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Abstract. In this paper we present a new way of measuring brain vari-
ability based on the registration of sulcal lines sets in the large deforma-
tion framework. Lines are modelled geometrically as currents, avoiding
then matchings based on point correspondences. At the end we retrieve
a globally consistent deformation of the underlying brain space that best
matches the lines. Thanks to this framework the measured variability is
de�ned everywhere whereas a previous method introduced by P. Fillard
requires tensors extrapolation. Evaluating both methods on the same
database, we show that our new approach enables to describe di�erent
details of the variability and to highlight the major trends of deformation
in the database thanks to a Tangent-PCA analysis.

1 Introduction

Measuring brain variability among populations is a challenging issue. A very
promissing way as emphasized in [1,2] for instance is based on statistical anal-
ysis of brain deformations computed thanks to registrations of images or geo-
metrical primitives like cortex surfaces, sulcal lines or landmarks. In the case of
primitives, however, the registrations are rarely based on a consistent geometri-
cal modelling of both primitives and deformations. We follow here the approach
introduced in [3] and [4]: we model sulcal lines as currents. Such currents are
then considered as 'geometrical landmarks' that guide a globally consistent de-
formation of the underlying biological material. After presenting this registration
framework in section 2, we apply the method to a database of sulcal lines and
deduce statistical measures of brain variability within the studied population in
section 3. Eventually we show how the underlying geometrical modelling makes
the measured variability di�erent from this obtained in [5] on the same dataset
but in a di�erent framework (called here FAPA's), and how it enables to obtain
new statistical results which may lead to new scienti�c �ndings.

2 Registering Lines Sets

Registering a lines set L0 onto another L1 consists in looking for the most regular
deformation φ that acts on L0 and best matches L1. More precisely, we follow the
approach proposed in [3]: the unknown deformation is searched in a subgroup of



di�eomorphisms of the space R3 and the lines are modelled as currents. We �nd
the registrations thanks to the minimization of a cost function which makes a
compromise between the regularity of the deformation and the �delity to data.

2.1 Lines Modelled as Currents

The space of currents is a vector space which can be equipped with a norm that
enables to measure geometrical similarity between lines. In this space, lines could
be discrete or continuous and consists in several di�erent parts. All these objects
are handled in the same setting and inherit from many interesting mathematical
properties: linear operations, convergence, etc.. Moreover, the distance between
lines does not make any assumptions about point correspondences, even implic-
itly. This framework di�ers therefore from usual methods like in [6] where lines
are considered as unstructured points set and "fuzzy" correspondences assumed.

We restrict now the discussion to what is needed in the following and we refer
the reader to [7] and [3] for more details on the theory. We call here a line set L a
�nite collection of n continuously di�erentiable mappings Li : [i/n, (i + 1)/n] →
R3: L = ∪n−1

i=0 Li. This formulation is compatible with discrete set of lines, each
line Li being given by ni samples and (ni − 1) segments [si

k, si
k+1]1≤k≤ni−1.

A vector �eld ω is a di�erentiable mapping that associates to every points
x ∈ R3 a vector ω(x) ∈ R3. Let us denote W a linear space of vector �elds.
Our space of currents W ∗ is de�ned as the set of the continuous linear mappings
from W to R. A line set L can thus be seen as a current thanks to the formula:

∀ω ∈ W, L : ω −→
∫ 1

0

< ω(xt), τ(xt) >R3 dt (2.1)

where τ is the unit tangent vector (de�ned almost everywhere) of the line set
L at point xt. For W we choose a reproducing kernel Hilbert space (r.k.h.s.)
whose kernel KW is isotropic and Gaussian (for more details on r.k.h.s, see
[8]). This induces a norm on the space of currents that is computable in case
of discrete lines. Indeed, when the line L is sampled, it can be approximated
in W ∗ as the segments length tends to 0 by the sum of Dirac currents at the
points (ci) centers of the segments [si, si+1]: L =

∑
k δτk

ck
where τk = sk+1 − sk.

(for all vector �eld ω, δα
x (ω) = 〈ω(x), α〉R3 : a Dirac current can be seen as a

vector α concentrated at one point x). The Hilbertian inner product between

L =
∑n−1

i=1 δτk
ci

and L′ =
∑m−1

i=1 δ
τ ′

k

c′i
where n is not necessarily equal to m is then

given by: 〈L,L′〉W∗ =
∑n−1

i=1

∑m−1
j=1

〈
τi,K

W (ci, c
′
j)τ

′
j

〉
R3 where for all points x, y,

KW (x, y) = g(x− y)Id and g is a Gaussian function. The distance between two

lines is then given by: d2(L,L′) = ‖L′ − L‖2
W∗ = ‖L‖2

W∗ +‖L′‖2
W∗−2 〈L,L′〉W∗ .

This converges to the distance between two continuous lines when the segments
lengths tend to zero. Eventually, this distance used as a �delity to data term will
prevent from systematically over�tted registrations.



Fig. 1. Lines registration using an approach based on currents. Dark blue line is trans-
ported to the green line that matches the red line. The distance between red and green
lines (i.e the precision of the matching) is computed although the sampling of each line
is di�erent, in particular no point to point correspondence is imposed.

2.2 Di�eomorphic Registration

We use here the large deformation framework founded in the paradigm of Grenan-
der's group action approach for modelling objects (see [9,4,10,11]). This frame-
work enables to �nd a globally consistent deformation of the underlying space
that best matches the lines sets. This di�ers from [5] where each line is reg-
istered individually without assuming spatial consistency of the displacement
�eld. The global constraint as well as the introduction of a �delity to data term
lead to residual matching errors (the distance between red and green lines in �g-
ure 1) considered here as noise. In [5] denoising and matching are two separate
processings.

The considered deformations are di�eomorphisms, solutions φv
1 at time t = 1

of the �ow equation: ∂φt

∂t = vt ◦ φt and φ0 = idR3 . The tangent vector �eld vt at
each time t belongs to a r.k.h.s. V with kernel KV that controls the regularity of
the �nal di�eomorphisms. The induced norm de�nes in turn a distance between

φ and the identity: d2
V (id, φ) = inf

{∫ 1

0
‖vt‖2

V | v ∈ L2([0, 1], V ), φ = φv
1

}
.

In order to register a line onto another we de�ne φ.L the action of a di�eo-
morphism φ on a current L by: φ.L(ω) = L(φ.ω) and φ.ω(x) = (dxφ)tω(φ(x))
for all vector �elds ω. This action coincides with the geometrical transportation

of lines. In particular φ.δα
x = δ

dxφ(α)
φ(x) .

Our registration problem is to map a set of n labelled sulcal lines L0 =
∪i=1L0,i to another labelled set L1 = ∪i=1L1,i. It is then reduced to the search
of a family of vector �elds v : t ∈ [0, 1] −→ vt that minimizes the following cost

function J : J (v) = γd2
V (id, φv

1) +
∑n

i=1 ‖φv
1.L0,i − L1,i‖2

W∗ where γ controls the
importance of the regularity against the �delity to data.

It has been shown (in [4] for instance) that such an optimal di�eomorphism
always exists, that its path de�ned by φv

t for the optimal v is geodesic with
respect to the distance dV and is an interpolation via the kernel KV of the tra-
jectories of the samples that numerically de�ne the lines. Moreover we can show
that one can recover the trajectory of any points of the space knowing only the
initial speed at each lines samples. This means that a minimizing di�eomorphism
is entirely determined by a �nite set of parameters. This dramatic dimensionality
reduction is of great importance to de�ne statistics on deformations.



2.3 Experiments and Results

Through the Asclepios-LONI associated team Brain-Atlas we used the same
dataset as in [5] of cortical sulcal landmarks (72 per brain) delineated in every
subject scanned with 3D MRI (age: 51.8 +/- 6.2 years). In order to compare our
measures of variability, we used the same set of 72 mean lines as in [5]. For 34
subjects in the database, we registered the mean lines set onto every subject's
lines set. We computed the registrations thanks to J. Glaunès' algorithm detailed
in [3]. We manually set γ = 0.1 and the standard deviation of KV and KW

respectively to σV = 25mm and σW = 5mm. The diameter of the brains is
about 120mm. For every subject deformations, we store the initial speed vectors
of the mean lines samples that completely parametrize the deformation.

3 Statistics on Deformations

To do statistics, we take advantage of a tangent space representation like in
[12] or [13] in case of �nite dimensional manifolds. The deformations are indeed
completely determined by their initial speed vector �eld that belongs to the
linear space V provided by an Hilbertian norm ‖‖V . We recall that such a dense
vector �eld is in turn parametrized by the �nite set of initial speed vectors on the
mean lines samples: {(vs

0,k)}, 1 ≤ k ≤ N where N is the total number of mean
lines samples, and that we stored these vectors for each of the 34 registrations.
Statistics on deformations are then reduced to statistics in R3N where the norm
of the vector is the norm in V of its associated dense vector �eld. Our study
is focused on variance which measures how locally the space is deforming and
covariance which measures the correlations between di�erent points trajectories.

Our results are then compared to those obtained by FAPA in [5] where the
statistics are based on the mean lines samples displacement �eld computed from
a point-to-point registration algorithm.

3.1 Variance of Deformations

At each mean lines sample k0 we compute the empirical covariance matrix from
the 34 initial speed vectors (vs

0,k0
∈ R3 for each subject s). These 3× 3 matrices

are represented as ellipsoids like in �gure 2. They show how locally one point is
varying among the studied population. On the other hand, thanks to the di�eo-
morphic approach, we can compute the tangent vector at each point of a 'mean
brain surface' and hence the empirical covariance matrix of the deformations at
those points. Figure 3 and 4 show such a surface where each point was coloured
according to the 3D rms norm of the covariance matrix. In FAPA's method ma-
trices computed on mean lines samples are downsampled and then extrapolated
in the whole space thanks to a log-Euclidian framework ([13,14]). Comparing
the results of both approaches highlights the di�erent hypothesis made to model
the lines, to remove noise and to extrapolate the variability to the brain surface.

Regularity of the Variability: The �gure 2 shows that the point matching
method of FAPA leads to irregular tensor �elds at lines extremities and between



Whole Brain Detail Whole Brain Detail

a - Our approach b - FAPA's method

Fig. 2. At each sampling point, ellipsoids represent the square root of the empirical
covariance matrix of the initial speed vectors (left hand side) or displacement �eld
(right hand side). In FAPA's method, extremal points are supposed to be matched:
this induces a high variability at lines extremities (area 1, right). This is avoided by the
current approach (area 1, left). In FAPA's method each line is registered individually:
the variance can vary dramatically at lines crossing (area 2, right). Our global regularity
constraint leads to smoother results (area 2, left).

Variability map Covariance matrices Variability map Covariance matrices
a - Our approach b - FAPA's method

Fig. 3. On the variability maps, a tangential variability is retrieved in area 3 (extrem-
ities of central sulci) by our method and not by FAPA's one. The covariance matrices
in this region show that the variability is mainly longitudinal. Since in FAPA's work
large extremal tensors are removed before the extrapolation, the tangential variability
is not captured and the total variability is small.

lines whereas our global regularity constraint makes the retrieved variability
spatially smoother. In our approach we leave aside the variability contained in the
residual matching errors considered as noise. In FAPA's work the variability is
denoised afterwards by removing extremal large tensors before the extrapolation.

Tangential Variability: One major drawback of FAPA's method as un-
derlined in [5] is the systematically under-estimated tangential variability. This
aperture problem is particularly visible on the top of the brain as shown in �g-
ure 3. Our approach enables to �nd a larger part of this variability which is,
as we will see, one of the major variation trends within the sample (cf �g. 6).
Otherwise, the non-tangential part is in relative good agreement in most parts.

Distinction between correlated and anticorrelated motions: In our
approach the deformation �eld is extrapolated before computing the covariance
matrix. By contrast in FAPA's method the matrices are extrapolated without
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a - Our approach b - FAPA's method

Fig. 4. Area 4 is surrounded by 4 major sulci: sylvius �ssure (a), postcentral sulcus
(b), intraparietal sulcus (c) and superior temporal sulcus (d). On the left hemisphere
the �rst two move mostly in a decorrelated manner with respect to the last two sulci
whereas their respective motions are much more correlated on the right hemisphere.
Our approach tries to combine the motion of all lines and therefore leads to a small
variability in area 4 on the left hemisphere and to a large one on the right hemisphere.
With FAPA's method this asymmetry is not retrieved directly.

Fig. 5. Extrapolation schemes in the simple case of anti-correlated vectors. Right: In
FAPA's framework the tensors are computed at the samples points and then extrapo-
lated in the middle point: the tensor in the middle is similar to the two others. Left:
In our approach we �rst extrapolate the vector �eld and then compute at each point
the covariance matrix. Since the vectors are anti-correlated, the �eld is close to zero at
the center and the variability measured at this point is negligible.

assuring that the extrapolated tensors derive from an underlying deformation.
As shown �gure 5 this di�erence theoretically enables in our case to distinguish
between areas where samples are moving in a correlated or anti-correlated man-
ner. This is a possible explanation of the di�erent variability maps retrieved in
area 4 of �gure 4. Note that the asymmetry we found between left and right
hemispheres was also retrieved in other recent studies [15].

3.2 Principal Modes of Deformation

Let us see the �eld {vs
0,k} for each subject s as a unique vector in R3N provided

by the norm ‖‖V , (the norm of its associated dense vector �eld). We then carry
out a Principal Component Analysis (PCA) on these vectors with respect to the

given norm (e.g. the �rst principal mode is given by argmaxv 6=0

P
s〈v

s
0,v〉2V

‖v‖2
V

). This

analysis enables to take into account the global correlations of all points motion
together and synthesizes the main trends of deformation in the database.
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Fig. 6. First Mode of Deformation obtained by a PCA on initial vector speed �elds.
Original mean brain surface (Center) and its deformation at −σ (Left) and +σ (Right).
Colours measure the displacement of each point along the deformation process (in mm).

Given a mode ṽ ∈ V , we can compute the unique geodesic deformation
process in the sense of the distance dV whose initial tangent vector �eld is ṽ.
The eigenvectors ṽ were normalized (‖ṽ‖V = 1) so that the deformations are seen
between [−σ, 0] for shooting the vector −ṽ and [0, σ] for ṽ. Results are shown
�gure 6. Movies of deformation are available at �rst author's webpage3.

4 Conclusion and Perspectives

The framework presented here provides a consistent geometrical framework for
measuring brain variability from sulcal lines registration. The lines are consid-
ered as geometrical objects and not as sets of landmarks, which means that we
completely avoid computing point correspondences. A computable distance is
de�ned on these lines that enables to include a noise model on lines within the
framework. Although the optimal matching is parametrized with a �nite set of
parameters, the deformation �eld returned is dense, enabling to analyze the brain
variability outside the data on the basis of an explicit deformation modelling.
These three steps: denoising, lines matching and extrapolation are handled here
consistlently in the same setting whereas they often lead to separate process-
ings like in FAPA's work. This enables to give alternatives to some of the major
drawbacks of other methods like the aperture problem for instance. The method
is also generative: we can de�ne an arbitrary deformation and hence generate
deformed lines, illustrating thus the variability the method captured and high-
lighting the major trends of deformation within the database via a tangent-PCA
analysis. Finally the approach is not limited to lines but could also be applied
directly to register surface meshes (like in [16]) or images.

Besides such methodological advantages, the retrieved variability which dif-
fers from [5] are still to be validated by anatomical interpretations and by the
model's predictive capability. At this stage, actually, the qualitative comparison
mainly emphasizes the di�erent hypothesis on which each model is based. Since
our di�eomorphic constraint may be considered sometimes as too restrictive, one
could de�ne re�nements that take into account possible local non di�eomorphic

3 http://www-sop.inria.fr/asclepios/personnel/Stanley.Durrleman/



variations between subjects. Eventually, our new �ndings have to be con�rmed
by applying the method to other datasets of sulcal landmarks ([17]) or to other
features that may be more relevant in an anatomical point of view. The integra-
tive capability of the method could help actually to de�ne a general model of
brain variability based on multiple sources of input.
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