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Abstract. A simple electro-mechanical model of the heart is derived to
best fit available cardiac images. The model is based on anisotropic lin-
ear elasticity and, from the electrical point of view, on the finite-element
discretisation of the FitzHugh-Nagumo electric wave-propagation model.
Present simulations include static image segmentation. By including bi-
ological and physical a priori knowledge, more realistic 4D images seg-
mentation of the cardiac motion are expected.

1 Introduction

Cardiovascular pathologies are the first mortality cause in the industrialised
countries. Estimating quantitative parameters of the ventricle function from im-
ages is a key to reach a better understanding of the cardiac motion but also
to detect ischemic zones, to measure the pathology extent and to control the
therapy effectiveness. These quantitative parameters, like the ejection fraction,
myocardium thickness and local strain and stress constitute the ventricular car-
diac function.

Some of these parameters can be efficiently extracted from the deformation
of geometric surfaces [12]. But these surfaces do not include any biological and
physical a priori knowledge to guide their deformations where boundary data is
missing [15, 16]. Moreover, only the apparent motion (ie. displacement along the
normal direction) can be reconstructed.

In this paper, we propose a framework to extract these parameters of interest
from a simplified electro-mechanical model of the heart. Basically, unlike previous
approaches, we have constructed an active model of the left and right ventricles;
this model is activated by an electrical wave modifying its stiffness and shape
and also constrained by the additional geometry originating from medical images.
Although this is a work in progress, we believe that the proposed framework will
allow a better understanding of the heart’s behaviour.

2 Geometric Model

Our geometric model consists of a mesh of the whole myocardium (including
both right and left ventricles) and of the myocardium fibre directions. Indeed,
the fibres architecture has a great influence on the motion and on the propagation



of the electrical excitation. It is based on data available from the Bioengineering
Research Group of the University of Auckland, New Zealand [9,13]. This data
has been obtained by the dissection of a dog’s heart and is composed of a mesh
of 256 nodes and 180 hexahedra, and of a fibre direction at each node.

This hexahedral mesh presents the advantage of resulting from the deforma-
tion of a 3D regular grid. However, it contains tetrahedra of very different shape
and size, and this may cause numerical difficulties. Instead, we are currently us-
ing tetrahedral meshes because this allows us to locally refine the mesh in parts
of interest and to avoid the use of Gaussian quadrature to build stiffness matri-
ces. In fact, different meshes with varying resolutions are built for the electrical
and mechanical aspects of the computation.

To switch from hexahedral to tetrahedral meshes, we first triangulate the
surface of the hexahedral mesh, and then refine it to the desired resolution
while keeping sufficient quality triangles. Then a tetrahedral mesh is produced
based on this triangulated surface and finally, the fibre directions are tri-linearly
extrapolated and interpolated.

o

(a) Hexahedral Mesh (b) Tetrahedral Mesh

Fig. 1. Myocardium meshes of different topologies, with the fibre directions

3 Mechanical Model

The myocardium is a nonlinear viscoelastic anisotropic active material [7, 6]. It
is composed of fibre bundles spiralling around the two ventricles. Obviously, the
physical model has to be simple enough for computational purposes. Therefore
we are limiting ourselves to a linear anisotropic constitutive law. The internal



stress-strain relationship in a frame related to the fibre direction is given by:
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where ¢ = (grad(U) + grad(U)?)/2 with U the displacement, A and u are the
Lamé constants and A is a coefficient of anisotropy introduced in Hooke’s law.

We have then a linear relationship between the internal body force and the
displacement: F' = KU where K is the stiffness matrix.

4 Electrical Model

Among the various models for the electric wave-propagation is the system of
FitzHugh-Nagumo [4]:
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where f(u) =u(1 — u)(u — a).

Here, x = T/L,t = t/ter, u = (4 —1up) /urer and 2z are dimensionless variables.
7 is the actual transmembrane potential, L is the size of the heart and t.s =
L?/D is a reference time (D the diffusion).

We are interested in this simple model since it correctly captures qualitative
aspects of excitation and propagation, and has been successfully used in 3D
computations [2,19, 14, 5, 20].

Various modifications of the original FitzZHugh-Nagumo equations have been
proposed [8,18,11,1,10] to improve this model, in particular with respect to the
shape of the action potential and the restitution properties (APD). We plan to
incorporate one of these in our future work.

The theoretical aspects of (1) have been widely studied [21]: a travelling
wave of fixed shape and speed should appear or not, depending on the initial
excitation being above or below a threshold.

In a first stage, solutions to (1) have been approximated by using a standard
P1 Lagrange finite element procedure (with mass lumping and first order nu-
merical integration at vertices), on the given tetrahedral anatomical mesh. The
Euler explicit time integration is performed to advance computations:
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where 4™ and 2™ are the vector of the nodal values of the approximates u and z
at time t" = nAt. K is a stiffness matrix and M is the mass matrix (diagonal
here).

In a second stage, anisotropic behaviour will be accounted for by letting the
diffusion matrix D depend on the local fibre orientation.

One remaining and crucial problem (of great importance) is that some ap-
propriate boundary conditions must be imposed at the junctions between the
special conduction system (Purkinje fibres) and the myocardium, which is not
well known so far [5,17]. We have followed an approach which consists in assum-
ing that the junctions region is located near the apex, below a plane that cuts
the main heart axis.

Potential maps are presented at different time steps (Fig. 2), starting after a
wave has been initiated at the apex and propagating while taking its complete
shape.

Fig. 2. Surface mapping of the 3D potential at different time steps

5 Activation Model

Each heart-beat cycle, a depolarization wave is initiated and propagates along
the myocardium during about 10% of the total cardiac cycle. It induces a contrac-
tion of the whole myocardium, which produces a local stress tensor 0, = a fQf,
where f is the fibre direction and « the activation rate, which is directly related
to the parameter u of Section 4.

If n is the external normal, by virtue of the Gauss theorem, the equivalent
force is:

Fa:/vdiv(aa)dv — /vdiv(af@)f)dv — /S(ozf®f)®nds.

Therefore, when a fibre is activated, its contraction is modelled as a pressure
applied to the surface of the tetrahedron in the fibre direction.

Furthermore, in addition to the extra term o, the electrical activation of the
myocardium modifies its elastic properties. To simplify the model, we propose



Fig. 3. Effect of the fibres contraction on the model.

to approximate the non-linear behaviour of the myocardium by a series of linear
models that are only valid during a small part of the cardiac cycle.

6 Interaction with Cardiac Images

The deformation of our model is guided by 3D or 4D images. The material’s
anisotropy, through the constitutive law and the electrical activation, is employed
to better recover the tangential motion of the ventricles.

Fig. 4. 3D model in a slice of a 3D ultrasound image.

At time step t, for each node of the mesh surface, we look for the maximum
gradient norm along the surface normal direction within a given distance range to
find the closest boundary point of the image. We can also use a priori knowledge
on the image: in ultrasound images, as we know that cardiac structures appear as
grey areas on a black background, the gradient direction can help determine if the
boundary point found is on the right side of the myocardium. Additionally, we
can look for homogeneous areas in a given range of grey values (region approach).

Then, we apply a force F; which is proportional to the distance to the closest
boundary point of the image from the considered point of the mesh.

We control the effect of those forces with two parameters:



— the proportionality factor to compute those forces from distances;
— the constitutive law of the material (Lamé constants), that controls the
stress-strain relationship and the incompressibility;

For the initialisation, we use constants that allow the model to vary impor-
tantly, as we adapt the model to the patient heart. Subsequently, during the
sequence, we fix the parameters to values found in the literature for the cardiac
myocardium, which make it incompressible, for example. As rheological data
is complicated to measure in-vivo, this procedure is also a way to adjust the
Lamé constants. Furthermore, because of the volumetric nature of our model,
it strongly decreases the importance of image’s outliers in the motion estima-
tion since it strongly constrains the geometric (for instance the thickness of the
myocardium wall) and physical behaviour.

7 Global Heart Model

We use mass-lumping in a Newtonian differential equation with an explicit in-
tegration scheme to compute the position P of each vertex:
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with v the damping factor and F the internal forces computed from linear elas-
ticity plus the boundary conditions (in particular the ventricular pressures). The
model is activated through the forces F, and constrained by the cardiac images

through the external forces F;.

8 Results and perspectives

This model is really appropriate for the segmentation of ultrasound data, which
is sparse and noisy and where a priori knowledge is valuable.

The results (Fig. 5) show a rather good match between the mesh and the
image data. The radial deformation which is only constrained by the stiffness
of the material is however not so accurately adjusted. To improve this, further
work on the elastic model and force adjustment is necessary.

In future work, the mechanical model will be improved to better account
for normal strength and non linear laws of deformation. Additionally, a realistic
simulation of the electric wave-propagation should include, besides the ventri-
cles, the special conduction system (Purkinje Network). Particular efforts will
be made in this direction also.

In practice, the model will be forced to fit 4D echocardiographic images se-
quences synchronised on the electrocardiogram: the electric wave will be deduced
from the electrocardiographic measurements, then the activation state will be
known at each time step. Hence, at each time step, the mechanical properties
will be evaluated and the model will be deformed to fit the image?.

! Additional images and videos are available at
http://wwu-sop.inria.fr/epidaure/personnel/Maxime.Sermesant/heartmodel/



Fig. 5. (Top) 3D model in a slice of a 3D ultrasound image. (Bottom) Intersection of
the model and the image, before (left) and after (right) deformation.
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