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Abstract—In this paper, we address the problem of estimating
the parameters of an electrophysiological model of the heart from
a set of electrical recordings. The chosen model is the reaction-dif-
fusion model on the transmembrane potential proposed by Aliev
and Panfilov. For this model of the transmembrane, we estimate a
local apparent two-dimensional conductivity from a measured de-
polarization time distribution. First, we perform an initial adjust-
ment including the choice of initial conditions and of a set of global
parameters. We then propose a local estimation by minimizing the
quadratic error between the depolarization time computed by the
model and the measures. As a first step we address the problem on
the epicardial surface in the case of an isotropic version of the Aliev
and Panfilov model. The minimization is performed using Brent
method without computing the derivative of the error. The feasi-
bility of the approach is demonstrated on synthetic electrophysio-
logical measurements. A proof of concept is obtained on real elec-
trophysiological measures of normal and infarcted canine hearts.

Index Terms—Data assimilation, electrophysiology, heart mod-
eling, inverse problem, parameter estimation, reaction-diffusion
system.

I. INTRODUCTION

A. Motivations

CARDIAC arrhythmias are the cause of considerable mor-
bidity. Tachyarrhytmias can originate from ectopic foci

of electrical depolarization or from abnormal conduction path-
ways in the myocardium. The treatment of choice for patients
with tachyarrhythmias is radio-frequency ablation, where the
abnormal electrical focus or pathway is ablated by applying
radio-frequency energy. For patients with ventricular asyn-
chrony, the treatment of choice is biventricular pacing through
a pacing device. An electrophysiological study is performed
prior to these interventions: an electrical measurement catheter
is inserted into the appropriate chamber of the heart and the
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electrical activity of the endocardial surface is measured. When
inspecting electrophysiological data, cardiologists often base
their analysis on the depolarization and repolarization maps
of the epicardium or endocardium and more specifically on
isochrones associated with both instants. From those maps, ex-
pert eyes can detect different electrophysiological pathologies
ranging from the existence of low conduction zones caused
by infarcted tissue, to the occurrence of fibrillation caused by
scrolling waves.

The aim of the research effort presented in this paper is to
provide cardiologists with a quantitative and objective map of
one or several parameters related to conduction pathologies for
a better diagnosis and a better planning of therapies (early de-
tection of damaged cardiac tissue, or a precise location of ec-
topic foci or reentry points leading to an optimal planning of
radio-frequency ablation). To achieve this task we do not re-
sort to a pure signal processing approach, where for instance
conduction could be estimated from the distance between two
isochrone curves. Instead, we propose to compute this addi-
tional information by solving an inverse problem: finding the
parameters of a cardiac electrophysiology model that can best
explain electrophysiological observations (depolarization time).
In this paper, we present a first step toward this objective: a
method to estimate a local appearent conductivity (AC) will be
defined in Section II-C with a two-dimensional (2-D) electro-
physiological model of the heart from surfacic electrophysio-
logical measures. This paper is a first step towards a three-di-
mensional (3-D) study.

B. Context

In electrophysiology, there are usually three different types
of electrical potentials that can be considered: the extracellular
potential, the intracellular potential and the transmembrane po-
tential (TMP). The cardiac cells are separated from their envi-
ronment by a membrane, creating two distinct electrical spaces,
respectively the intra and the extracellular domains which have
different ionic concentrations and, therefore, different poten-
tials, the intra and the extracellular potentials. This difference
creates a TMP. When a cardiac cell receives a pacing signal, the
modification of the TMP creates an action potential leading to
the contraction of cardiac fibers. For this reason, the measure-
ment and computation of the TMP is crucial to assess the cardiac
function.

The state of the art in measuring the electrical activity of the
heart is mainly electro-anatomical mapping [1], catheter-based
measures like the EnSite system (St Jude Medical, St Paul, MN)
or contact electrodes on epicardium or endocardium such as the
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Fig. 1. Comparing simulated TMP (left) and measured extracellular potential
(right) on one electrode.

studies presented in [2]–[4]. In this paper, the measures were
performed using an epicardial sock on several dog hearts. This
procedure is very invasive but the electrodes are very accurately
located and we show results on normal and infarcted hearts. The
infarcted regions have different conduction patterns and, there-
fore, we expect the parameters of the model to be different in
these regions.

A wide range of models of the electrical activity of the heart
[5]–[9] has been developed from very accurate cellular models
like Luo and Rudy models [10], [11] to phenomenologic ef-
ficient models [12]–[15]. Accurate models such as bidomain
models or Luo-Rudy models provide excellent insight into the
physiological phenomena creating the electrical activity of the
heart [16], but are probably too sophisticated for our inverse
problem. Actually, these models are designed to capture very
subtle modifications in the shape of the TMP [17] whereas we
only measure here a depolarization time distribution. Moreover
subtle models contain too many parameters to estimate with
respect to the number of available measures. The FitzHugh-
Nagumo model [12] fits our expectations and allows to per-
form reasonably fast computations of the TMP propagation.
Aliev and Panfilov have developed a modified version of the
FitzHugh-Nagumo equations suited to the cardiac TMP [18].

In order to compare the TMP computed by the model with
the measured extracellular potential, we consider depolarization
time. The depolarization time is the moment when a cardiac cell
gets activated, leading to fiber contraction. The repolarization
time is the moment when a cardiac cell returns to its rest po-
tential, leading to fiber relaxation. The depolarization time can
be computed from the extracellular potential measures, as ex-
plained in [19], by taking the instant when the time derivative
is the most negative (Fig. 1). From the TMP point of view, the
depolarization time at a given point is the first instant when the
TMP is above a threshold (Fig. 1). As it is rather tedious to ex-
tract repolarisation time from measured data, we based our study
on the depolarization time only.

Estimating parameters from patient specific data can be
addressed as a data assimilation problem. Data assimilation
methods [20], [21] improve dynamical models by combining
them with real observations. This combination is done via an
appropriate minimization of the difference between observa-
tions and simulated data. Data assimilation techniques are very
popular in meteorology and oceanography. They were recently
introduced in biomechanical studies of the heart as in [22]
where an extended Kalman filter is used to estimate mechanical
parameters of the heart from a real heart motion. None of the
classical methods of minimization used in data assimilation are

truly suited for the model and the measures of our problem, we,
thus, propose a specific minimization method.

In Section II, we first describe the methods of this study. First
we detail the model and the details of the simulation of the elec-
trical wave based on this model. We then specify initial adjust-
ment including the choice of initial conditions and of a set of
global parameters before detailing the local AC estimation. In
Section III, we present the results of this procedure. We first
validate the global adjustment and the local estimation on sim-
ulated measures. We then show the results of the estimation on
a normal and on an infarcted heart. In Section IV, we discuss
these results. Finally in Section V, we summarize and present
the perspectives of this paper.

II. METHODS

The estimation method that we propose is based on the com-
parison between simulated and measured depolarization time
on the epicardial surface. In this section, we first present the
Aliev–Panfilov model, followed by a procedure to get initial
conditions and a set of parameters that produce a simulation that
globally fits the measures. Finally we present a local parameter
estimation algorithm. This local estimation is performed using
Brent method to minimize the quadratic error between measured
and simulated depolarization time.

A. Model Description

We chose the following formulation for the model of Aliev
and Panfilov

a)

b) (1)

In this formulation, is a normalized TMP (between 0 and 1)
and is a variable modeling the repolarization, controls the
repolarization, controls the coupling between the TMP and
the repolarization variable and controls the reaction phe-
nomenon. A 3-D anisotropic model based on the Aliev–Pan-
filov system was developed in the context of the ICEMA and
CardioSense3D1 research action [23], [24], [25], [19].

The electrophysiological measures are usually available on
the endocardium or the epicardium. A first essential stage be-
fore addressing the 3-D problem is to tackle a simplified and
tractable problem by considering a surface model. Thus, we per-
form a simulation based upon the Aliev and Panfilov model on
a surface triangulation with a set of vertices and a set
of triangles. The surface meshes used in this study are built
from the locations of the electrodes of an epicardial sock.

We use a further simplification by considering an isotropic
propagation, i.e., in system (1), where the
diffusion coefficient is proportional to a conductivity. The
system (1) is scaled spatially to the maximum dimension of the
triangulated mesh and temporally so that the action potential du-
ration is around 0.3 s ( , with the real time and the
normalized time). The temporal integration of the system (1)
is done with an explicit Euler scheme. The spatial integration is
performed with the finite elements method with linear triangular

1CardioSense3D: http://www.inria.fr/CardioSense3D
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elements. The numerical issues and the implementation are de-
scribed in [26]. Once a simulation of the entire cardiac cycle is
performed, based on the Aliev–Panfilov model, the depolariza-
tion time distribution is computed using the following equation:

(2)

B. Global Adjustment of the Model

This global adjustment of the model includes the adjustment
of initial conditions and the choice of a set of values for param-
eters and to scale the propagation in time and space.
The propagation of the depolarization wave is very sensitive to
the location of the pacing region. We choose the pacing region
by selecting the vertices with the smallest depolarization time.

The parameter is chosen according to the grid size. The
choice guarantees a stable scheme even for very coarse
meshes associated to the epicardial sock. The parameters of the
model , or can vary between individuals or species. With
the knowledge of the depolarization time, we can only adjust
one parameter. We choose in a first stage to estimate a global
value for the parameter from the depolarization time while
standard values are assigned to the other parameters (
and ). The diffusion coefficient is locally estimated in
a second stage (Section II-C).

As stated in [27], the velocity of the depolarization wave on
a one-dimensional (1-D) domain can be expressed as follows:

(3)

In two dimensions, the velocity of the depolarization wave is
not homogeneous in space. At each point in the mesh, it is equal
to the velocity in one dimension [see (3)] minus a term propor-
tional to the curvature of the front [27]. As we only need a global
estimate of the propagation velocity on a surface, we neglect, as
a first approximation, the front curvature and simply approxi-
mate the velocity of the depolarization wave by its expression
in (3).

The depolarization velocity can also be estimated from the
gradient of the measured depolarization time on the surface,

. The gradient on the surface can be
computed as described in the Appendix. Then, we compute a
median value of the gradient over the whole mesh and using
(3) we get the following approximation:

From this equation, if all parameters but are fixed, it is pos-
sible to compute directly

However, by doing so, we compare a theoretical 1-D velocity
and an apparent velocity computed on a 2-D surface and this
leads to a biased estimation. Therefore, we also compute a ve-
locity estimated from a first simulation on the same mesh as the

one used for the measures. As the velocity is proportional to
, a ratio between measured and simulated propaga-

tion velocity can be computed as follows:

(4)

The measured and simulated depolarization time distributions
are denoted by and respectively. is the initial value
for the parameter in the initial simulation and is the new
adjusted value. can be computed as follows:

(5)

With this new value for the parameter , we get a complete set
of global parameters that leads to a new simulation based on the
model. The result of this simulation is the initialization of the
local estimation that is described in Section II-C.

C. Local Estimation of Apparent Conductivity

Once the simulated depolarization time map globally fits the
measured one, a local adjustment of the model is possible. De-
polarization time is an implicit function of the action potential
whereas classical data assimilation methods generally require a
linear function or at least an explicit function of the results of
the model between the observations and the state variables. For
that reason, we propose a specific estimation algorithm.

In the case of an infarct, all parameters , and are modi-
fied in the infarcted region. The depolarization time distribution
depends on the product and, thus, only allows
to estimate one parameter. We choose the diffusion coefficient

as the spatially varying parameter. Ischemic or infarcted re-
gions exhibit a decrease in electrical conduction so that the ve-
locity of the depolarization wave is smaller in this region and,
therefore, should have a lower diffusion coefficient . Due to the
fact that parameters and also vary in ischemic regions, the
diffusion coefficient also reflects the composite variations of
parameters and . With the global adjustment of proposed in
Section II-B, the diffusion coefficient can no longer be related
to the electrical conductivity. Therefore, we call the apparent
conductivity.

In the discretized model [26], an AC value is assigned to
each triangle. Consequently, we look for an AC map

, where is the number of triangles in the trian-
gulation. This AC map should minimize

where is the set of the vertices in the trian-
gulation, is the measured depolarization time at vertex and

the depolarization time at vertex resulting
from a simulation with the conductivities .

In order to have a robust estimate of the AC, we split the heart
surface into different connected regions and estimate one AC
value for each region . Let be a partition of
the surface in regions. For each region , for all

such that the th triangle of the surface belongs to . Then,
the new minimization problem is to find
that minimizes

In order to simplify the minimization of , we want to use
the causality of the electrical wave propagation to estimate the
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AC one region after another, following the order of depolariza-
tion. To check this assumption, we studied the influence of the
AC of one region on the depolarization time distribution
by computing a rough estimation of based on centered
finite differences. For each vertex

In order to compute and , we have
to set the AC of region to and then to
and perform one simulation for each of these values. We noticed
that, as expected, the AC mainly influences regions having
depolarization time equal to or greater than the depolarization
time of region .

As a consequence, we transform a K-dimensional minimiza-
tion problem into successive 1-D minimization problems

(6)

During the estimation of the AC value , the conductivities of
other regions remain constant.

As there are enough vertices in a region to provide a robust
estimate, we simplify the criterion by taking into account
only the vertices of the region

(7)

Many popular criterion minimization methods are based on the
computation of the derivative of the criterion. In our case, it
would involve the computation of the derivative of and con-
sequently of . The computation of the derivative of the
depolarization time at a given point with simple finite differ-
ences is very tedious and requires two simulation steps which
are computationally expensive. More subtle methods like ad-
joint methods are not directly operative since the depolariza-
tion time is not an explicit function of the TMP. Therefore, we
choose a minimization method that does not involve any deriva-
tive, an iterative inverse parabolic interpolation like the Brent
method [28]. This very consistent method replaces the function
to be minimized by a well-chosen parabola. The minimum of
the function is approximated by the easily and efficiently com-
puted minimum of the parabola. Given , ,
and three points on the curve, there exists a unique
parabola going through these points
reaching its extremum at a point such that (8), shown at the
bottom of the page, holds. Then can be computed using
a new simulation based upon the model of Aliev and Panfilov
with this new value for and compared with , , and

.

Fig. 2. A surface mesh where the depolarization time is computed for each
vertex after simulating the TMP propagation. The color encodes the depolariza-
tion time.

We construct an iterative process which is a simplified ver-
sion of Brent’s method [28], to find the minimum from an initial
bracketing of the minimum. The bracketing of the minimum of
the function consists in three points , , and such that

, , and . We repeat
the parabolic estimation until we are satisfied with the obtained
value, that is if is the sequence of successively estimated
minima, we consider that convergence is reached when the dif-
ference between two successive estimations is smaller than a
given stopping criterion , i.e., .

III. RESULTS

A. Validation of the Methods on Simulated Data

We evaluate the performance of the global adjustment of the
model on simulated data. The data are simulated on a surface
mesh of the epicardium consisting of 192 vertices and 336 trian-
gles. The depolarization time distribution presented in Fig. 2 is
the result of a simulation based upon the Aliev–Panfilov model
for and a non constant conductivity
map with a mean value of 1.0. The integration time step was
chosen to make the explicit Euler scheme con-
verge. The depolarization time distribution of Fig. 2 is now a
set of simulated data.

Applying the procedure described in Section II-B to these
simulated data, we obtain a global value of starting
at a crude initialization of . The values of and for the
crude initialization were chosen equal to the parameters used
to simulate the data and the AC was chosen spatially constant
and equal to . A simulation is then performed with this new
value and the depolarization time distribution is compared with
the simulated measures. The depolarization time error drops
from 25.3 ms with to 14.7 ms with the new estimated
value . Fig. 3 displays the error between the mea-
sured depolarization time and the simulated depolarization time
before and after the estimation of .

We then test the local estimation algorithm on simplified sim-
ulated data. We still use the surface mesh of Fig. 2. All the
parameters but are fixed: and

. We choose only one region where the AC value
is modified from the standard value 1.0 to a value . On the

(8)
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Fig. 3. Simulated measures: absolute depolarization time error between simu-
lated data and simulations (a) before and (b) after the global automatic estima-
tion.

Fig. 4. Evolution of the estimated AC during the estimation. (a) d =

0:5; p = 10 . (b) d = 5:0; p = 10 .

remaining part of the mesh, the AC is equal to 1. We perform a
new simulation with the modified AC and produce a map of de-
polarization time that we consider as input to the AC estimation
algorithm. In this example, we suppose that we know the region

of modified conductivity.
We then present two examples, one with a low conductivity

value and one with a large one. In this first example, the expected
AC value is , we choose a very rough initial brack-
eting, and . We perform the itera-
tive process until the stopping criterion is lower than . 33
iterations are necessary to obtain an estimation of .
Fig. 4(a) shows the evolution of the estimated AC at each itera-
tion of the minimization. The convergence is fast and stable.

In a second example, the expected AC value is . We
perform the iterative process until the stopping criterion is less
than . By choosing the initial bracketing,

and , we assume that the AC is greater than
2.0. With these parameters, 17 iterations are necessary to reach
convergence and obtain . As the function is
very flat around its minimum, the convergence is slower with
the parameters of the first example, but the estimated AC is the
same. Fig. 4(b) shows the iterative estimation of AC values.

B. Results on in Vivo Measures. Normal Case.

In this section, we explain in details the procedure for a
normal heart. The in vivo measures used in this section were
acquired on an adult male mongrel dog using a multi-electrode
epicardial sock. The surgery, experimental layout, and the
data acquisition are described in [19] and [26]. This heart was
artificially paced and the natural pacing was suppressed. For
analysis of electrical activation, epicardial readings from each

Fig. 5. Measured depolarization time on a normal canine heart with artificial
pacing. The arrows indicate the pacing sites selected to initialize the simulations.

Fig. 6. Depolarization time (a) before and (b) after the local estimation com-
pared with the measures (c).

Fig. 7. Absolute depolarization time error between measures and simulations
(a) before and (b) after the global automatic estimation and finally after the local
estimation (c).

electrode were averaged over approximately 20 heartbeats. The
derivative of the voltage is computed with a five-point
finite differences estimate. The depolarization time is chosen as
the instant of the most negative derivative. The depolarization
time distribution computed from the potentials recorded on the
128 electrodes of the sock is interpolated on a surface mesh
consisting of 336 triangles and 192 vertices as displayed in
Fig. 5.

The pacing is artificial, consequently it is simple to select the
initial pacing area as we show on Fig. 5. All parameters but are
fixed as explain in Section II-B, and
the time step is . Applying the method presented in
Section II-B to the data, we obtain a global value of
starting from a crude initialization .

Fig. 6(a) presents the depolarization time obtained after the
global adjustment. The depolarization time error obtained be-
fore and after the automatic global estimation procedure are
shown on Fig. 7(a) and (b). The depolarization time distribution
computed with our procedure [Fig. 6(a)] is in the same range
of values as the measured depolarization time distribution. This
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Fig. 8. The 14 regions chosen on the epicardium, according to the propagation
of the depolarization wave. Different views. The large red region contains the
pacing electrodes.

Fig. 9. Convergence of the AC for the 14 selected regions.

Fig. 10. AC map. Different views. The color represents the AC value. From
blue (small values) to red (high values).

is confirmed by comparing the absolute error between simu-
lated depolarization and measured depolarization time before
[Fig. 7(a)] and after [Fig. 7(b)] the automatic estimation of .
Before the estimation, the mean error was 20.6 ms. After the
automatic estimation, the mean error is 10 ms.

We now apply the proposed method to perform the local es-
timation of the AC.

We first create a partition of the epicardium by splitting the
epicardium into regions according to the isochrones of the depo-
larization time map. The accuracy of this partition is limited by
the mesh resolution. In case these regions are too large we split
them orthogonally to the isochrones. Finally, for this example
we obtain 14 regions as shown in Fig. 8.

We then iteratively estimate one AC value for each region. We
sort the 14 regions of Fig. 8 according to their depolarization
time. The convergence on each region is presented in Fig. 9
while Fig. 10 shows different views of the obtained AC map.

The absolute error decreases significantly both after the
global estimation and the local estimation. Fig. 6 displays the
depolarization time simulated by the model before [Fig. 6(a)]
and after [Fig. 6(b)] the local estimation of the AC compared
with the measures [Fig. 6(c)]. Fig. 7 displays the absolute error

Fig. 11. Estimation of AC for the case of the anterior infarct. (a) Measured
depolarization time for an infarcted dog heart. (b) AC estimated. The bright
circles indicate the location of the infarct. The points marked with a dark star
indicate the pacing sites. The depolarization time distribution computed with
these AC values is depicted in (c).

on the depolarization time before and after the local estimation
of the AC.

C. Case of an Infarcted Heart

We also apply the AC estimation method on the case of an
infarct on the anterior wall. This heart was artificially paced and
the measures were obtained from an epicardial sock like in the
normal case. The measured depolarization time distribution in
this case is depicted in Fig. 11(a). The conduction appears to be
slower in the infarcted region due to the local modification of
the cells properties and of the conductivity. As a consequence,
we expect the AC to be low in the infarcted region. The AC
values are displayed in Fig. 11(b), the bright circles correspond
to the approximate location of the infarcted region. The depo-
larization time distribution computed from a simulation taking
into account these values is displayed in Fig. 11(c). In the in-
farcted region, the shape of this depolarization front reproduces
the shape of the measured depolarization front [Fig. 11(a)].

IV. DISCUSSION

A. Performances and Parameter Choice.

The estimation of the AC for one region takes about 6 min on
a dual processor Pentium III 1 GHz. The computation time lies
mainly in the simulations based on the model. In very simple
simulated examples where precomputed depolarization time
can be used, the estimation lasts around 10 s.

The convergence of the local estimation algorithm is as stable
for the real measures as for the simple synthetic example. The
criterion is approximated by a parabola, which exposes only
one minimum, the global one. Therefore, we do not observe os-
cillations between several possible local minima. We did not
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Fig. 12. (a) Depolarization time as a function of the AC d at the seven vertices
of a region R. (b) The derivative @t=@d of these curves.

experiment the drawbacks described in [28]. Thus, the simpli-
fied version of Brent minimization algorithm seems sufficient to
minimize .

This minimization method relies on a few parameters, the
initial bracketing and the desired stopping criterion. A differ-
ence between two successive iterations lower than 0.01 is suffi-
cient. In a first stage, we consider that no a priori information is
available for the AC. A very rough initial bracketing is essential
in order to assure that it contains the minimum of . The AC
should always be positive. Therefore, we take a small value for
the lower bracket . Hence, the positivity of the AC is easily
imposed. There is no particular maximum limit for the AC. As
all the regions belong to the same heart, it is realistic to take an
AC always lower than 10.

An important stage of the estimation is the splitting of the
epicardium into several regions where the estimated AC is con-
stant. For the moment, this partition is tuned manually.

B. Expected Accuracy of the Apparent Conductivity Estimation

Fig. 12(a) presents an example of the depolarization time as
a function of the AC at the seven vertices of a region and
Fig. 12(b) presents the derivative of these curves. When
the absolute value of the derivative of according to is small, it
means that the depolarization time distribution does not change
much upon a moderate variation of the AC. The larger is the
derivative, the smaller the range of AC values that leads to ap-
proximatively the same depolarization time and, thus, the better
estimation of AC. As a consequence, we have here an intrinsic
limitation for any AC estimation process from depolarization
time. We also notice that the absolute value of the derivative is
greater for small values of than for large values of . Conse-
quently, we can estimate more accurately small AC values than
larger ones.

C. Discussion on the Results

The global adjustment is satisfying and provides a good ini-
tialization to start the estimation of the local parameter. At this
stage, we are more interested in the error on the depolarization
time than on the value of . The first reason is that does not cor-
respond to any measurable quantity that can be extracted from a
set of measures. The second reason is that this global estimation
is based on a model with spatially constant parameters whereas
it may not be the case for simulated or real measures. The error
is globally smaller after the estimation of but the error is still
large in regions far from the pacing region. Indeed, the estima-
tion of the parameter is not performed by controlling directly
the depolarization time but by controlling the norm of the spa-
tial gradient of the depolarization time derivative, that is the in-

verse of the velocity (Section II-B). The estimated AC values
are consistent with the measures. From Fig. 9, we visually dis-
tinguish two types of regions. The regions of the first type have
AC values around 0.9 and for a second class of regions, the AC
is around 1.8. This reflects the asymmetry of the measures. The
depolarization wave is faster on one side than on the other side
of the epicardium. This may be due to the fact that we model
the epicardium as homogeneous, without distinguishing the left
and right ventricle nor taking into account the fiber directions.
In agreement with the measures, our estimation algorithm pro-
vides us with asymmetric conductivities. On the upper left view
of Fig. 10, the green region corresponds to the pacing region. On
the left, we estimate an AC close to 0.9, whereas on the right we
estimate an AC up to 5.0. If we refer to (3), it means that the ve-
locity of the propagation is more than twice larger on one side
than on the other .

Let us consider more precisely the first region, which includes
the pacing electrodes. In this region, we have a limitation with
the global estimation because the depolarization appears to be
faster than in other parts of the epicardium. The model with con-
stant parameters is not able to capture this phenomenon. For-
tunately with the local estimation, the AC value estimated in
this region is greater than 1.0, producing a faster depolarization
wave in the pacing region, in perfect agreement with the exper-
iment.

From Fig. 6, we notice a visual improvement of the depolar-
ization time distribution. Comparing these results with the mea-
sures [Fig. 6(c)], we notice that the shape of the depolarization
front resembles much the measures with the local adjustment.
The quality of this estimation is also assessed by the visual-
ization of the absolute error on the depolarization time in the
epicardial surface. In Fig. 7(b), the depolarization time error is
small near the pacing region but becomes larger further away
from this region. The final depolarization time error [Fig. 7(c)]
is not only smaller but also more homogeneous. Thus, the agree-
ment between the measures and the model is improved in the
entire epicardial surface. In conclusion, the error has been con-
siderably improved by the local estimation of the AC, even if we
only added 14 degrees of freedom: 14 AC values for 14 regions.

D. Case With the Infarct

In Fig. 11(b), the infarcted region is displayed as bright cir-
cles. A large portion of the infarct is detected in the two regions
with the lowest conductivity values, but we see that a part of
the infarct is not detected as a low conductivity region. The het-
erogeneous infarct geometry in the heart wall can explain this
observation: the infarct can be transmural (i.e., extending from
the inner surface to the outer surface) or nontransmural (i.e., ex-
tending from the inner surface to somewhere in the wall), and
when considering vertices in the mesh, where the infarct is non-
transmural, electrical conductivity can be almost normal. In ad-
dition, a low conductivity is estimated in normal regions. As
seen in the first case, this may be due to the modeling of the epi-
cardium as homogeneous medium. We are currently working on
the inclusion of the fiber directions in this model.

V. CONCLUSION AND PERSPECTIVES

We addressed the problem of estimating a set of parameters
for the TMP propagation modeled by Aliev and Panfilov from
measured depolarization time. In order to evaluate the quality
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of our results, we used a criterion based on the difference of de-
polarization time between the model and the measures. We first
presented a procedure to estimate globally a set of parameters
so as to properly scale the electrical propagation. We used the
theoretical properties of the Aliev and Panfilov equations and
validated that approach on simulated depolarization time. We
then presented a method to locally estimate the AC region by
region. This method was validated on simple simulated depolar-
ization time. We successfully estimated global and local param-
eters of the model from in vivo measures of a canine heart. The
simulation based on the model with these new values showed
that the depolarization time error was significantly decreased.
Moreover, the AC values that we obtained are consistent with
the measures even if a ground truth is not available. We also ap-
plied the estimation of the local AC to the case of an infarcted
heart and found a strong correlation between parts of low AC
values and the infarcted region.

In order to have a totally automatic process, we still have to
find and build algorithms for the automatic partitioning of the
epicardium. The proposed method could be easily extended to
include more input data, like the isochrones of repolarization
time, thus leading to the estimation of one additional spatially
varying parameter (in this case the parameter). In other words,
we presented a general framework that is applicable to one or
more macroscopic observations of cardiac electrophysiology.
The model based approach that we propose could also be ex-
tended to a 3-D model and could easily take into account fiber
directions. As an isotropic model is too limited, we first plan
to introduce anisotropy in the 2-D model. The next step will be
to estimate the parameters of a 3-D heart model by establishing
a correspondence between 2-D measures and a 3-D mesh. The
proposed approach is not dependent on the model since it only
uses simulations based on the forward model. Thus, it can be
adapted to more complex models that can reproduce specific
pathologies. It can also be adapted to models computing depo-
larization time rather than TMP like eikonal models [29]. Fi-
nally, a truly physiological validation would require to apply
our method to a benchmark of pathological and normal mea-
sures analyzed by experts.

The electrophysiological measures used in this article are
very rich but also very invasive. Therefore, a long-term chal-
lenge will be to estimate parameters of a full electromechanical
model using both electrocardiograms and displacement data,
for example tagged magnetic resonance imaging [30]. This
problem is more complex because the equations modeling the
mechanical deformation are more unstable than for the electro-
physiological models. First results concerning the estimation
of mechanical parameters from MR images were obtained
recently in [31].

APPENDIX

On each triangle of the triangulation, the
gradient of is

Fig. 13. Notations used on a triangle (P P P ).

where is the area of the triangle and
is the length of the segment and is the external
normal to this segment (Fig. 13). We denote the shell of
the vertex , that is the set of triangles to which belongs. Then
for each vertex , the gradient is given by

where is the area of triangle .
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