from the normal variability. One can imagine to extend this framework
to automatically mine geometrical dataset.
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