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Rigid Registration of 3-D Ultrasound With MR
Images: A New Approach Combining Intensity and
Gradient Information

Alexis Roche*, Xavier Pennec, Grégoire Malandain, and Nicholas Ayache

Abstract—We present a new image-based technique to rigidly are calibrated before the intervention in order to relate the US
register intraoperative three-dimensional ultrasound (US) with  and MR coordinates. Pure stereotactic-based approaches are in-

preoperative magnetic resonance (MR) images. Automatic reg- yinsically limited to rigid registration since they exploit only the
istration is achieved by maximization of a similarity measure " - .
probe position and orientation.

which generalizes the correlation ratio, and whose novelty is to . .
incorporate multivariate information from the MR data (intensity Other approaches are image based in the sense that reg-
and gradient). In addition, the similarity measure is built upon a istration is performed using the image data itself. Such

robust intensity-based distance measure, which makes it possible techniques are potentially able to compensate for a nonrigid
to handle a variety of US artifacts. A cross-validation study has transformation which may result from brain deformations

been carried out using a number of phantom and clinical data. tric distorsi in the US. Th Iso b d
This indicates that the method is quite robust and that the worst or geometric distorsions in the : €y can aiso be use

registration errors are of the order of the MR image resolution. in combination with stereotactic-based registration [1], [5].
Existing image-based techniques generally consist of matching

homologous features extracted from both the US and MR data.
Features are user-identified in [1], [4], and [5], while they are
semi-automatically extracted in [6]. Fully automated feature
. INTRODUCTION extraction is reported in [7] for prostate images, and [17] for

VER the past few years, the development of real-tinfiver and forearm images (using color Doppler US in the last
O 3-D ultrasound (US) imaging has revealed a number Bference). _ _ o
potential applications in image-guided neurosurgery as an al-Slightlty different is the approach of Kingf al. [8] in which
ternative approach to open magnetic resonance (MR) and ¢ explicit feature detection is performed on the US. Instead, a
trainterventional computed tomography (CT). The major advaR2yesian estimation technique is used to deform a surface ex-
tages of three-dimensional (3-D) US over existing intraoperiacted from the MR image according to the US intensity and
tive imaging techniques are its comparatively low cost and sifdtadient information. In the paper we refer to, however, experi-
plicity of use. However, the automatic processing of US imag83€nts with phantom data only are presented. _
has not developed to the same extent as other medical imagingN€ Present registration technique expands on the correlation
modalities, probably due to the low signal-to-noise ratio (SNF§ti0 (CR) method [20]. Itis a pure intensity-based approach as
of US images. it does not rely orany feature extraction. In a previous work
The registration of intraoperative US with preoperative ML, we reported preliminary results of US/MR registration by
images has the potential to enable the surgeon to accuratelyTgXimizing two different similarity measures, namely CR and
calize the trajectories of instruments in the operative field, rgautual information ('V”_) [26], [9]. While rgsults obtained using
sulting in minimally invasive procedures. To date, few papefsR were more appealing than when using MI, the method still
have been published on this particular registration problem [1 cked precision apd robustness with respect to the initialization
Most of the existing approaches are stereotactic-based as tﬂr}}"e 'Fransformatlon parameters. _ _
make use of a tracking device to assess the position and orien! this paper, we generalize the CR method following two dis-

tially concerned with the interfaces between anatomical struc-

tures. Our idea is then to correlate the US intensity with both
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Fig. 1. lllustration of linear interpolation in the two—dimensional case, and two related strategies of interpolating the registration criterion.

[I. METHOD absolute minimum when the image overlap is small, we impose
A CR the additional constraint that the variancelobe large in the
] ) o overlapping region. Justification for this particular normaliza-
~ Giventwoimageg and/, the basic principle ofthe CR methodtion strategy may be found in [20], while related normalization
is to search for a spatial transformatirand an intensity map- issyes are discussed in [24] and [26].
ping f suchthat, by displacingandremappingitsintensities, the . These practical considerations lead us to the following mod-
resultingimage/(J o T') isas similar as possiblefolnafirstap- ification to (1):
proach, this could be achieved by minimizing the following cost
function: Zwie['ék — fGOP
k¢
ITn’i}l zk:[l(xk) — (J(TEN? 1) oL, f) = niVar(1}) @
which integrates over the voxel positiagsinimagel. Thisfor-  Where the terms depending @rare marked with an arrows;,
mulationis asymmetricin the sense thatthe cost function changég the linear interpolation weights; is the number of points
when the roles of and.J are interchanged. Since the position&x such thaf'(x;) has eight neighbors in the template grid, and
and intensities of actually serve to predictthose bfwe callJ  Var(I*) is the intensity variance computed over these points.
the “template image.” In the context of US/MR registration, we |fno constraintisimposed on the intensity mappf@n im-
always choose the MR volume as the template as it yields higfértant result is that the optimdlat fixed 7 has an explicit form
quality information with better SNR. Inthe following, we will usethat is very fast to compute [20]. The minimization of (2) may
the simplified notations, = I(x;), and;j: = J(T(xx)), where then be performed by travelling through the minima&gf’, /)
the arrow expresses the dependenc#on at fixedT. This yields the CR
In practice, the criterion defined in (1) cannot be computed
exactly due to the sampled nature of the template image. One
obvious problem is that the transformed position of a voxel will
generally not coincide with a grid point of, such that the cor- & measure that reaches its maximum wbgft’, ) is minimal.
responding intensity;, is unknown. A classical approach is toln our implementation, the maximization of is performed
linearly interpolatgj;, using the eight neighbors @f(x; ) in the  USINg Powell's method [18].
grid of J. However, instead of interpolating the image inten- =~
sity, we may directly interpolate the incremental contribution ¢ Bivariate CR
X, 1€, [ix — f(j,t)]Q. The difference between these two ap- US images are commonly said to be “gradient images” since
proaches is illustrated in Fig. 1. The last method turns out tikey enhance the interfaces between anatomical structures.
be equivalent to the so-called partial volume (PV) interpolatiofithe physical reason is that the amplitudes of the US echos are
originally proposed by Maest al.[9] in the context of joint his- proportional to thedifferencebetween acoustical impedances
togram computation. We have found PV interpolation generalbaused by successive tissue layers. Ideally, the US signal should
outperforms intensity interpolation in terms of smoothness be high at the interfaces, and zero within homogeneous tissues.
the resulting registration criterion. In reality, US reflections also occur within tissues due to small
Another difficulty in computing (1) is that some points, inhomogeneities (compared with the US wavelength) which
may transform outside the template domain and lack eight gade almost invisible in MR. At this scale, there are significant
neighbors. It is commonotto take into account these points ininterference patterns between the ingoing and outgoing pulsed
the computation of the registration criterion. However, doing sgaves, resulting in speckle. As a consequence, homogenous
without careful attention, the criterion would become zero whdissue regions generally appear in the US with nonzero mean
every pointx, transforms outsidé. Hence, in order to avoid an intensity and strong texture.

Ma(T) = 1= min (T J)
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As stated above, the CR method tries to predict the inten§l: Parametric Intensity Fit
ties of the US by remapping those of the MR. Hence, uniform If we impose no special constraint on the mappjhtp be

regions of the original MR remain uniform in the remapped MRgimated therf is described by as many parameters as there
ar_ld, thus, Fh|s procedure IS not able to account for |nter?5|_ty Vale distinct intensity values in the template image [19]. That ap-
ations at tissue boundaries. To enable a better prediction, Wa, -h makes sense as long as the number of intensity classes
propose to use the MR gradient magnitude as an additional G- i small with respect to the number of voxels used to make
planatory variable. In other terms, our template imdde now 1 estimate. In our casd, is a double-valued image (with, in
a vectorial image/ = (M, |[VM]|), M st2and|ng forthe MR ganeral, floating precision encoding of the MR gradient com-
image, and we search for a functign R* — R that maps ,,nent) and the number of parameters to be estimated becomes
double values to single values. virtually infinite.

Such a mapping does not appear to be entirely adequate froriVe will, therefore, restrict our search to a polynomial func-
a physical standpoint. On the one hand, it is clearly not abletion f. Letm, andg, denote the intensity of the voxel with co-
account for texture in the US, for which speckle is responsiblerdinatesy,, respectively, in the MR imagé/, and in the gra-
This is a problem we will return to in Section II-D. In addition,dient norm image|| VM ||. We search for a mapping of the form
using the magnitude of the MR gradient may not be ideal. In
fact, the US signal which is produced at an interface depends
also on the tissue orientation with respect to the scan line. Thus,
perhaps a more appropriate choice than/|| would be the dot

product,(V M) -u, whereu is the scan direction. The main dif-hered is the specified polynomial degree. The number of pa-
ficulty in using this last expression is thatis unknown before rameters describing then reduces t6d + 1)(d + 2)/2. In all
registration since it depends on the position of the US probetie experiments presented below, the degree was sett@,

the MR coordinate system. A possible solution to overcome thigiplying that ten coefficients were estimated. It is shown in [21]
problem is to iteratively estimate using the current estimatedthat minimizing (2) with respect to the polynomial coefficients
transformation. However, in a straightforward implementatiogie|ds a weighted least square (WLS) linear regression problem.
this implies recomputing the(VA/) - u” image at each trans- As is standard, this is solved by the singular value decomposi-
formation trial, entailing a massive increase of the computatig@gn method.

time. An efficient implementation of this idea is an issue we This poiynomiai fitting procedure, however, has Significant
have not yet tackled. additional computational cost with respect to the unconstrained

Nevertheless, we believe that ignoring the gradient orientéting. Recall that, in the basic version of the CR methgd,
tion is acceptable, at least as a first-order approximation. Adsaupdated at each transformation stage. Such a strategy is no
result of diffraction of the ultrasound beam on interfaces, the dgnger affordable when estimating a polynomial function. In-
ceived echo is actually less anisotropic than would be the c&$ead, the minimization of (2) may be performed alternately
with perfectly specular reflection. Moreover, even if impedangong” and f, resulting in the following algorithm: 1) given
boundaries cannot be detected isotropically, in practice all \@ecurrent transformation estimatg find the best polynomial
require is that there are sufficiently many edge points whose gfdnction f and remap the MR image accordingly; 2) given the

dient directions are approximately orthogonal to the US bedi#mapped MR (M, ||V M][), minimize C(T, f) with respect
direction. to 7" using Powell’'s method; and 3) return to 1)/for f has

An illustration of our bivariate model is presented in Fig. 2(_:hanged. L

We rigidly registered one US/MR brain volume pair using the The alternate minimization strategy saves us alot of computa-

present method. Fig. 2(c) displays the predicted US image cortlg—n time (speed-up factors are n the range of 2-10 when setting

sponding to the final stage of registration. The intensity fit Wahe polynomial degree @ = 3). This is guaranteed to converge

computed using a polynomial function (see Section II-C). Fasrt least to a local minimum of the registration criterion. In prac-

comparison, we represent in Fig. 2(d) the prediction obtainag®: We did not observe any alteration of the performances with

when the second explanatory variable is chosen as the MR gr%s_pect to the original technique.

dient projected onto the US scan line (the US scan line was com- ) )
puted from the registration result). D. Robust Intensity Distance

Although the images in Fig. 2(c) and (d) are reasonably sim-Our method is based on the assumption that the intensities of
ilar, the latter is seen to better account for the drop in US sigrtke US may be well predicted from the information available in
at boundaries which are not normal to the beam direction (thiee MR. As discussed in Section II-B, we do not expect this as-
is especially clear around the ventricles). Needless to say, haumption to be strictly valid. Speckle patterns, attenuation, and
ever, both of these predicted images are aolyghly compa- other US artefacts may cause large variations of the US inten-
rable to the US image. In particular, they do not simulate trggty from its predicted value, and this remains so even when the
textural appearance of speckle. Also, since our functional modlages are perfectly registered. From a registration standpoint,
does not take into account US attenuation, impossible predicgeth bad intensity matches result in false negatives.
values are found in some regions, especially outside the skullThe sensitivity of the registration criterion to false negatives
These limitations suggest introducing a robust generalizationrofy be reduced by replacing in (2) the quadratic error function,
the bivariate CR, as will be done in Section I1I-D. (/0 Y0 wi, [ix — f(5¢)]%, with a robust scale estimate. A

Flme, g0) = Y cpg migl 3

ptqa<d
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(b)

(d)

Fig. 2. Visual assessment of the bivariate functional model. (a) US plane. (b) Corresponding MR slice after 3-D registration. (c) Predictedd 8 thaeviiR
intensity and MR gradient magnitude. (d) Predicted US in terms of the MR intensity and MR gradient projected onto the US scan line.

similar idea was developed in [11]. Here, we propose to build X normalization constant to ensure consistency with the

such an estimate from a one-stggestimator [22] normal distribution;
So initial guess of the scale.
N S2 i — (4 The new registration criterion is then
P = 20 S upe (22D ) |
I(ﬂl ke So S
o o, )= 2L )
" Var(1h)
where
p objective function corresponding to a givéi-esti- This criterion requires few modifications to our alternate min-

mator; imization strategy. As a function &f, it may still be minimized
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Fig. 3. Original MR and US images (before registration) of the phantom and the rigid transformations that relate them.

by means of Powell’'s method. As a function fifthe solution refer to the US images as cubic images, but one has to bear in

is found by a simple iterative WLS procedure [21], generallgnind that this is somewhat artificial. Notably, the voxel size in

requiring no more than 5-6 iterations to converge. In our impl€artesian US images should not be confused with the real spa-

mentation, we have opted for the Geman—McCluxfeinction, tial resolution, which is in fact spatially dependent.

plz) = 2% /(1 + (22 /c?)), for its computational efficiency and

good robustness properties, to which we always set an empgir- Phantom Dataset

ical cut-off value ofc = 3.5 (the normalization constant is then \yjthin ROBOSCOPE, ISM developed an MR and US com-

K =08). _ o . _ patible phantom made of two balloons, one ellipsoid and one
Initially, the intensity mapping’ is estimated in a nonrobusteyjipsoid with a “nose” (complex ellipsoid), that can be inflated

fashion. The starting valug, is then computed as the weightedyith known volumes in order to simulate deformations (see

median absolute deviation of the corresponding residiials;  Fig. 3). Each acquisition consists of one 3-D MR image and one
f(30)| (see [21] for details). Due to the initial misalignmesi, 3.p Us image.

tends to be overestimated and, thus, some bad intensity matchgsyth palloons were initially filled with 40 ml of fluid. During

may still bias the registration criterion. For this reason, we resg first series of five acquisitions, the ellipsoid was filled in
S at each new iteration, i.e., after completing one minimizatiateps of 10 ml, while the complex ellipsoid was kept constant.

along’ and one minimization along. During the second series, the ellipsoid was deflated and the com-
plex ellipsoid filled in steps of 10 ml. Each MR image has 256
. DATA x 256 x 124 voxels of size 0.% 0.9 x 1 mn?. Each (Carte-

The experiments related in this article were performed withifiah) US image has 184184 x 184 voxels of size 0.41 min

the framework of the EC-funded ROBOSCOPE project. The T_h|s d_atas_et would be ideal _for the val|dat|_0n of MR and US
goal is to assist neuro-surgical operations using real-time 3tggistration if all MR (respectively, all US) images were ex-
ultrasound images and a robotic manipulator arm. The opef&lly in the same coordinate system. Since the US probe cannot
tion is planned on a preoperative MRI and 3-D US images a#8ter the MR machine, this is impossible: the phantom'h'a.ts to
acquired during surgery to track in real-time the deformation §€ moved and the US probe removed between MR acquisitions.
anatomical structures. In this context, the rigid registration dfus we have to register the MR (respectively, the US) images
the preoperative MR with the first US image (dura mater stiipgether. Unfortunately, there_vx_/ere no rlgl_d markers inserted in
closed) is a fundamental task to relate the position of the sit€ Phantom and the US/US rigid registrations are much less ac-

gical instruments with the actual anatomical structure. This tagkrate than the MR/MR rigid registrations (see Section IV).

being determinant for the global accuracy of the system, dif-

ferent datasets were acquired to simulate the final image quafty Baby Dataset

and to perform accuracy evaluations. This clinical dataset was acquired to simulate the degradation
It should be emphasized that all the US images provided af the US images quality with respect to the number of array

this project were stored in Cartesian format, which means theansducer elements used. Here, we have one MR T1 image of a

the actual (log-compressed) ultrasound signal is resampledlm@by’s head and five transfontanel US images with different per-

a regular cubic lattice. As a consequence, the images are stdmtages of elements used (40%, 60%, 70%, 80%, 90%, 100%).

ject to severe interpolation artifacts, especially in areas with I6fhe MR image has 256 256 x 124 voxels of size 0.9 mfn

spatial resolution (far from the probe). In the following, we willThe Cartesian US images have 184.84 x 184 voxels of size
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(@) (b)
Fig. 4. Example registration of the MR and US images of the phantom. (a) Original MR image. (b) Registered US image with the MR contours superimposed.

0.29 mnt. Note the US images were truncated from the origin&ection I11). More results, including movies, are accessible on
acquisition, as can be observed in Fig. 5. the internet from the INRIA website.

C. Patient Dataset A. Principle of the Accuracy Evaluation

This dataset is an actual surgical case: two sagittal MR Tlldeally, the method’s accuracy should be assessed by com-

. ) : . garing the result of a registration with a gold standard. Such a
images with and without a contrast agent were acquired befar d standard may be obtained by relating both the MR and US

: . 0
surgery. After craniotomy (dura mater still closed), a set of 3'% ordinate systems to the same physical coordinate system. For

?:e'rpﬂ?ﬁ%irseﬁ;\?:ggg t205%r§cllszejlly\//l)(;(;a|\;eotfh§;:n(’;z;tglges%ﬁ , this may be done effici_ently by attaching fiducial marker_s
x 1.1 mn?. The US images have various dimensions with vox%h the p"?‘t.'e”t (or, more easily, _the phgntom), a_md the_n matc_hmg
sizes ranging from 0.17 mhto 0.95 mmd e positions of the markers in the image with their physical
' ' ' coordinates. However, this solution is not easily applicable in
the case of US as the detection of markers is prone to inaccu-
racy. A better solution is probably to track the US probe using
IV. ACCURACY STUDY an external device [25], [13], [2]. Unfortunately, no such de-
vice was available in the ROBOSCOPE consortium at the time
We computed all the MR/US registrations using the bivaria{gnen the datasets were acquired and, thus, no gold standard is
CR algorithm summarized by (5). Since the location of the Ugajlable. Moreover, the clinical datasets (the patient’s and the
probe was linked to the pathology and its orientation was arljapy's) were not originally intended for a registration evalua-
trary (the rotation was occasionaly more thaf)9@ was nec- tjon purpose.
essary to provide a rough initial estimate of the transformation. o get around this problem, our main idea is to use several
Here, this was done using an interactive tool that allows to drayk and/or US images to compute registration loops and assess
lines in the images and match them. This procedure was carrigdiqual errors. What we call a registration loop is a series of
out only to get a rough initialization, but we always made sukgansformation compositions leading to a global transformation
that a slight misalignment was still visible. that is, ideally, the identity matrix.
In all the experiments, the gradient norm of the MR image A typical loop is a sequence of the form US+ MR; —
was computed by convolution with a Gaussian derivarive [fli]IRj — US; — US; in the case of the phantom data (see
with & = 1 voxel. The minimization of the registration crite-Fig. 3). If we were given perfectly registered images within each
rion using Powell's method took of the order of 5-10 min on godality, this loop would only be disturbed from the identity by
standard PC (Pentium Il running at 450 MHz with 500 MB 0grrors due to the two MR/US registrations. Since variances are

RAM). After manual initialization, the algorithm found residuakdditive, the variance of the observed error should roughly be:
displacements that were in the range of 10 mm arfd 10 o2 = 201%13/Us-
Figs. 4—6 show registration examples corresponding, respec- '

tively, to the phantom, the baby, and the patient datasets (se€@ttp://www-sop.inria.fr/epidaure/personnel/pennec/Demos/Roboscope.
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(©) (d)

Fig. 5. Example registration of the baby US/MR images. Note that the US volume is truncated with respect to the original acquisition. (a) MR voilyme (zoo
(b) US volume (manually initialized) (c) Registered US volume (d) Registered US volume with MR contours overlaid.

In our case, the situation is slightly more complex as we aB- Multiple Intramodality Registration
tually need to estimate the intramodality transformations (seety rojater, images together, we need to estimate 1 rigid
Section IV-B). This also implies that we must take into accouft, nsformations ’

X i, i+1. The principle of multiple registration
errors that occur at each stage of the loop. Since we are cqQ@at an optimal accuracy will be reached when registering all
bining one MR/MR, one US/US a_nd two MR/US reglstratlon§mage pairs and, thus obtainimgn — 1) transformationflj.
the variance of the loop error will berf,,, ~ 20Vrus  We may then compute the transformatidis; 4 that best ex-
oyr/Mr T Os us- We, thus, define thexpectediccuracy as  pjain the measurements in the least-square sense, i.e., that min-

imize the following criterion:
OMR/US = \/% (Ofop — O—I%IR/MR - UIQ_TS/I_TS)' 6) C(Tv2, ... Tho1,n)= Zdis'g(iﬁ,j, 7 5)
%)

What we are able to measureds,.;,, from which we may where

infer the expected MR/US accuracy provided gtk /nr and _ Tij_1,jor 0T ip1, ifj>i
oys,us are faithfully estimated. For that purpose, we designed ij = {_(_1) oo
the multiple registration algorithm described in Section IV-B. Ly ity <.
Notice that (6) furnishes at least an upper bound of the MR/US (7
error, given byoygr us =~ 0100p/ V2, Which corresponds to the  In this paper, the “dist” function was chosen as a robust
case where the intramodality registrations are perfect. In the fakriant of the left invariant distance on rigid transformations
lowing, this worst-case value will be referred to as tomser- [16]. Let x2 be a certain threshold and let. and o, be
vative MR/US error. rough initial estimates of the rotation and translation standard
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(@) (b)

(© (d)

Fig. 6. Example registration of the patient US/MR images. The US corresponds to the smallest acquisition cone among the dataset. This is thevenage we ha
found to be responsible for the largest registration error. (a) Preoperative MR (b) Intraoperative US (manually initialized) (c) Registerede(8)Wegistered
US volume with MR contours overlaid.

deviations. If a transformatioff” is represented by a rotationwhereré’l) is the rotation vector associated with the inverse of
vectorr and a translation vectds, then the distance betweenthe rotation defined by..

two transformations is given by The minimization of (7) is carried out using a Newton gra-
dist (11, T2) dient descent whoge impllementation detgi_ls may be fou_nd in
9 [(=1) [_21]. We end up with estimates of the rigid transformations
= dist (T2 oy, 'd) T;.i+1 as well as estimates of their variance, from which we
_ B 2 can compute the intramodality registration errets,. ;. and
= min < 7’5 Yor ‘ /03 + ||t1 — t2l|? /7, X2> o2 ) 0’1@3/1\13
Us/us-
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TABLE |
REGISTRATION ERRORSESTIMATED FROM REGISTRATION LOOPS SEE SECTION IV-A FOR THEDEFINITIONS OF EXPECTEDERRORAND CONSERVATIVEERROR

| orot (deg) | Otrans (mm) I Otest (mm)

Multiple MR /M . . .
Phantom dataset = ?p © MR/MR 0.06 010 013
Multiple US/US 0.60 0.40 0.71
8 MR: 0.9 x 0.9 x 1 mm3 -
6 US: 0415 mumd Conservative MR/US 1.15 1.01 1.46
o Expected MR/US 1.06 0.97 1.37
Baby dataset Multiple US/US 0.10 0.06 0.12
1 MR: 0.9° mm? Conservative MR/US 1.21 0.36 0.90
5 US: 0.3% mm3 Expected MR /US 1.21 0.36 0.89
Patient dataset Multiple MR/MR, 0.02 0.02 0.03
2 MR: 0.9 x 0.9 x 1.1 mm?3 Conservative MR /US 1.57 0.58 1.65
3 US: 0.63% and 0.95% mm® | | Expected MR/US 1.57 0.58 1.65
C. Phantom Dataset small field of view. We only use the three US images that are
In this experiment, we used eight acquisitions with differeA rge enough to contain the ventricles as we could not register

balloon volumes, each acquisition consisting of one 3-D M & others.

and one 3-D US image. However, we cannot directly compareHere again, the two MR images were registered using the

the MR/US registrations as the phantom is moved between ﬁ{gt.St In;eg method [1|5] thth vtery h|gh accurs\?y Epr?bjtt’:]y olver—
acquisitions. Thus, the first step is to rigidly register all the M%SSjT &Raiwl\jrgni jée Svivr?clen':r?geusé acguigiign coﬁe?sops
i h imilarly th i . ‘ o= L -2 X .
images together and similarly the US images completely within the Cartesian image (see Fig. 6), the region

The main problem for the multiple intramodality registration . . . .
e main problem for the multiple intramodality regist atoﬁfmterestlsmuchsmallerthanthe|mageS|ze:wetookourtest

of the phantom images is that the acquisitions are intrinsically . .
nonrigid except for the outer part of the container and to a c%emésa?tteg;aencarg?:ja%fea 80 80 x 80 mn? cube centered in

tain extent one of the two valves. The MR/MR registrations were
carried out using the “crest lines” method, a feature-based tech- _
nique known to handle a large amount of outliers [15]. In the Discussion

case of US images, as it is very difficult to extract meaningful Tap|e | shows the standard deviations computed from the dif-
features, we used a block-matching algorithm based on logglan registration loops described above. These values corre-
maximizations of the correlation coefficient of intensities [12]gy0nq, respectively, to the residual rotation, the residual transla-

The loops we used for the accuracy estimation arethe-1)  tjon and the average displacement of eight test points that were
following ones: US — MR; — MR; — US; — US;. Of taken at the corners of the Cartesian US image (except for the
course, only,—1 loops are independent but since the ideal Va'”&atient images, see Section IV-D). Since we put the origin of
is known (the identity) there is no need to correct the estimatigi, images at the center, the,... value corresponds to the

for the number of free parameters. mean error at the center of the US image whilg; corresponds
roughly to the maximum registration error within the region of
D. Baby Dataset interest defined by the US acquisition cone.

This dataset consists of one MR T1 image of a baby’s headThe results of the phantom dataset show that the MR/US reg-

and five transfontanel US images. In this case, we have no/®fation accuracy is of the order of the MR resolution. One

very few deformations between acquisitions. Therefore, we c§3uld Probably expect more conservative accuracy by acquiring
rigidly register all the US images onto our single MR and teid"9€r US images including some rigid landmarks for multiple

the 30 following loops US— MR — US; — US; (only five of Us/uUs reglstrathn. One finds the same type of results for the
them being independent). For that, we still need to register A€ datasets: slightly lower than the MR voxel size for the baby
US images together. Our results suggest that the algorithnfdaset and a bit larger for the patient dataset.

much more efficient and accurate than for the phantom dataset10WeVer, when we look more carefully at the patient results,

This is probably due to the fact that the rigidity assumption € find that the loop involving the smallest US image (real size
better verified here. 150 x 85 x 100 mm, voxel size 0.63mn?) is responsible for

a corner error of 2.61 Mnu(,,,s = 0.84 mm) while the loops
involving the two larger US images (real size 1¥A.30 x 180,
voxel size 0.95 mm?) do have a much smaller corner error of
This dataset contains two preoperative MR T1 images (widbout 0.84 mm ..., = 0.39 mm). We suspect that a non-
and without contrast agent enhancement) and a set of 3-D Ligdity in the smallest US could account for the registration dif-
images acquired during surgery. However, most of these US cfarence between the two MR images. One may notice, however,
respond to “zooms” on the tumor area and, thus, have a véat this registration error is not visually obvious (see Fig. 6).

E. Patient Dataset
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V. ROBUSTNESSSTUDY is considered as a failure. More precisely, we used a robust ver-
sion of the Fréchet mean transformation estimation presented in
[14]: using the same robust version of the left invariant distance

The goal of this section is to study the robustness of OBetween transformations as in Section IV-B, the Fréchet mean
algorithm with respect to varying the initial transformationigid transformation is defined as:

parameters. For that purpose, we chose one representative
US/MR image pair in each dataset and we registered them T <Z dist (13, T)) )

A. Principle

. i k ) J1otE T = argmin
manually using our interactive matching tool. This gives us a T
rough “ground truth” transformation which is independent of Thig minimization is performed using a gradient descent de-

any registration algorithm. Notice that, although we performeg ;ined in [14]. However, this algorithm only gives us a local
the manual registration as carefully as possible, the “groufgnimum around the starting point. Thus, to obtain the global
truth” does not need to be extremely accurate. minimum, we repeated the minimization by choosing any trans-
We then performed a number of automatic registrations tPé(rmationﬂ, as a starting point, and we kept the best one.
initializing the algo_r_ithm with rgndom pertur_bations from_the Within this framework, the success rate is defined as the pro-
“ground truth” position: a rotation vectdr- with random di-  qrion of transformations that have a distanc&ttess than

rection and constant magnitufiér|| = 15°, and a translation ,2 anq the precision values are computed on successful trans-
vectorét with random direction and constant magnit{ide]| =  ¢ormations using
20 mm. One may hope that these values correspond to the upper 1
bound of the manual registrati 2 = 7D or?
gistration errors that can be made by a Trot = 3 |I7 ol
1 1 1 success
nonexpert. For each random transformation, registrations were

alternatively performed using six different registration criteriaand

* CR: the standard, monovariate CR as described in [20], Ot ans = ~ L
using the MR image as a template. success
* CR?: the same as CR but with the MR gradient norm By the way, we note that computing the Fréchet mean trans-
image as a template. formation maximizes the success rate since a success always
» MI: mutual information as implemented in [9], combiningaccounts for less than a failure in the Fréchet minimization.
the US image and the MR image.
 MI¢: mutual information combining the US image and th€. Results and Discussion

MR gradient norm image. The results of the robustness analysis are reported in Table II.
* BCRyuaa: the bivariate CR as described in Section Il, butyxperiments were reproduced with differagtvalues (from 10
using the quadratic intensity distangg) = =) instead o 40) without significative differences. We note that the success
of the Geman—McClurg-function. rate values are probably highly dependent on the amplitude of
* BCR: the bivariate CR as used in the accuracy study (¢ initial transformation perturbation, which in this case was
Section V), i.e., using the Geman—-McClysdunction.  ather large (20 mm and 15
We performed 200 registrations for each registration criterion The main observation is that no measure based only on the
and for each MR/US pair (yielding a total of 2806 x 3=3600 MR intensity or only on the MR gradient norm is robust for
registrations). every dataset. The CR measure using intensity provides consis-
Here, we aim at estimating the variability of the registratiogant results only for the patient images, while MI using intensity
result with respect to the variability of the initial transformations ynstable except for the baby images. When using the gradient
parameters, no matter wether or not this result corresponds {Q#m information, these measures are useless for the patient im-
good registration. Doing this, we try to answer the question: "ggesy although stable for the phantom and baby images. This
we had used a different initialization, would the algorithm haV§uggests that combining both the intensity and gradient norm
converged to the same solution?” In other words, we want {ormation is crucial in terms of robustness.
characterize: 1) theobustnessi,e., the ability of the algorithm |, gy cases, the BCR measures (using either the square in-
to find the “same” minimum of the registration criterion fromensity distance or the Geman—McClure distance) perform best
different initializations, and 2) thprecision,i.e., the residual ;in respect to precision, and yield acceptable success rates. It
variation of the solution when convergence to the same Migsems that BCR.. is a bit more robust than BCR: their suc-
imum is declared. There is no doubt that the precision is strongl¥ss rates are comparable for the phantom and baby datasets,
related to the interpolation method, which in this case is PV ipyt mostly in favor of the former for the patient dataset. This
terpolation for each criterion. may sound self-contradictory since the advantage of using the
Geman-McClure function is precisely to achieve some robust-
ness properties. However, one should not confuse the robust-
In order to quantify both robustness and precision, we comess to initialization with the robustness involved in the use of
pute a mean transformation for each set of registrations. If thaS-estimator, which acts as reducing the sensitivity of the reg-
distance of a transformation to this mean is less than a givistration measure to intensity artifacts (see Section II-D).
threshold, the algorithm is declared to be successful and thisA general observation is that quadratic versions of the CR
transformation is used to compute the repeatability (i.e., teeem to yield a wider attraction basin than those based on a ro-
variance with respect to the mean transformation), otherwiseviist intensity distance. However, we have also observed in prac-

I1E — il|*.

B. Computing the Robustness and Precision
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TABLE I
ROBUSTNESSRESULTS FORo,. = 0.2°, ¢; = 0.1 mm,AND y? = 18

Criterion | Success | Precision for successes Visual
rate | rot (deg) ’ trs (mnm) | inspection

MI 39 % 0.40 0.27 poor
MIg 80 % 0.32 0.17 fair

Phantom dataset | | CR 52 % 0.43 0.25 poor
CR® 71 % 0.25 0.15 fair
BCRquaa | 76 % 0.08 0.04 ok
BCR 76 % 0.14 0.09 ok
MI 94 % 0.03 0.02 ok
MI8 85 % 0.05 0.02 ok

Baby dataset CR 14 % 0.32 0.10 poor
CR# 79 % 0.02 0.01 ok
BCRyuaa | 68 % 0.12 0.01 ok
BCR 71 % 0.02 0.01 ok
MI 29 % 0.53 0.25 ok
MIg 0% - - -

. CR 90 % 0.45 0.17 ok

Patient dataset
CRe 0% - - -
BCRguaa | 85 % 0.39 0.11 ok
BCR 55 % 0.43 0.08 ok

tice that registration results using BCR tend to be visually morebust intensity distance, the functional assumption does not
accurate than when using BGRa. Although further quantita- need to hold throughout the whole image overlap.

tive evaluation is needed, we believe at present that using BCROur implementation of the bivariate CR using Powell’s opti-
is safer provided a fine initialization has been achieved. mization method was successful in rigidly registering a number

Of course, these figures do not tell us anything about tleé US/MR volume pairs from phantom and clinical data. The
ability of the different measures to find good registration. registration accuracy was estimated using an original approach
They only provide information regarding the consistency dhat does not require the knowledge of ground truth. We found
the results with respect to the initial transformation parametetBe worst registration errors (maximum errors in the region of
For each US/MR pair, we inspected the registration resufterest defined by the US cone) to be of the order of 1 mm.
corresponding to the mean transformation as computed Ntoreover, the bivariate CR was shown to significantly outper-
Section V-B. Registration was declared “ok,” “fair,” or “poor,”form the conventional CR and MI measures in terms of robust-
respectively, if there was no obvious misalignment, if a slightess.
misalignment could be seen, or if the result was clearly wrong. We believe that the method, and especially its robustness, may

From this subjective evaluation (also reported in Table IIgtill be improved in several ways. As discussed in Section II-B,
we observe that there is a correlation between the accuracy &melbivariate CR could be enhanced by incorporating informa-
robustness performances of the different registration critertign from the MR gradient orientation with respect to the US
which was not obvious priori. Here again, the two bivariate scan line. Another interesting problem is how to sample the US
measures are the only ones to provide satisfactory results aciosage. In our experiments, we considered US volumes as reg-
experiments. ular lattices, which was probably not optimal given the inter-

polation problems associated with resampling. Other sampling
techniques may be more appropriate, such as polar sampling or

VI. CONCLUSION more sophisticated strategies that take into account the speckle
size [23].

We have developed a novel similarity measure for 3-D Finally, in the context of image-guided surgery, the ultimate
US/MR registration. It is a bivariate and robust generalizatiagpal of US/MR registration is to correct for tissue deformations
of the standard CR measure. The assumption underlying that arise due to the brain shift and operative manipulations.
bivariate CR is that the US signal may be approximated byTderefore, further developments should also include nonrigid
function of both the MR intensity and the MR gradient magnkegistration. Due to the lack of information in US images, this
tude. This model does not account for some important aspegtebably involves strong spatial constraints. The definition of
of the US physics (in particular, speckle and attenuatiorguch constraints will be the key to a nonrigid implementation of
However, since the bivariate CR may be defined in terms oftlae bivariate CR.
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