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Rigid Registration of 3-D Ultrasound With MR
Images: A New Approach Combining Intensity and

Gradient Information
Alexis Roche*, Xavier Pennec, Grégoire Malandain, and Nicholas Ayache

Abstract—We present a new image-based technique to rigidly
register intraoperative three-dimensional ultrasound (US) with
preoperative magnetic resonance (MR) images. Automatic reg-
istration is achieved by maximization of a similarity measure
which generalizes the correlation ratio, and whose novelty is to
incorporate multivariate information from the MR data (intensity
and gradient). In addition, the similarity measure is built upon a
robust intensity-based distance measure, which makes it possible
to handle a variety of US artifacts. A cross-validation study has
been carried out using a number of phantom and clinical data.
This indicates that the method is quite robust and that the worst
registration errors are of the order of the MR image resolution.

Index Terms—Correlation ratio, image registration, magnetic
resonance, robust estimation, ultrasound.

I. INTRODUCTION

OVER the past few years, the development of real-time
3-D ultrasound (US) imaging has revealed a number of

potential applications in image-guided neurosurgery as an al-
ternative approach to open magnetic resonance (MR) and in-
trainterventional computed tomography (CT). The major advan-
tages of three-dimensional (3-D) US over existing intraopera-
tive imaging techniques are its comparatively low cost and sim-
plicity of use. However, the automatic processing of US images
has not developed to the same extent as other medical imaging
modalities, probably due to the low signal-to-noise ratio (SNR)
of US images.

The registration of intraoperative US with preoperative MR
images has the potential to enable the surgeon to accurately lo-
calize the trajectories of instruments in the operative field, re-
sulting in minimally invasive procedures. To date, few papers
have been published on this particular registration problem [10].
Most of the existing approaches are stereotactic-based as they
make use of a tracking device to assess the position and orien-
tation of the US probe in real time [2], [13], [25]. Such systems
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are calibrated before the intervention in order to relate the US
and MR coordinates. Pure stereotactic-based approaches are in-
trinsically limited to rigid registration since they exploit only the
probe position and orientation.

Other approaches are image based in the sense that reg-
istration is performed using the image data itself. Such
techniques are potentially able to compensate for a nonrigid
transformation which may result from brain deformations
or geometric distorsions in the US. They can also be used
in combination with stereotactic-based registration [1], [5].
Existing image-based techniques generally consist of matching
homologous features extracted from both the US and MR data.
Features are user-identified in [1], [4], and [5], while they are
semi-automatically extracted in [6]. Fully automated feature
extraction is reported in [7] for prostate images, and [17] for
liver and forearm images (using color Doppler US in the last
reference).

Slightlty different is the approach of Kinget al. [8] in which
no explicit feature detection is performed on the US. Instead, a
Bayesian estimation technique is used to deform a surface ex-
tracted from the MR image according to the US intensity and
gradient information. In the paper we refer to, however, experi-
ments with phantom data only are presented.

The present registration technique expands on the correlation
ratio (CR) method [20]. It is a pure intensity-based approach as
it does not rely onany feature extraction. In a previous work
[19], we reported preliminary results of US/MR registration by
maximizing two different similarity measures, namely CR and
mutual information (MI) [26], [9]. While results obtained using
CR were more appealing than when using MI, the method still
lacked precision and robustness with respect to the initialization
of the transformation parameters.

In this paper, we generalize the CR method following two dis-
tinct themes. First, we observe that ultrasound imagery is essen-
tially concerned with the interfaces between anatomical struc-
tures. Our idea is then to correlate the US intensity with both
the MR intensity and the MR gradient magnitude, which leads
to a bivariate extension of the CR. Secondly, we incorporate a
robust intensity-based distance measure in order to prevent the
bivariate CR from being biased by various ultrasound artifacts.

The bivariate CR method is described in detail in Section II.
Section III describes the phantom and clinical data that were
used in our experiments, while Sections IV and V propose orig-
inal evaluations of the method’s accuracy and robustness, re-
spectively.
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Fig. 1. Illustration of linear interpolation in the two–dimensional case, and two related strategies of interpolating the registration criterion.

II. M ETHOD

A. CR

Giventwoimages and , thebasicprincipleof theCRmethod
is to search for a spatial transformationand an intensity map-
ping suchthat,bydisplacingandremapping its intensities, the
resulting image isassimilaraspossible to. Ina first ap-
proach, this could be achieved by minimizing the following cost
function:

(1)

which integrates over the voxel positionsin image . This for-
mulation isasymmetric in thesense that thecost functionchanges
when the roles of and are interchanged. Since the positions
and intensities of actually serve to predict those of, we call
the “template image.” In the context of US/MR registration, we
always choose the MR volume as the template as it yields higher
quality informationwithbetterSNR. In the following,wewilluse
the simplified notations , and , where
the arrow expresses the dependence on.

In practice, the criterion defined in (1) cannot be computed
exactly due to the sampled nature of the template image. One
obvious problem is that the transformed position of a voxel will
generally not coincide with a grid point of, such that the cor-
responding intensity is unknown. A classical approach is to
linearly interpolate using the eight neighbors of in the
grid of . However, instead of interpolating the image inten-
sity, we may directly interpolate the incremental contribution of

, i.e., . The difference between these two ap-
proaches is illustrated in Fig. 1. The last method turns out to
be equivalent to the so-called partial volume (PV) interpolation,
originally proposed by Maeset al.[9] in the context of joint his-
togram computation. We have found PV interpolation generally
outperforms intensity interpolation in terms of smoothness of
the resulting registration criterion.

Another difficulty in computing (1) is that some points
may transform outside the template domain and lack eight grid
neighbors. It is commonnot to take into account these points in
the computation of the registration criterion. However, doing so
without careful attention, the criterion would become zero when
every point transforms outside. Hence, in order to avoid an

absolute minimum when the image overlap is small, we impose
the additional constraint that the variance ofbe large in the
overlapping region. Justification for this particular normaliza-
tion strategy may be found in [20], while related normalization
issues are discussed in [24] and [26].

These practical considerations lead us to the following mod-
ification to (1):

(2)

where the terms depending onare marked with an arrow:
are the linear interpolation weights, is the number of points

such that has eight neighbors in the template grid, and
is the intensity variance computed over these points.

If no constraint is imposed on the intensity mapping, an im-
portant result is that the optimalat fixed has an explicit form
that is very fast to compute [20]. The minimization of (2) may
then be performed by travelling through the minima of
at fixed . This yields the CR

a measure that reaches its maximum when is minimal.
In our implementation, the maximization of is performed
using Powell’s method [18].

B. Bivariate CR

US images are commonly said to be “gradient images” since
they enhance the interfaces between anatomical structures.
The physical reason is that the amplitudes of the US echos are
proportional to thedifferencebetween acoustical impedances
caused by successive tissue layers. Ideally, the US signal should
be high at the interfaces, and zero within homogeneous tissues.
In reality, US reflections also occur within tissues due to small
inhomogeneities (compared with the US wavelength) which
are almost invisible in MR. At this scale, there are significant
interference patterns between the ingoing and outgoing pulsed
waves, resulting in speckle. As a consequence, homogenous
tissue regions generally appear in the US with nonzero mean
intensity and strong texture.
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As stated above, the CR method tries to predict the intensi-
ties of the US by remapping those of the MR. Hence, uniform
regions of the original MR remain uniform in the remapped MR
and, thus, this procedure is not able to account for intensity vari-
ations at tissue boundaries. To enable a better prediction, we
propose to use the MR gradient magnitude as an additional ex-
planatory variable. In other terms, our template imageis now
a vectorial image, , standing for the MR
image, and we search for a function that maps
double values to single values.

Such a mapping does not appear to be entirely adequate from
a physical standpoint. On the one hand, it is clearly not able to
account for texture in the US, for which speckle is responsible.
This is a problem we will return to in Section II-D. In addition,
using the magnitude of the MR gradient may not be ideal. In
fact, the US signal which is produced at an interface depends
also on the tissue orientation with respect to the scan line. Thus,
perhaps a more appropriate choice than would be the dot
product, , where is the scan direction. The main dif-
ficulty in using this last expression is thatis unknown before
registration since it depends on the position of the US probe in
the MR coordinate system. A possible solution to overcome this
problem is to iteratively estimate using the current estimated
transformation. However, in a straightforward implementation,
this implies recomputing the “ ” image at each trans-
formation trial, entailing a massive increase of the computation
time. An efficient implementation of this idea is an issue we
have not yet tackled.

Nevertheless, we believe that ignoring the gradient orienta-
tion is acceptable, at least as a first-order approximation. As a
result of diffraction of the ultrasound beam on interfaces, the re-
ceived echo is actually less anisotropic than would be the case
with perfectly specular reflection. Moreover, even if impedance
boundaries cannot be detected isotropically, in practice all we
require is that there are sufficiently many edge points whose gra-
dient directions are approximately orthogonal to the US beam
direction.

An illustration of our bivariate model is presented in Fig. 2.
We rigidly registered one US/MR brain volume pair using the
present method. Fig. 2(c) displays the predicted US image corre-
sponding to the final stage of registration. The intensity fit was
computed using a polynomial function (see Section II-C). For
comparison, we represent in Fig. 2(d) the prediction obtained
when the second explanatory variable is chosen as the MR gra-
dient projected onto the US scan line (the US scan line was com-
puted from the registration result).

Although the images in Fig. 2(c) and (d) are reasonably sim-
ilar, the latter is seen to better account for the drop in US signal
at boundaries which are not normal to the beam direction (this
is especially clear around the ventricles). Needless to say, how-
ever, both of these predicted images are onlyroughly compa-
rable to the US image. In particular, they do not simulate the
textural appearance of speckle. Also, since our functional model
does not take into account US attenuation, impossible predicted
values are found in some regions, especially outside the skull.
These limitations suggest introducing a robust generalization of
the bivariate CR, as will be done in Section II-D.

C. Parametric Intensity Fit

If we impose no special constraint on the mappingto be
estimated, then is described by as many parameters as there
are distinct intensity values in the template image [19]. That ap-
proach makes sense as long as the number of intensity classes
in is small with respect to the number of voxels used to make
an estimate. In our case, is a double-valued image (with, in
general, floating precision encoding of the MR gradient com-
ponent), and the number of parameters to be estimated becomes
virtually infinite.

We will, therefore, restrict our search to a polynomial func-
tion . Let and denote the intensity of the voxel with co-
ordinates , respectively, in the MR image, , and in the gra-
dient norm image, . We search for a mapping of the form

(3)

where is the specified polynomial degree. The number of pa-
rameters describing then reduces to . In all
the experiments presented below, the degree was set to3,
implying that ten coefficients were estimated. It is shown in [21]
that minimizing (2) with respect to the polynomial coefficients
yields a weighted least square (WLS) linear regression problem.
As is standard, this is solved by the singular value decomposi-
tion method.

This polynomial fitting procedure, however, has significant
additional computational cost with respect to the unconstrained
fitting. Recall that, in the basic version of the CR method,
is updated at each transformation stage. Such a strategy is no
longer affordable when estimating a polynomial function. In-
stead, the minimization of (2) may be performed alternately
along and , resulting in the following algorithm: 1) given
a current transformation estimate, find the best polynomial
function and remap the MR image accordingly; 2) given the
remapped MR, , minimize with respect
to using Powell’s method; and 3) return to 1) ifor has
changed.

The alternate minimization strategy saves us a lot of computa-
tion time (speed-up factors are in the range of 2–10 when setting
the polynomial degree to 3). This is guaranteed to converge
at least to a local minimum of the registration criterion. In prac-
tice, we did not observe any alteration of the performances with
respect to the original technique.

D. Robust Intensity Distance

Our method is based on the assumption that the intensities of
the US may be well predicted from the information available in
the MR. As discussed in Section II-B, we do not expect this as-
sumption to be strictly valid. Speckle patterns, attenuation, and
other US artefacts may cause large variations of the US inten-
sity from its predicted value, and this remains so even when the
images are perfectly registered. From a registration standpoint,
such bad intensity matches result in false negatives.

The sensitivity of the registration criterion to false negatives
may be reduced by replacing in (2) the quadratic error function,

, with a robust scale estimate. A
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(a) (b)

(c) (d)

Fig. 2. Visual assessment of the bivariate functional model. (a) US plane. (b) Corresponding MR slice after 3-D registration. (c) Predicted US in terms of the MR
intensity and MR gradient magnitude. (d) Predicted US in terms of the MR intensity and MR gradient projected onto the US scan line.

similar idea was developed in [11]. Here, we propose to build
such an estimate from a one-step-estimator [22]

(4)

where
objective function corresponding to a given-esti-
mator;

normalization constant to ensure consistency with the
normal distribution;
initial guess of the scale.

The new registration criterion is then

(5)

This criterion requires few modifications to our alternate min-
imization strategy. As a function of, it may still be minimized



1042 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 10, OCTOBER 2001

Fig. 3. Original MR and US images (before registration) of the phantom and the rigid transformations that relate them.

by means of Powell’s method. As a function of, the solution
is found by a simple iterative WLS procedure [21], generally
requiring no more than 5–6 iterations to converge. In our imple-
mentation, we have opted for the Geman–McClure-function,

, for its computational efficiency and
good robustness properties, to which we always set an empir-
ical cut-off value of 3.5 (the normalization constant is then

).
Initially, the intensity mapping is estimated in a nonrobust

fashion. The starting value is then computed as the weighted
median absolute deviation of the corresponding residuals,

(see [21] for details). Due to the initial misalignment,
tends to be overestimated and, thus, some bad intensity matches
may still bias the registration criterion. For this reason, we reset

at each new iteration, i.e., after completing one minimization
along and one minimization along.

III. D ATA

The experiments related in this article were performed within
the framework of the EC-funded ROBOSCOPE project. The
goal is to assist neuro-surgical operations using real-time 3-D
ultrasound images and a robotic manipulator arm. The opera-
tion is planned on a preoperative MRI and 3-D US images are
acquired during surgery to track in real-time the deformation of
anatomical structures. In this context, the rigid registration of
the preoperative MR with the first US image (dura mater still
closed) is a fundamental task to relate the position of the sur-
gical instruments with the actual anatomical structure. This task
being determinant for the global accuracy of the system, dif-
ferent datasets were acquired to simulate the final image quality
and to perform accuracy evaluations.

It should be emphasized that all the US images provided in
this project were stored in Cartesian format, which means that
the actual (log-compressed) ultrasound signal is resampled on
a regular cubic lattice. As a consequence, the images are sub-
ject to severe interpolation artifacts, especially in areas with low
spatial resolution (far from the probe). In the following, we will

refer to the US images as cubic images, but one has to bear in
mind that this is somewhat artificial. Notably, the voxel size in
Cartesian US images should not be confused with the real spa-
tial resolution, which is in fact spatially dependent.

A. Phantom Dataset

Within ROBOSCOPE, ISM developed an MR and US com-
patible phantom made of two balloons, one ellipsoid and one
ellipsoid with a “nose” (complex ellipsoid), that can be inflated
with known volumes in order to simulate deformations (see
Fig. 3). Each acquisition consists of one 3-D MR image and one
3-D US image.

Both balloons were initially filled with 40 ml of fluid. During
the first series of five acquisitions, the ellipsoid was filled in
steps of 10 ml, while the complex ellipsoid was kept constant.
During the second series, the ellipsoid was deflated and the com-
plex ellipsoid filled in steps of 10 ml. Each MR image has 256

256 124 voxels of size 0.9 0.9 1 mm . Each (Carte-
sian) US image has 184184 184 voxels of size 0.41 mm.

This dataset would be ideal for the validation of MR and US
registration if all MR (respectively, all US) images were ex-
actly in the same coordinate system. Since the US probe cannot
enter the MR machine, this is impossible: the phantom has to
be moved and the US probe removed between MR acquisitions.
Thus we have to register the MR (respectively, the US) images
together. Unfortunately, there were no rigid markers inserted in
the phantom and the US/US rigid registrations are much less ac-
curate than the MR/MR rigid registrations (see Section IV).

B. Baby Dataset

This clinical dataset was acquired to simulate the degradation
of the US images quality with respect to the number of array
transducer elements used. Here, we have one MR T1 image of a
baby’s head and five transfontanel US images with different per-
centages of elements used (40%, 60%, 70%, 80%, 90%, 100%).
The MR image has 256 256 124 voxels of size 0.9 mm.
The Cartesian US images have 184184 184 voxels of size
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(a) (b)

Fig. 4. Example registration of the MR and US images of the phantom. (a) Original MR image. (b) Registered US image with the MR contours superimposed.

0.29 mm . Note the US images were truncated from the original
acquisition, as can be observed in Fig. 5.

C. Patient Dataset

This dataset is an actual surgical case: two sagittal MR T1
images with and without a contrast agent were acquired before
surgery. After craniotomy (dura mater still closed), a set of 3-D
US images were acquired to precisely locate the tumor to resect.
The MR images have 256 256 124 voxels of size 0.9 0.9

1.1 mm . The US images have various dimensions with voxel
sizes ranging from 0.17 mmto 0.95 mm.

IV. A CCURACY STUDY

We computed all the MR/US registrations using the bivariate
CR algorithm summarized by (5). Since the location of the US
probe was linked to the pathology and its orientation was arbi-
trary (the rotation was occasionaly more than 90), it was nec-
essary to provide a rough initial estimate of the transformation.
Here, this was done using an interactive tool that allows to draw
lines in the images and match them. This procedure was carried
out only to get a rough initialization, but we always made sure
that a slight misalignment was still visible.

In all the experiments, the gradient norm of the MR image
was computed by convolution with a Gaussian derivarive [3]
with 1 voxel. The minimization of the registration crite-
rion using Powell’s method took of the order of 5–10 min on a
standard PC (Pentium II running at 450 MHz with 500 MB of
RAM). After manual initialization, the algorithm found residual
displacements that were in the range of 10 mm and 10.

Figs. 4–6 show registration examples corresponding, respec-
tively, to the phantom, the baby, and the patient datasets (see

Section III). More results, including movies, are accessible on
the internet from the INRIA website.1

A. Principle of the Accuracy Evaluation

Ideally, the method’s accuracy should be assessed by com-
paring the result of a registration with a gold standard. Such a
gold standard may be obtained by relating both the MR and US
coordinate systems to the same physical coordinate system. For
MR, this may be done efficiently by attaching fiducial markers
to the patient (or, more easily, the phantom), and then matching
the positions of the markers in the image with their physical
coordinates. However, this solution is not easily applicable in
the case of US as the detection of markers is prone to inaccu-
racy. A better solution is probably to track the US probe using
an external device [25], [13], [2]. Unfortunately, no such de-
vice was available in the ROBOSCOPE consortium at the time
when the datasets were acquired and, thus, no gold standard is
available. Moreover, the clinical datasets (the patient’s and the
baby’s) were not originally intended for a registration evalua-
tion purpose.

To get around this problem, our main idea is to use several
MR and/or US images to compute registration loops and assess
residual errors. What we call a registration loop is a series of
transformation compositions leading to a global transformation
that is, ideally, the identity matrix.

A typical loop is a sequence of the form US MR
MR US US in the case of the phantom data (see
Fig. 3). If we were given perfectly registered images within each
modality, this loop would only be disturbed from the identity by
errors due to the two MR/US registrations. Since variances are
additive, the variance of the observed error should roughly be:

.

1http://www-sop.inria.fr/epidaure/personnel/pennec/Demos/Roboscope/.
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(a) (b)

(c) (d)

Fig. 5. Example registration of the baby US/MR images. Note that the US volume is truncated with respect to the original acquisition. (a) MR volume (zoom)
(b) US volume (manually initialized) (c) Registered US volume (d) Registered US volume with MR contours overlaid.

In our case, the situation is slightly more complex as we ac-
tually need to estimate the intramodality transformations (see
Section IV-B). This also implies that we must take into account
errors that occur at each stage of the loop. Since we are com-
bining one MR/MR, one US/US and two MR/US registrations,
the variance of the loop error will be:

. We, thus, define theexpectedaccuracy as

(6)

What we are able to measure is , from which we may
infer the expected MR/US accuracy provided that and

are faithfully estimated. For that purpose, we designed
the multiple registration algorithm described in Section IV-B.
Notice that (6) furnishes at least an upper bound of the MR/US
error, given by , which corresponds to the
case where the intramodality registrations are perfect. In the fol-
lowing, this worst-case value will be referred to as theconser-
vativeMR/US error.

B. Multiple Intramodality Registration

To relate images together, we need to estimate rigid
transformations . The principle of multiple registration
is that an optimal accuracy will be reached when registering all
image pairs and, thus obtaining transformations .
We may then compute the transformations that best ex-
plain the measurements in the least-square sense, i.e., that min-
imize the following criterion:

dist

where
if

if .
(7)

In this paper, the “dist” function was chosen as a robust
variant of the left invariant distance on rigid transformations
[16]. Let be a certain threshold and let and be
rough initial estimates of the rotation and translation standard
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(a) (b)

(c) (d)

Fig. 6. Example registration of the patient US/MR images. The US corresponds to the smallest acquisition cone among the dataset. This is the image we have
found to be responsible for the largest registration error. (a) Preoperative MR (b) Intraoperative US (manually initialized) (c) Registered US volume (d) Registered
US volume with MR contours overlaid.

deviations. If a transformation is represented by a rotation
vector and a translation vector, then the distance between
two transformations is given by

dist

dist Id

where is the rotation vector associated with the inverse of
the rotation defined by .

The minimization of (7) is carried out using a Newton gra-
dient descent whose implementation details may be found in
[21]. We end up with estimates of the rigid transformations

as well as estimates of their variance, from which we
can compute the intramodality registration errors, and

.
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TABLE I
REGISTRATIONERRORSESTIMATED FROM REGISTRATIONLOOPS. SEE SECTION IV-A FOR THEDEFINITIONS OFEXPECTEDERRORAND CONSERVATIVEERROR

C. Phantom Dataset

In this experiment, we used eight acquisitions with different
balloon volumes, each acquisition consisting of one 3-D MR
and one 3-D US image. However, we cannot directly compare
the MR/US registrations as the phantom is moved between the
acquisitions. Thus, the first step is to rigidly register all the MR
images together and similarly the US images.

The main problem for the multiple intramodality registration
of the phantom images is that the acquisitions are intrinsically
nonrigid except for the outer part of the container and to a cer-
tain extent one of the two valves. The MR/MR registrations were
carried out using the “crest lines” method, a feature-based tech-
nique known to handle a large amount of outliers [15]. In the
case of US images, as it is very difficult to extract meaningful
features, we used a block-matching algorithm based on local
maximizations of the correlation coefficient of intensities [12].

The loops we used for the accuracy estimation are the
following ones: US MR MR US US . Of
course, only loops are independent but since the ideal value
is known (the identity) there is no need to correct the estimation
for the number of free parameters.

D. Baby Dataset

This dataset consists of one MR T1 image of a baby’s head
and five transfontanel US images. In this case, we have no or
very few deformations between acquisitions. Therefore, we can
rigidly register all the US images onto our single MR and test
the 30 following loops US MR US US (only five of
them being independent). For that, we still need to register the
US images together. Our results suggest that the algorithm is
much more efficient and accurate than for the phantom dataset.
This is probably due to the fact that the rigidity assumption is
better verified here.

E. Patient Dataset

This dataset contains two preoperative MR T1 images (with
and without contrast agent enhancement) and a set of 3-D US
images acquired during surgery. However, most of these US cor-
respond to “zooms” on the tumor area and, thus, have a very

small field of view. We only use the three US images that are
large enough to contain the ventricles as we could not register
the others.

Here again, the two MR images were registered using the
crest lines method [15] with very high accuracy (probably over-
estimated as we only have two images). We tested the loops
US MR MR US . Since the US acquisition cone is
completely within the Cartesian image (see Fig. 6), the region
of interest is much smaller than the image size: we took our test
points at the corners of a 80 80 80 mm cube centered in
the Cartesian US image.

F. Discussion

Table I shows the standard deviations computed from the dif-
ferent registration loops described above. These values corre-
spond, respectively, to the residual rotation, the residual transla-
tion and the average displacement of eight test points that were
taken at the corners of the Cartesian US image (except for the
patient images, see Section IV-D). Since we put the origin of
the images at the center, the value corresponds to the
mean error at the center of the US image while corresponds
roughly to the maximum registration error within the region of
interest defined by the US acquisition cone.

The results of the phantom dataset show that the MR/US reg-
istration accuracy is of the order of the MR resolution. One
could probably expect more conservative accuracy by acquiring
larger US images including some rigid landmarks for multiple
US/US registration. One finds the same type of results for the
other datasets: slightly lower than the MR voxel size for the baby
dataset and a bit larger for the patient dataset.

However, when we look more carefully at the patient results,
we find that the loop involving the smallest US image (real size
150 85 100 mm, voxel size 0.63mm ) is responsible for
a corner error of 2.61 mm ( 0.84 mm) while the loops
involving the two larger US images (real size 170130 180,
voxel size 0.95 mm ) do have a much smaller corner error of
about 0.84 mm ( 0.39 mm). We suspect that a non-
rigidity in the smallest US could account for the registration dif-
ference between the two MR images. One may notice, however,
that this registration error is not visually obvious (see Fig. 6).
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V. ROBUSTNESSSTUDY

A. Principle

The goal of this section is to study the robustness of our
algorithm with respect to varying the initial transformation
parameters. For that purpose, we chose one representative
US/MR image pair in each dataset and we registered them
manually using our interactive matching tool. This gives us a
rough “ground truth” transformation which is independent of
any registration algorithm. Notice that, although we performed
the manual registration as carefully as possible, the “ground
truth” does not need to be extremely accurate.

We then performed a number of automatic registrations by
initializing the algorithm with random perturbations from the
“ground truth” position: a rotation vector with random di-
rection and constant magnitude 15 , and a translation
vector with random direction and constant magnitude
20 mm. One may hope that these values correspond to the upper
bound of the manual registration errors that can be made by a
nonexpert. For each random transformation, registrations were
alternatively performed using six different registration criteria.

• CR: the standard, monovariate CR as described in [20],
using the MR image as a template.

• CR : the same as CR but with the MR gradient norm
image as a template.

• MI: mutual information as implemented in [9], combining
the US image and the MR image.

• MI : mutual information combining the US image and the
MR gradient norm image.

• BCR : the bivariate CR as described in Section II, but
using the quadratic intensity distance ( ) instead
of the Geman–McClure-function.

• BCR: the bivariate CR as used in the accuracy study (see
Section IV), i.e., using the Geman–McClure-function.

We performed 200 registrations for each registration criterion
and for each MR/US pair (yielding a total of 2006 3 3600
registrations).

Here, we aim at estimating the variability of the registration
result with respect to the variability of the initial transformation
parameters, no matter wether or not this result corresponds to a
good registration. Doing this, we try to answer the question: “if
we had used a different initialization, would the algorithm have
converged to the same solution?” In other words, we want to
characterize: 1) therobustness,i.e., the ability of the algorithm
to find the “same” minimum of the registration criterion from
different initializations, and 2) theprecision,i.e., the residual
variation of the solution when convergence to the same min-
imum is declared. There is no doubt that the precision is strongly
related to the interpolation method, which in this case is PV in-
terpolation for each criterion.

B. Computing the Robustness and Precision

In order to quantify both robustness and precision, we com-
pute a mean transformation for each set of registrations. If the
distance of a transformation to this mean is less than a given
threshold, the algorithm is declared to be successful and this
transformation is used to compute the repeatability (i.e., the
variance with respect to the mean transformation), otherwise it

is considered as a failure. More precisely, we used a robust ver-
sion of the Fréchet mean transformation estimation presented in
[14]: using the same robust version of the left invariant distance
between transformations as in Section IV-B, the Fréchet mean
rigid transformation is defined as:

dist

This minimization is performed using a gradient descent de-
scribed in [14]. However, this algorithm only gives us a local
minimum around the starting point. Thus, to obtain the global
minimum, we repeated the minimization by choosing any trans-
formation as a starting point, and we kept the best one.

Within this framework, the success rate is defined as the pro-
portion of transformations that have a distance toless than

, and the precision values are computed on successful trans-
formations using

and

By the way, we note that computing the Fréchet mean trans-
formation maximizes the success rate since a success always
accounts for less than a failure in the Fréchet minimization.

C. Results and Discussion

The results of the robustness analysis are reported in Table II.
Experiments were reproduced with differentvalues (from 10
to 40) without significative differences. We note that the success
rate values are probably highly dependent on the amplitude of
the initial transformation perturbation, which in this case was
rather large (20 mm and 15).

The main observation is that no measure based only on the
MR intensity or only on the MR gradient norm is robust for
every dataset. The CR measure using intensity provides consis-
tent results only for the patient images, while MI using intensity
is unstable except for the baby images. When using the gradient
norm information, these measures are useless for the patient im-
ages, although stable for the phantom and baby images. This
suggests that combining both the intensity and gradient norm
information is crucial in terms of robustness.

In all cases, the BCR measures (using either the square in-
tensity distance or the Geman–McClure distance) perform best
with respect to precision, and yield acceptable success rates. It
seems that BCR is a bit more robust than BCR: their suc-
cess rates are comparable for the phantom and baby datasets,
but mostly in favor of the former for the patient dataset. This
may sound self-contradictory since the advantage of using the
Geman–McClure function is precisely to achieve some robust-
ness properties. However, one should not confuse the robust-
ness to initialization with the robustness involved in the use of
an -estimator, which acts as reducing the sensitivity of the reg-
istration measure to intensity artifacts (see Section II-D).

A general observation is that quadratic versions of the CR
seem to yield a wider attraction basin than those based on a ro-
bust intensity distance. However, we have also observed in prac-
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TABLE II
ROBUSTNESSRESULTS FOR� = 0.2 , � = 0.1 mm,AND � = 18

tice that registration results using BCR tend to be visually more
accurate than when using BCR . Although further quantita-
tive evaluation is needed, we believe at present that using BCR
is safer provided a fine initialization has been achieved.

Of course, these figures do not tell us anything about the
ability of the different measures to find agood registration.
They only provide information regarding the consistency of
the results with respect to the initial transformation parameters.
For each US/MR pair, we inspected the registration result
corresponding to the mean transformation as computed in
Section V-B. Registration was declared “ok,” “fair,” or “poor,”
respectively, if there was no obvious misalignment, if a slight
misalignment could be seen, or if the result was clearly wrong.

From this subjective evaluation (also reported in Table II),
we observe that there is a correlation between the accuracy and
robustness performances of the different registration criteria,
which was not obviousa priori. Here again, the two bivariate
measures are the only ones to provide satisfactory results across
experiments.

VI. CONCLUSION

We have developed a novel similarity measure for 3-D
US/MR registration. It is a bivariate and robust generalization
of the standard CR measure. The assumption underlying the
bivariate CR is that the US signal may be approximated by a
function of both the MR intensity and the MR gradient magni-
tude. This model does not account for some important aspects
of the US physics (in particular, speckle and attenuation).
However, since the bivariate CR may be defined in terms of a

robust intensity distance, the functional assumption does not
need to hold throughout the whole image overlap.

Our implementation of the bivariate CR using Powell’s opti-
mization method was successful in rigidly registering a number
of US/MR volume pairs from phantom and clinical data. The
registration accuracy was estimated using an original approach
that does not require the knowledge of ground truth. We found
the worst registration errors (maximum errors in the region of
interest defined by the US cone) to be of the order of 1 mm.
Moreover, the bivariate CR was shown to significantly outper-
form the conventional CR and MI measures in terms of robust-
ness.

We believe that the method, and especially its robustness, may
still be improved in several ways. As discussed in Section II-B,
the bivariate CR could be enhanced by incorporating informa-
tion from the MR gradient orientation with respect to the US
scan line. Another interesting problem is how to sample the US
image. In our experiments, we considered US volumes as reg-
ular lattices, which was probably not optimal given the inter-
polation problems associated with resampling. Other sampling
techniques may be more appropriate, such as polar sampling or
more sophisticated strategies that take into account the speckle
size [23].

Finally, in the context of image-guided surgery, the ultimate
goal of US/MR registration is to correct for tissue deformations
that arise due to the brain shift and operative manipulations.
Therefore, further developments should also include nonrigid
registration. Due to the lack of information in US images, this
probably involves strong spatial constraints. The definition of
such constraints will be the key to a nonrigid implementation of
the bivariate CR.
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