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Abstract. We present recent advances on a 3D numerical modeling of the myocardium which couples
electrical and biomechanical models. The long-term objective is to simulate a realistic contraction of the
heart from both electrical measurements (typically the ECG) and geometrical measurements (typically
provided by medical imaging). This realistic contraction should provide useful quantitative parameters
for the diagnosis and also for guiding some new forms of therapy. Our modeling is based on a multi-
scale analysis ranging from microscopic to macroscopic scales, and integrates a priori information on
the overall geometry and on the fiber directions extracted from specific medical imaging techniques
(e.g. dtMRI). The FitzHugh-Nagumo equations are solved along with a constitutive law based on
the Hill-Maxwell Rheological model, on which a data assimilation analysis is done. In medical image
analysis, we believe that this new generation of physics-based deformable models will be useful to
provide a more robust quantitative interpretation of temporal series of cardiac images.

Résumé. Nous présentons ici nos avancées sur la modélisation du myocarde couplant des modèles
électriques et biomécaniques. L’objectif à long terme est de simuler la contraction du cœur à partir de
mesures ECG et d’images médicales, afin de fournir des outils d’aide au diagnostic. Notre modèle se base
sur une étude multiéhelle des phénomènes et des données anatomiques extraites d’images médicales. La
partieélectrique repose sur le modèle de FitzHugh-Nagumo et la partie mécanique reprend le formalisme
de Hill-Maxwell avec une nouvelle loi de comportement, sur laquelle de l’assimilation de données est
réalisée. En imagerie médicale, nous pensons que ce nouveau type de modèles devrait permettre une
interprétation plus robuste des séquences temporelles.

Introduction

The knowledge of the heart function has greatly improved on the nanoscopic, microscopic and mesoscopic
scales during the last decades, thus a global integrative work of this organ becomes conceivable [17]. It is

the objective of our multidisciplinary project ICEMA1 to build a generic dynamic model of the beating heart
and a procedure to automatically adjust the parameters to any specific patient from relatively easy-to-access
measurements: ECGs (electrocardiograms) and time sequences of volumetric medical images [1]. Once the
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generic model is adapted to a specific patient, it becomes possible to derive a set of quantitative and objective
parameters useful for clinicians and physiologists.
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Figure 1. Global scheme of the long term objective.

Our approach combines a 3D numerical model of the electric wave propagation with a 3D biomechanical
model of the myocardium. The two models are explicitly coupled in the simulation to generate a dynamic
behavior of the heart. The model for electric wave propagation is derived from FitzHugh-Nagumo equations,
while the mechanical model is based on the classical Hill-Maxwell rheological law. These models are expected
to reflect on a macroscopic scale the coupling present on the cellular scale. Then, a simplified version of this
electromechanical model is used to extract the heart motion from cardiac images, in the deformable model
framework.

Two error functions will serve to adjust the parameters of this generic model to a specific patient: the first
will compare the actual patient’s ECGs with a set of ECGs computed from the simulation. The second will
compare the deformation of the biomechanical model with the motion extracted from the medical images of the
patient’s heart. Ultimately, a feedback procedure will be used to update the parameters of the generic model
from these error functions.

In this article, we develop the current stages of this on-going research. In section 1, we describe the multi-scale
approach that lead to the model used. In section 2, we detail the data needed and the volumetric mesh used to
carry on computations. Then in sections 3 and 4 we respectively describe the electrical and mechanical models.
And section 5 describes the approach to extract the motion information from the medical image sequence.

1. Myocardium Modeling and Control

The cardio-vascular system can be seen as a multi-scaled hybrid system raising both modeling and control
problems. The different scales concerning cardiac muscle contraction and its control are presented in the
synthetic table 1.

scale systems / system modeling control / control modeling
nanoscopic myosin molecules calcium ions

Langevin equation (SDE) still to be designed
microscopic sarcomeres ionic currents

Huxley-like models (PDE) Luo-Rudy-like models (ODE)
mesoscopic myofibers action potential

BCS model (ODE) FitzHugh-Nagumo-like models (ODE)
macroscopic myocardium action potentials

dynamics equations (PDE) FitzHugh-Nagumo-like models (PDE)
(with BCS constitutive law)

Table 1. The different scales of cardiac muscle contraction
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On the molecular scale

The myosin and actin molecules behave as nanomotors controlled by the neighboring Calcium ions. Motion
generation is due to the coupling between thermal agitation and the chemical cycle of ATP hydrolysis. Myosin
heads are subject to oscillations between a free state and an actin-bound state which makes them operate as
an hybrid system. This situation can be modeled by controlled Langevin equations [14].

On the sarcomere scale

Actin and myosin molecules are respectively lined up on thin and thick filaments. The relative sliding of
these filaments over one another is responsible for the changes in the sarcomere strain during the cardiac cycle.
This “sliding-filament” assumption is well described by Huxley-like models [13]. The control of sliding is related
to the changes in the transmembrane potential due to several ionic currents. Luo-Rudy-like models [16] account
for a large number of ionic currents and can be used as models for the control on this scale.

On the myofiber scale

The lining-up of the sarcomeres results in the fibered structure of the myocytes, which constitute the con-
tractile elements at the source of motion. Their collective behavior can be modeled by the BCS model [4]:

{

k̇c = − (|u|+ |ε̇c|) kc + k0 |u|+ kc(0) = σ̃c(0) = 0
˙̃σc = − (|u|+ |ε̇c|) σ̃c + kc ε̇c + σ̃0 |u|+ σc = kcξ0 + σ̃c + ηε̇c

(1)

with kc the stiffness, σc the stress, and εc the strain of this contractile element, and u the action potential.
The relation between stress and strain is thus described by a set of ODE of visco-elasto-plastic type, subject
to an electric control variable corresponding to the action potential. The changes in u are ruled by FitzHugh-
Nagumo-like equations [8]. For sake of parameter identification, Luo-Rudy like models are indeed untractable
on this scale as they include a very large number of unknown parameters.

On the myocardium scale

To account for the biomechanical behavior of the whole myocardium, the constitutive law (1) is embedded
into a 3D anatomical model where it is used in the fiber directions and coupled with the dynamics equations.
The electric control corresponds to the propagation of action potential and is ruled by FitzHugh-Nagumo-like
reaction-diffusion equations.

It is worth noticing that, while we are well ahead in the multi-scale modeling of cardiac biomechanical
behavior (see [4]), the corresponding modeling approach for the electric behavior remains to be done.

2. Anatomical Mesh

To carry on the computations of our model we need data regarding both the 3D ventricular geometry and
the muscle fiber directions. Indeed, the anisotropy created by these fibers intervenes in both the electrical wave
propagation and the mechanical contraction. There are different ways to obtain these fiber directions. We are
currently using data from a dissected canine heart available from the Bioengineering Research Group2 of the
University of Auckland, New Zealand and from reduced-encoding MR diffusion tensor imaging (dtMRI) [12].

In order to complete our anatomical model we also need data about the electrical network: the Purkinje
network locations determine the electrical onset areas of the ventricular depolarization. But they are difficult
to locate, both in dissection and cardiac images. In our model, they are currently approximated by a set of
nodes near the apex.

3. Electrical Wave Propagation

The electrical behavior of the heartfrom, from the cell to the muscle level, has been extensively studied.

2http://www.bioeng.auckland.ac.nz/home/home.php
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Figure 2. dtMRI slice and tetrahedral myocardium mesh built, with the fiber directions shown.

Cell Level

At the cell level, the main idea is to study the relationship between the transmembrane ionic currents and
the ionic potentials inside and outside the cell. The models concerning this relation improve while the number
of phenomena observed on the cell level increases [2]. At the beginning, we are only concerned with a model
expected to account for the most important biological phenomena: a cell is activated only for a stimulus larger
than a certain threshold; the shape of the action potential does not depend on the stimulus (it is only model-
dependent); there is a refractory period during which the cell cannot be excited; a cell can act as a pacemaker.

A FitzHugh like model [8] seems to correctly capture these behaviors, and yields fast 3D computations. Here
only the following set of differential equation is studied:

u̇ = f(u) − z

ż = ε (λu − z)
(2)

where f(u) = u(1− u)(u− a). u is a normalized potential, z is a dynamic variable modeling the repolarization
(ε and λ are related to the repolarization rate and the repolarization decay).

Whole Ventricle Level – Anisotropy

At the macroscopic scale, the ventricles are considered as a conducting continuum, where the local potentials
are undergoing at the same time the diffusion and the reaction phenomena described by the models above.
Hence, (2) becomes:

u̇ = div (D∇(u)) + f(u) − z

ż = ε (λu − z).
(3)

On a physiological point of view, these equations are understood either as a mathematical approximation of
the dynamical system introduced by Hodgkin and Huxley [11], as in [8], or as the result of some equilibrium
equations that govern the conducting continuum, like in the so-called bidomain model [24].

The anisotropy of the ventricles is taken into account through the diffusion tensor D: D = d0.diag(1, ρ, ρ), in
a local orthonormal basis (i, j, k) where i is parallel to the fiber. d0 is a scalar conductivity and ρ the anisotropy
ratio between the transverse and the axial conductivities.

Results of the wave propagation

Simulated isochrones of activation are presented (Fig. 3), after a wave was initialized at the apex, using a
crude approximation of the Purkinje network and a slightly anisotropic diffusion tensor.

We can simulate different singularities that may correspond to pathologies by changing the conduction
parameters (Fig. 4), for instance introducing a strong conductivity anisotropy.

This time-dependent computed potential can then be used as an excitation entry to the system describing
the mechanical behavior of the myocardium.
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Figure 3. Isochrones of activation (computed with a slightly anisotropic diffusion tensor: ρ = 0.7)
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Figure 4. Apparitions of activation singularities with a highly anisotropic diffusion tensor.

4. Electromechanical Coupling

4.1. Modeling

Formulation

The mesoscopic myofiber constitutive law previously introduced (see also [4]) is now incorporated in a macro-
scopic rheological model of Hill-Maxwell type [6, 10], as depicted in Figure 5. The element Ec accounts for the
contractile electrically-activated part of the behavior while elastic material laws are used for the series element
Es and for the parallel element Ep. Based on experimental results, the corresponding stress-strain laws are
generally assumed to be of exponential type [19].

u

Es

Ec

Ep

ε
=

σ
=

Figure 5. Hill-Maxwell rheological model.

The corresponding governing macroscopic three-dimensional (3D) mechanical equations are presented in [6]
and we focus here on a 1D formulation of activated fiber contraction. The addition of viscous damping (µ and
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C) in parallel with element Ec and element Ep leads to the following formulation:















ρÿ − ∂
∂x

(kp(ε) + Cε̇ + σc + µε̇c + kcξ0) = 0
σ̇c = kcε̇c − (α|ε̇c| + |u|)σc + σ0|u|+
k̇c = −(α|ε̇c|+ |u|)kc + k0|u|+
σc + µε̇c + kcξ0 = ks(ε− εc)

(4)

with appropriate initial conditions. In these equations, ε denotes dy
dx

and the indices s, c, and p refer to the
series, contractile and parallel elements, respectively, with k the stiffnesses. The successive phases of the cardiac
cycle are distinguished in the boundary conditions.

Simulations

Simulations of problem (4) were carried out taking into account the four phases of a cardiac cycle (isovolumet-
ric contraction, ejection, isovolumetric relaxation and filling). The results obtained — especially the evolution
of stresses and strains — correspond reasonably well to heart physiology. Figures 6(a) and 6(b) present the
displacement and stress variations during a cardiac cycle.
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(a) Evolution of stress in a fiber along a cycle.
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(b) Displacement of a fiber along a cycle.

Figure 6. Displacement and stress variations.

4.2. Data assimilation

Mechanical phenomena in the heart are nonlinear, fast and with large strains so a complete modeling is very
difficult to deal with. Furthermore, measurements of cardiac activity (blood pressure, strains and displacements
of ventricle walls,. . . ) are scattered and noisy. Hence, our objective is to use a data assimilation approach
in order to identify the electromechanical model using the available measurements. The problem could be
formulated as follows : find the parameters σ̄0, k̄0 and the input ū(x, t) such that the state function X =
(y, ẏ, σc, kc, εc)

t, solution of problem (4) satisfies Y (tk) = HX(tk) for all k ∈ I where {Y (tk)}k∈I is the set of
available measurements and H the observation operator. The sequential algorithm employed to achieve this
state-parameter estimation is based on a Kalman filtering approach using the SEEK formulation [5, 7].

We give below examples of estimations carried out with numerically simulated observations {Y (tk)}k∈I

obtained as follows. The solution X of problem (4) with given parameters σ̄0, k̄0 and a given input ū(x, t) is
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simulated over the time interval [0, T ]. Then observations {Y (tk)}k∈I are obtained by Y (tk) = HX(tk), where
H = [1 0 0 0 0] and tk are samples chosen in [0, T ]. Finally, from the observation data {Y (tk)}k∈I and the

model (4) where the initial values of parameters σ̃0, k̃0 and input ũ(x, t) are selected with (σ̃0, k̃0, ũ) 6= (σ̄0, k̄0, ū)

(taking as initial values (σ̃0, k̃0, ũ) roughly half of the correct ones), we obtain an estimation of the correct values
σ̄0, k̄0 and ū(x, t), see Figures 7(a) and 7(b).
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(a) Value of σ̄0 and its estimation.
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(b) Strain ε(x0, t) simulated with model (4) vs. (σ̄0, k̄0, ū)

and its estimation with the procedure detailed in 4.2.

Figure 7. Comparison between the simulation (− · −) and the estimation (—) of different parameters.

We observe that the results of this inverse problem (parameters and input determination) are quite good.
The 3D case is under current research.

5. Interaction with Cardiac Images

Thus, to adjust the parameters of the model, we need to extract the cardiac motion from cardiac images, in
order to compare these measures with the computation results. Many different techniques were used in cardiac
image analysis with 3D models [9]. In the deformable model field, some of the ventricular function parameters
(ventricles volume, wall thickness,. . . ) can be efficiently extracted from the deformation of geometric surfaces.
But these surfaces do not include any biological or physical a priori knowledge to guide their deformations where
boundary data is missing. Moreover, only the apparent motion (ie. displacement along the normal direction) can
be reconstructed. Recently, volumetric models have been used [21, 22], they have a strong topology constraint
and they can easily include a priori information [15]. Moreover, there is a twist during contraction in the heart
motion, using biomechanical volumetric models could help recover this tangential displacement.

In the deformable model framework, a model evolves under the influence of two energies: an External Energy
which makes the model fit the images and an Internal Energy which acts as a regularization term and can
include a priori information (shape, physical properties, motion,. . . ). In our approach, the computation of this
External Energy at a surface vertex depends not only on the vertex location but also on its normal direction.
Different type of forces may be applied depending on the image modality. We chose to combine intensity and
gradient information with a region-based approach [20] applied to the intensity profile extracted at each vertex
in its normal direction. It consists in defining a region with a range of intensity values and then finding its
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Figure 8. Segmentation of cardiac images with a volumetric biomechanical model and sim-
plified electromechanical model in a 4D ultrasound image

boundary by looking at the voxels of high gradient value. The extent of the intensity profile is decreased in the
coarse-to-fine process. Then, we apply a force Fi which is proportional to the distance to the closest boundary
point of the image from the considered point of the mesh surface. The volumetric nature of our model strongly
decreases the importance of the image outliers in the motion estimation since it strongly constrains the geometric
(for instance the thickness of the myocardium wall) and physical behavior. The Internal Energy corresponds to
a simplified version of the electromechanical model described in the previous sections: to allow an interactively
controlled segmentation, we need a computationally fast model3. Images and videos are available on the web4.

Simplified Electromechanical Model

The qualitative behavior of the electromechanical coupling is a contraction for a positive action potential and
an active relaxation for a negative one. Moreover, the action potential also modifies the stiffness of the material.
The model introduced in [3,4] by Bestel, Clment and Sorine and presented in the previous sections captures this
behavior. For computational efficiency, we simplified this physical model by using a piecewise-linear anisotropic
material for the stiffness k, and only an electrical command for contraction stress tensor σc (Fig. 9).

Ec

Ep

piecewise linear

Figure 9. Simplified rheological model.

The simplified coupling equation from (1) writes: σ̇c = − |u|σc + σ0 |u|+. It only takes into account the
electrical command. The contraction stress increases exponentially for positive action potential and decreases
exponentially for negative ones, and the variation rate depends on the action potential value (Fig. 10).

We obtained preliminary results with this simplified electromechanical model, we now have to adjust the
electrical and the coupling parameters to a patient dataset, to be able to use it to segment a whole cardiac
sequence.

3An earlier version of this work was published in [23]
4http://www-sop.inria.fr/epidaure/personnel/Maxime.Sermesant/gallery.php
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Figure 10. Contraction of the fibers induced by the simplified electromechanical coupling,
and deformation of the left ventricle.

6. Conclusion and Perspectives

Each part of our model is planned to be improved:

• the anatomical model should be adapted to a human heart. Diffusion tensor MRI is probably one
possible way to obtain human fiber directions;

• the electrical model should include a third variable to better control the shape of the wave and a
mechano-electrical feedback;

• the complex mechanical model has to be solved on a 3D mesh;
• the simplified model for image segmentation will become non-linear and later integrate a series element.

For each of these models we intend to identify parameters:

• the electrical parameters and the electrical entries, should be estimated by comparing computed ECGs
with measured ones. To achieve this, an inverse problem has to be considered;

• for the mechanical parameters, identification techniques still have to be developed, as in vivo rheological
studies for human tissues are hard to set up. Here, a criterion will be the difference between the computed
motion and the one extracted from the cardiac images.

All these points will be the topics of our future work. Globally, recent measurements of the electrical activity,
fiber directions and motion reconstruction (from tagged MRI) on the same heart should help adjust the different
parameters of this model [18].
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[2] A. L. Bardou, P. M. Auger, P. J. Birkui, and J.-L. Chassé. Modeling of cardiac electrophysiological mechanisms: From action

potential genesis to its propagation in myocardium. Critical Reviews in Biomedical Engineering, 24:141–221, 1996.
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[6] D. Chapelle, F. Clément, F. Génot, P. Le Tallec, M. Sorine, and J. Urquiza. A physiologically-based model for the active
cardiac muscle contraction. In T. Katila, I. Magnin, P. Clarysse, J. Montagnat, and J. Nenonen, editors, Functional Imaging
and Modeling of the Heart (FIMH’01), number 2230 in Lecture Notes in Computer Science (LNCS), pages 128–133. Springer,
2001.

[7] Pham D.T., J. Verron, and Roubaud M.C. Singular evolutive Kalman filter with EOF initialization for data assimilation in
oceanography. J. Mar. Syst., 16:323–340, 1997.

[8] R.A. FitzHugh. Impulses and physiological states in theoretical models of nerve membran. Biophys. J., 1:445–466, 1961.
[9] A.F. Frangi, W.J. Niessen, and M.A. Viergever. Three-dimensional modeling for functional analysis of cardiac images: A

review. IEEE Trans. on Medical Imaging, 1(20):2–25, 2001.
[10] A.V. Hill. The heat of shortening and the dynamic constants in muscle. Proc. Roy. Soc. London (B), 126:136–195, 1938.
[11] A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current and its application to conduction and excitation

in nerve. J. Physiol, 177:500–544, 1952.
[12] E.W. Hsu and C.S. Henriquez. Myocardial fiber orientation mapping using reduced encoding diffusion tensor imaging. Journal

of Cardiovascular Magnetic Resonance, 3:325–333, 2001.
[13] A.F. Huxley. Muscle structure and theories of contraction. Progress in biophysics and biological chemistry, 7:255–318, 1957.
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[24] K. Simelius, J. Nenonen, and B.M. Horácek. Simulation of anisotropic propagation in the myocardium with a hybrid bidomain
model. In T. Katila, I. Magnin, P. Clarysse, J. Montagnat, and J. Nenonen, editors, Functional Imaging and Modeling of the
Heart (FIMH’01), number 2230 in Lecture Notes in Computer Science (LNCS), pages 140–147. Springer, 2001.


