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Phani Chinchapatnam3, Kawal S. Rhode2, Reza Razavi2, and Nicholas Ayache1

1 INRIA Sophia Antipolis, Asclepios Team, France
2 King’s College London, Division of Imaging Sciences, UK

3 University College London, Centre for Medical Image Computing, UK
4 Nantes University, Jean Leray Mathematics Laboratory, France

Abstract. Cardiac arrhythmias can develop complex electrophysiolog-
ical patterns which complexify the planning and control of therapies,
especially in the context of radio-frequency ablation. The development
of electrophysiology models aims at testing different therapy strategies.
However, current models are computationally expensive and often too
complex to be adjusted with limited clinical data. In this paper, we
propose a real-time method to simulate cardiac electrophysiology on tri-
angular meshes. This model is based on a multi-front integration of the
Fast Marching Method. This efficient approach opens new possibilities,
including the ability to directly integrate modelling in the interventional
room.

1 Introduction

Treatment of cardiac arrhythmias has considerably changed in the last decades.
Radio-frequency ablation techniques are becoming widely available as an alter-
native to drug therapy. These procedures can be highly effective with minimal
side effects, but for some groups of patients have unsatisfactory success rates,
may entail long procedures, and may involve high x-ray radiation dose to both
patient and staff. Moreover, serious side effects can arise if the lesions extend
beyond the target area. There is a need for substantial innovation in order to
reliably achieve successful results in an acceptable time, with lower radiation
dose and reduced risk of accidental damage to adjacent structures.

The aim of this research work is to design models of the cardiac electrophys-
iology that are suited for clinical use and to propose methods to combine these
models with interventional data in order to better estimate the patient cardiac
function and help in the guidance of procedures.

2 Electrophysiology Models

Modelling the cell electrophysiology is an active research area since the semi-
nal work of Hodgkin and Huxley [4]. The precise modelling of the myocardium
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involves a cell membrane model embedded into a set of partial differential equa-
tions (PDE) modelling a continuum. We can divide these models into three
categories, from the more complex to the simpler (numerically):

– Biophysical models: semi-linear evolution Partial Differential Equation
(PDE) with ionic models. Up to fifty equations for ion concentrations and
channels [9,10]

– Phenomenological models: semi-linear evolution PDE with mathematical
simplification of biophysical models. Reducing to two equations representing
the intra- and extra-cellular potentials (bi-domain, mono-domain [2,11])

– Eikonal models: one static non-linear PDE for the depolarisation time de-
rived from the previous models (Eikonal-Curvature [6], Eikonal-Diffusion [3])

Solutions of the evolution PDE are very computationally demanding, due to the
space scale of the electrical propagation front being much smaller than the size
of the ventricles. The motion of the front governed by the Eikonal equation is
observed at a much larger scale, resulting in much faster computations.

For our interventional purpose, and as parameter adjustment often requires
several simulations, we want to design a very fast model. Moreover, clinical
data currently available is mainly on depolarisation times. For these reasons we
chose to base the presented work on the Eikonal models. Even if these models
are not able to precisely simulate the whole range of cardiac pathologies, they
open up possibilities for fast estimation, filtering (smoothing), interpolation and
extrapolation.

In [14], we presented an approach to simulate the Eikonal models with a Fast
Marching Method (FMM), in order to obtain very fast computations. While this
approach allowed us to take the front curvature influence into account, we could
not integrate the repolarisation in this approach. However, the repolarisation
is a very important phenomenon in many arrhythmias, for instance when the
Action Potential Duration (APD) variation creates reentry waves. Moreover, it
is often over several cycles that arrhythmias develop, and the FMM only solves
for separate cycles. Finally, this approach could not cope with the anisotropy of
the heart.

In this article we propose two important contributions in this fast model
framework. First, we propose a FMM that takes into account the anisotropy
of the medium in the computation of the propagation. Second, we introduce
the repolarisation phenomenon in order to be able to simulate multi-front
propagations.

3 The Anisotropic Fast Marching Method

3.1 The Fast Marching Method (FMM)

We first compare briefly the Eikonal approach to the PDE one. The classical
FMM [16] can be used to solve the following isotropic Eikonal equation:

F
√

∇T t∇T = 1
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where T is the arrival time and F the speed function (D is the identity ma-
trix in the isotropic case). In this method, points are separated in three sets:
UNKNOWN , TRIAL, and KNOWN , and the TRIAL set of points X is or-
dered along the increasing associated times T (X). N (X) is the neighbourhood
of X . In the initialisation step, all the points are put in UNKNOWN with a
time of +∞, starting points are put in KNOWN with a time of 0, and their
neighbours are updated. The FMM algorithm is described briefly in Algorithms 1
and 2.

Algorithm 1. Fast Marching Method
while TRIAL list is not empty do

X ← argminX∈TRIAL{T (X)}
remove X from TRIAL and add X to KNOWN
for all Xi ∈ N (X) and Xi /∈ KNOWN do

compute T (Xi) = UPDATE(Xi, X)
if Xi /∈ TRIAL then add Xi to TRIAL

end for
end while

Algorithm 2. Computation of T (Xi) = UPDATE(Xi, X) in a Triangulation
T (Xi) ← +∞
for all �(XXiY ) ∈ �X

Xi
= {�(XXiY )|Y ∈ N (Xi)} do

if Y ∈ KNOWN then
T (Xi) ← min{T (Xi), minp∈[0,1](T (X)p+T (Y )(1−p)+ [v(p)tD−1v(p)]1/2/F )}
where v(p) = −−→

XXip + −−→
Y Xi(1 − p)

else
T (Xi) ← min{T (Xi), T (X) + −−→

XXi
t
D−1−−→

XXi}
end if

end for

This implementation of the FMM is different from the original one which uses
an upwind discretisation of the gradient. We use here a closed-form solution of
the minimisation in triangles, which seems to be less sensitive to obtuse angles
than the original FMM (this has to be further studied.).

The Eikonal equation can be seen as an approximation for the computation
of the propagating front from reaction-diffusion PDEs. To better understand the
approximation, we present in Fig. 1 a comparison of the isochrones computed
by the FMM and the Aliev and Panfilov reaction-diffusion system to simulate
cardiac action potential [1]. The results from the different algorithms are pre-
sented on a triangulated square mesh with a center hole, composed of 13 000
nodes. The initialisation is in the bottom left corner. In this isotropic case, D is
the identity matrix.

In this case, the isochrones of the FMM are close to what is produced by the
PDE. One main difference is related to the boundary conditions. For the PDE,
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Fig. 1. (Left) Fast Marching on unstructured grid, (right) isochrones from the simu-
lated PDE. Red corresponds to small times, blue to large times. (Bottom) close up on
the top of the square to point out boundary condition differences effect.

these are Neumann boundary conditions, which impose the no-flux condition
at the boundary, whereas the Eikonal equation has no such constraints. This is
visible for instance at the top and right boundaries, where the PDE front is or-
thogonal to the edge and not the Eikonal one (see Fig. 1, bottom row, and around
the central hole). There are ways to introduce this in the Eikonal approach, but
this is still on going work on what are the proper boundary conditions for our
case, and whether this will impact the simulation to a great extent.

Another difference can arise from the fact that the travelling wave solution
of the PDE is only an asymptotic solution, whereas the Eikonal solution is di-
rectly in this stationnary state. This can be seen by varying the initialisation
parameters of the PDE (shape of the front at the initial time).

The travelling wave solution to the PDE is an asymptotic state (as time tends
to +∞), whose isochrones are approximately solutions to the Eikonal equation
(neglecting the effect of front curvature). Hence, part of the error between the
PDE isochrones and the Eikonal solution arises from the transient propagation
when the initial data for the PDE is chosen far from the asymptotic state.

The PDE system models a wide range of functional states (plane/spiral waves,
relations between front curvature, local APD and speed, adaptive response to a
periodic stimulation, etc), with the counterpart of complex parameter tuning and
numerical stability/cost issues. Although accounting for simpler situations, the
Eikonal model is clearly more adapted to our concern: fast computing compared
to very sparse/local measurements.

A more precise and quantitative evaluation of both the modeling and the
numerical approximation errors is on-going work.
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3.2 The Anisotropic Fast Marching

The anisotropic Eikonal equation can be written in the form of:

F
√

∇T tD∇T = 1

where D is the tensor creating anisotropy. Taking into account the anisotropy of
the propagation is important in many cases of excitable media. But introducing
this phenomenon in the FMM is not trivial. Indeed, the regular FMM uses
the collinearity between the gradient and the characteristic direction to solve
the equation very efficiently, but in the anisotropic case these directions do not
match anymore.

There have been many different ways proposed to solve such anisotropic equa-
tions using single-pass [15,7] or iterative [5,12] methods. We use here a new fast
algorithm for solving anisotropic Eikonal equation on general meshes without
increasing the neighborhood and following the characteristic direction similar
to single-pass methods [8]. The idea is to include a recursive correction scheme
taking into account the fact that, due to anisotropy, the immediate neighbor-
hood used for computation may not always contain the characteristic direction
at the time it is computed. To achieve this, an additional CHANGED list who
is also empty at the beginning and who will be used for the recursive correction
is introduced. This efficient algorithm, described in Algorithm 3, can cope with
very important anisotropies and can be applied to more general forms of static
convex Hamilton-Jacobi equations, and on Cartesian or unstructured grids. The
anisotropic FMM algorithm is not significantly longer to compute than the clas-
sical algorithm, especially in the case of non-extreme anisotropies. For instance
with a factor of three between longitudinal and transverse speeds, simulation on
the 13 000 nodes took less than one second (see Fig. 2).

Fig. 2. (Left) Classical Fast Marching on unstructured grid, (right) Anisotropic Fast
Marching (different colormap). The vertical speed is three times smaller than the hor-
izontal speed.
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Algorithm 3. Anisotropic Fast Marching
while TRIAL or CHANGED are not empty do

if CHANGED is not empty then
X ← argminX∈CHANGED{T (X)}
remove X from CHANGED

else
X ← argminX∈TRIAL{T (X)}
remove X from TRIAL and add X to KNOWN

end if
for all Xi ∈ N (X) and Xi ∈ KNOWN do

compute T (Xi) = UPDATE(Xi, X)
if T (Xi) < T (Xi) then

T (Xi) ← T (Xi)
add Xi to CHANGED list

end if
end for
for all Yi ∈ N (X) and Yi ∈ TRIAL ∪ UNKNOWN do

compute T (Yi) = UPDATE(Yi, X)
if Yi ∈ TRIAL and T (Yi) < T (Yi) then

T (Yi) ← T (Yi)
else if Yi ∈ UNKNOWN then

T (Yi) ← T (Yi)
remove Yi from UNKNOWN and add Yi to TRIAL

end if
end for

end while

4 A Multi-front Fast Marching Approach

The FMM is a static method to solve for an evolving front, in the sense that the
variable of the Eikonal equation is time. But in our simulation purpose, we can
have several fronts evolving at the same time, because points can go back to a
resting state, so they can be excited again before the first front disappeared.

The key idea is to introduce a time-stepping scheme while using the FMM
to compute the propagation during each time step. Our application context is
the Eikonal approximation of reaction-diffusion equations to simulate the prop-
agation in excitable media. In this context, the state of each point may vary
over time, for instance with a repolarisation state, when a point goes back to its
equilibrium state.

In order to achieve this, we have to introduce a refractory state, between the
excited and the equilibrium state, otherwise, any node going back to the equi-
librium would immediately be excited again by his neighbours still excited. This
is in agreement with natural phenomena, like nervous electrical action potential
propagation, where cells have this refractory period. The Multi-Front FMM is
described in algorithm 4.
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Algorithm 4. Multi-Front Fast Marching Algorithm on a period T

integratedT ime = 0.0
while integratedT ime < T do

elapsedT ime = 0.0
while TRIAL not empty and elapsedT ime < timeStep do

X ← argminX∈TRIAL{T (X)}
remove X from TRIAL and add X to KNOWN
for all Xi ∈ N (X) and Xi /∈ KNOWN do

compute T (Xi) = UPDATE(Xi, X)
if Xi /∈ TRIAL then add Xi to TRIAL
elapsedT ime = T (Xi) − integratedT ime

end for
for all X ∈ KNOWN do

if elapsedT ime − T (X) > APD(X) then
remove X from KNOWN and add X to REFRACTORY
RepolarisationT ime(X) ← T (X) + APD(X)

end if
end for
for all X ∈ REFRACTORY do

if elapsedT ime − RepolarisationT ime(X) > RefractoryPeriod(X) then
remove X from REFRACTORY and add X to UNKNOWN

end if
end for

end while
integratedT ime+ = timeStep

end while

Fig. 3. (Left) Impulse train with the Multi-Front Fast Marching (anisotropic case).
Excited vertices are in red and refractory vertices are in yellow. (Right) Corresponding
isochrones with a reduced frequency to increase visibility.

This Multi-Front FMM is able to simulate an impulse train on a piece of
excitable media (see Fig. 3, left). The visualised progressing front is not very
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smooth, because it corresponds to an isochrone still being computed, but after
the front, the resulting isochrones are smooth (see Fig. 3, right). Visualisation
work still has to be made to improve this.

The computation speed can be adjusted by choosing the frequency at which
the display must be updated (corresponding to the “time step” in this scheme).
On recent computers and with smaller meshes (1000 nodes), such surface simu-
lations could be done in “real-time”: no synchronisation was done to ensure the
timing of the simulation, but it was visually checked that with 30 frames per
cycle, the computation time was below one second (one heart cycle is a bit less
than a second).

5 Cardiac Electrophysiology Simulation

The presented algorithm was used to simulate transmembrane potential propa-
gation in cardiac tissue. The idea is to compute the depolarization time using
the Multi-Front Anisotropic FMM. Then, when a given vertex is depolarised, we
use the time-stepping to know when the vertex goes into repolarisation and then
refractory period, and when it is excitable again. We can thus show a pseudo
transmembrane potential, which is at 10 mV when the vertex is depolarised
(red), and -90 mV when it is excitable (blue).

Fig. 4. Normal propagation on the epicardium, with an apical epicardial pacing. Black
lines represent the fibre orientations. (Left) pseudo transmembrane potential. (Right)
simulated isochrones.

We compute in a continuous way the propagation of different finite states.
Compared to previous approaches in propagation simulation, it could be seen
as a kind of “continuous cellular automaton”: the states are discrete but the
propagation is continuous.

We used this algorithm to simulate epicardial propagation of the Action Po-
tential. As fibre orientation is tangential on the epicardium, and we simulate an
epicardial pacing, this surface model can be seen as an approximation of the 3D
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Fig. 5. Simulation of a scar with 10% of normal conductivity. Black lines repre-
sent the fibre orientations. (Left) pseudo transmembrane potential. (Right) simulated
isochrones.

propagation (see Fig. 4). We integrate fibre orientations from DTI measurements.
The depolarisation speed is 3 times faster along the fibre than transversally.

Low conductivity areas can also be added. For instance, a scarred area created
with a conductivity of 10% of the normal conductivity was simulated, see Fig. 5.

These are just exemplar simulations, computed on a very crude mesh (248
points). The accurate simulation of arrhythmias needs to take into account the
full 3D nature of the propagation and deal carefully with any discretisation
approximation issues. We also need a thorough comparison between measured
isochrones and simulated ones from a PDE or Fast Marching approach for patho-
logical cases in order to fully validate the behaviour of these models.

6 Conclusion

We presented a new algorithm to achieve real-time simulations of cardiac elec-
trophysiology. This model opens up possibilities for real-time filtering and inter-
polation of sparse and noisy catheter-based electrophysiology recordings, which
could provide a better evaluation of pathology and planning of the therapy. An
excellent example application is the planning of radio-frequency ablation. Such
a real-time model could be embedded in an intervention simulator to test several
ablation strategies.

Future work includes extension to volumetric propagation and reintroducing
the influence of the curvature of the front on the propagation speed. The use
of a restitution curve is quite straightforward in this framework, but having a
relative refractory period will need a more precisely described action potential.
Visualisation can be improved in order to have a smoother front by using already
computed isochrones. Validation of this model should lead to the integration
of simulated isochrones within XMR interventional data, that combine patient
anatomy and electrophysiology mapping [13].
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