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Abstract. This article is about bias field correction in MR brain images.
In the literature, most of the methods consist in modeling the imaging
process before identifying its unknown parameters. After identifying two
of the most widely used such models, we propose a third one and show
that for these three models, it is possible to use a common estimation
framework, based on the Maximum Likelihood principle. This scheme
partly rests on a functional modeling of the bias field. The optimization is
performed by an ECM algorithm, in which we have included a procedure
of outliers rejection. In this way, we derive three algorithms and compare
them on a set of simulated images. We also provide results on real MR
images exhibiting a bias field with a typical “diagonal” pattern.

1 Introduction

Imperfections of the RF coil and patient-dependent electrodynamic interactions
(often referred to as RF penetration and standing-wave effects [20]) systemati-
cally cause smooth, biologically meaningless, variations of the tissue intensities
across MR images, which can amount to as much as 30% of the signal amplitudes.
Generally, this “bias field” has little effect on visual interpretation, but the artifi-
cial intra-tissue variability it causes can significantly affect the outputs of image
processing tools (segmentation, rigid or non-rigid registration, etc.) and subse-
quent quantitative analyses. Classical methods are routinely used to improve the
intensity uniformity during the acquisition process [13]; they are generally able
to correct most of the gross nonuniformities due to the coil defects, but unable to
eliminate those due the patient anatomy. As an alternative, numerous retrospec-
tive methods have been devised to estimate and correct intensity variations after
the image has been acquired. The common general approach consists in model-
ing the imaging process that connects the true emitted signal (uncorrupted by
the bias field effects and the random noise due to the measuring device) with
the observed data (i.e., the MR image), and then estimating the parameters of
the model best fitting the data. More precisely, given a voxel i with coordinates
vi in a MR image, its intensity yi is widely considered to be related to the true
emitted signal xi according to:

yi = bixi + εmea
i

W. Niessen and M. Viergever (Eds.): MICCAI 2001, LNCS 2208, pp. 811–819, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



812 S. Prima et al.

Throughout the paper, given there are n voxels in the 3D volume, we note the
bias field b = (bi)i=1...n, the MR image y = (yi)i=1...n, and the “ideal”, uncor-
rupted, brain image x = (xi)i=1...n. The bias field is generally considered to be a
slowly spatially varying function of the coordinates (i.e., bi = b(vi)), and assumed
to be multiplicative, consistently with the intrinsic nature of the corrupting phys-
ical processes [21]. In MR magnitude images, the random noise εmea

i due to the
measuring device is known to have a Rician p.d.f. [19], which is shown to be
quasi-Gaussian at high signal-to-noise ratio (SNR ¿ 3). Thus, the assumption of
an additive, stationary, spatially white and Gaussian noise with a low standard
deviation σ in the intracranial cavity is generally made: εmea

i = εmea ∼ N(0, σ2).
A commonly used and convenient modeling is to consider that every head voxel
reflects the biological properties of one single underlying structure. In the fol-
lowing, the brain segmentation is noted c = (ci)i=1...n, ci being the label of
voxel i. A simple assumption is to model the intracranial cavity as composed
of a reduced set of m tissues of interest. Considering cerebro-spinal fluid, grey
matter and white matter, which generally exhibit distinct average grey levels in
magnitude MR images, is a usual choice. Within a given neuroanatomical struc-
ture ωk, natural intensity variations are always observed, due to changes in its
composition across the head volume. Thus, the signal emitted by a particular
structure is often assumed to be distributed around a mean value µk, which can
be simply written xi = µk + εbio

i if the voxel i belongs to ωk. This “biological
noise” εbio

i , due to a natural variability, is observed to be spatially correlated, but
in many works related to brain segmentation, it is widely modeled as spatially
white, with a stationary tissue-conditional Gaussian p.d.f. of low variance σ2

k:
εbio

i = εbio ∼ N(0, σ2
k) [1,5,10,18]. This leads to rewrite the general model:

yi = bi(µk + εbio
i ) + εmea, εmea ∼ N(0, σ2) and εbio

i ∼ N(0, σ2
k) if ci = ωk (1)

Following this very general model, many authors have proposed additional
hypotheses and subsequent algorithms for estimation of the bias field and cor-
rection of the intensity nonuniformities in brain MR images. Most of these algo-
rithms are based on two simplified versions of (1), that we call Models 1 and 2.
What motivates this article is the observation that the variety of the algorithms
proposed so far makes it difficult to compare the models they rest on.

In this paper, we suggest a third simplification of (1), which we call Model
3 (Section 2). Then, we propose to compare these three models, apart from the
conceptually very different methods of the literature that has been developed so
far to identify their underlying parameters (in particular, the bias field) ; our aim
is to know which model is best suited to real data. For this purpose, we adopt a
common estimation strategy, already proposed in [23,24] for Model 2. It consists
in a probabilistic interpretation of these models, a functional modeling of the bias
field, and a Maximum Likelihood estimation of the unknown parameters (tissue
characteristics and bias field coefficients) by way of an Expectation/Conditional
Maximization algorithm (Section 3). This estimation approach leads to simple
iterative schemes, extensively described in a research report available on the
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web (http://www.inria.fr/rrrt/index.en.html). Moreover, we propose to include
in the three such derived algorithms a procedure of outliers rejection, inspired by
the LTS estimation [16]. In particular, this technique allows to eliminate voxels
affected by partial volume effects. We present results on simulated and real MR
images (Section 4).

2 Three Different Models

In some works [2,12,15,14,22], x is supposed to be (at least locally) piecewise
constant, depending on the underlying tissue ωk: xi = µk if ci = ωk. This
amounts to neglect the intensity variations due to the biological intra-tissue
variability with respect to those due to the measurement noise εmea (εbio

i �
εmes). Then the general model (1) becomes:

yi = biµk + εmea if ci = ωk, with εmea ∼ N(0, σ2) (Model 1)

In other works [23,24,25], it is supposed that the measurement noise can be
at least partially removed by a low-pass prefiltering of the data (for instance,
anisotropic diffusion [5]). A risk is to suppress also the relevant biological in-
formation conveyed by the intra-tissue natural variability [7]. However, as this
latter is spatially correlated, it is less likely to be removed by such a filter-
ing than the spatially white εmea. Then, (1) simply reduces to yi = bixi. In
[25,7,23,24], mainly for reasons of computational simplicity, a logarithmic trans-
form is applied to this model, which turns the multiplicative bias field b into an
additive one. Then, it is particularily convenient to suppose that (within a given
anatomical structure ωk) the intensities xi fluctuate around a mean value µ′

k,
these fluctuations conveying a “biological noise” ε

′bio
i following a Gaussian noise

N(0, σ
′2
k ). This hypothesis is contradictory to the traditional assumption done

in algorithms of MR images segmentation, which suppose that εbio
i is Gaussian

[1,5,10,18]; in this case, ε
′bio
i is not. This point is not evoked in the concerned

papers [25,7,23,24]. However, following this hypothesis, (1) becomes:

log yi = log bi + µ′
k + ε

′bio
i , with ε

′bio
i ∼ N(0, σ

′2
k ) if ci = ωk (Model 2)

If, contrary to Model 2, we choose to keep the hypothesis of a Gaussian law
for εbio

i , which seems more natural, we get a third model, defined as follows:

yi = bi(µk + εbio
i ), with εbio

i ∼ N(0, σ2
k) if ci = ωk (Model 3)
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3 Three Algorithms for Bias Field Correction

3.1 Maximum Likelihood Formulation

In the following, we consider that there are m = 3 tissues of interest (cerebro-
spinal fluid, grey matter, white matter) and n voxels in the intracranial volume.
We propose to make a functional parameterization of the bias field (detailed
in Section 3.3), represented by a low number of coefficients α1, . . . , αd. The
objective is to estimate the optimal parameters of the three models according to
the Maximum Likelihood principle. These parameters are gathered in the vector
Θ = (µ1, . . . , µm, σ1, . . . , σm, α1, . . . , αd) (or Θ = (µ1, . . . , µm, σ, α1, . . . , αd)
for Model 1). The optimal vector Θ maximizes the likelihood L of the image y,
which can be written, using the theorem of total probabilities:

L(y;Θ) = L(y1, ..., yn;Θ) =
n∏

i=1

p(yi;Θ) =
n∏

i=1

m∑

k=1

p(yi|ci = ωk;Θ)P (ci = ωk;Θ)

Practically, we consider that the a priori probabilities P (ci = ωk;Θ) are
independent of the model parameters: P (ci = ωk;Θ) = P (ci = ωk). As suggested
in [8,23,24], these probabilities P (ci = ωj) are obtained by affine registration of a
probabilistic brain atlas for the three tissues of interest and give a rough a priori,
fixed and spatially varying, knowledge of the tissue parameters and locations in
the MR volume. We use the atlas from the Montral Neurological Institute [4].

3.2 Maximization of the Criterion

Analytical maximization of L is impossible. Given an initial estimate Θ(0) of
the parameters, the algorithm Expectation/Maximization (EM) [3] consists in
building a series of vectors (Θ(p)) such that L converges towards a (at least local)
maximum. This iterative process is composed of one “M-step” and one “E-step”
defined as follows:

∇ΘQ(Θ, Θ(p))=
n∑

i=1

m∑

k=1

P (ci=ωk|y;Θ(p))∇Θ[log p(yi|ci=ωk;Θ)]=0 (M-step),

where P (ci = ωk|y;Θ(p)) ∝ p(yi|ci = ωk;Θ(p))P (ci = ωk) (E-step)

After choosing a functional parametrization of the bias field as described in
Section 3.3, the M-step yields a system of (2m + d) non-linear equations with
(2m + d) unknown parameters (or (m + d + 1) for Model 1). This non-linearity
makes it impossible to maximize the likelihood by a classical EM algorithm; a
generalization is proposed in Section 3.4 to tackle this problem.
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3.3 Modeling the Bias Field

As suggested in [23,24] for Model 2, an adapted functional parameterization of
the bias field allows to characterize it with a limited number of parameters, while
ensuring its spatial smoothness. We propose three functional modelings of the
bias field adapted to each of the three models of the imaging process presented in
Section 1. The objective is to obtain simple formulae for the p.d.f. of yi (or log yi

for Model 2), such that the ML estimation of the whole set of parameters is made
possible. Given the monomials φj , j = 1, . . . , d, where φ1 : (x, y, z) �→ (x−tx/2),
φ2 : (x, y, z) �→ (y − ty/2), . . . ,φ7 : (x, y, z) �→ (x − tx/2)(y − ty/2), etc., where
tx, ty, tz are the sizes of the 3D image in the x, y and z directions, we make the
following choices:

– Bias Field Model 1: bi = b(vi) = 1 +
∑d

j=1 αjφj(vi)

– Bias Field Model 2: bi = b(vi) = exp(
∑d

j=1 αjφj(vi))
– Bias Field Model 3: bi = b(vi) = 1/(1 +

∑d
j=1 αjφj(vi))

3.4 The ECM Algorithm

Practically, the M-step of the classical EM algorithm yields intractable equations
(see the research report): the optimal tissue or noise parameters (means and
variances) explicitly depend on the optimal bias field coefficients in a non-linear
fashion. To tackle this problem, a variant of the EM algorithm has been proposed
in [11], that consists in partitioning the parameters vector as Θ = (Θ1, ..., ΘN ),
and replacing the original M-step by N successive Conditional Maximization
steps (CM-steps) as described below. As the original EM approach, this Expec-
tation/Conditional Maximization (ECM) algorithm provides a series of vectors
(Θ(p)) such that L converges towards a (at least local) minimum [11].

– CM-step 1:
Θ

(p+1)
1 = maxΘ1 Q((Θ1, ..., ΘN ), Θ(p))

(Θ2, ..., ΘN ) = (Θ(p)
2 , ..., Θ

(p)
N ) are held fixed.

– CM-step 2:
Θ

(p+1)
2 = maxΘ2 Q((Θ(p+1)

1 , Θ2, ..., ΘN ), Θ(p))
(Θ1, Θ3, ..., ΘN ) = (Θ(p+1)

1 , Θ
(p)
3 , ..., Θ

(p)
N ) are held fixed.

– And so on...
– After the lastCM-step N, the estimated vector Θ(p+1) = (Θ(p+1)

1 , ..., Θ
(p+1)
N )

is the input of the following E-step.

We consider the partition Θ = (Θ1, Θ2) with Θ1 = (µ1, . . . , µm, σ1, . . . , σm)
(or Θ1 = (µ1, . . . , µm, σ) for Model 1), and Θ2 = (α1, . . . , αd). The equations
for the mean and variance parameters constitute the first CM-step, which yields
a straightforward explicit solution Θ

(p+1)
1 , the bias field coefficients being held

fixed at the value Θ
(p)
2 . Then, given the estimated Θ

(p+1)
1 , the second CM-step

amounts to solve a linear system of d equations, for Models 1 and 2.
In case of Model 3, the second CM-step is still a non-linear system of d

equations, and is analytically intractable. Thus, we use an approximation, called
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One-Step-Late (OSL), and proposed in [6] for reconstruction from SPECT data.
The idea is to replace the non-linear terms of the CM-Step 2 of iteration (p+1)
of the ECM algorithm by their values estimated at the previous iteration (p),
i.e., to replace 1/(1 +

∑d
j=1 α

(p+1)
j φj(vi)) by 1/(1 +

∑d
j=1 α

(p)
j φj(vi)). Then the

system becomes linear as in Models 1 and 2. An heuristic justification is to say
that the ECM algorithm, as the original EM, is known to converge slowly, and
this non linear term will not be much different between iterations (p) and (p+1).
We call the three such derived schemes Algorithms 1, 2 and 3.

3.5 Outliers Rejection Scheme

So far, we have proposed to minimize
∑n

i=1 si with respect to Θ, where si =
− log p(yi;Θ), and Θ = (µ1, . . . , µm, σ1, . . . , σm, α1, . . . , αd). Typically, si is
large when the intensity yi fits the presumed underlying mixture model badly. In
particular, this is the case for voxels affected by partial volume effects, and thus
far from the m classes of interest. These voxels can severely offset the ML estima-
tion. By an analogy with the LTS estimation [16], to eliminate these meaningless
voxels and thus achieve a better robustness, we propose to minimize

∑h
i=1(s)i:n,

where (s)1:n ≤ . . . ≤ (s)n:n are the ordered “residuals” and h is an integer su-
perior to 
n/2�. In [17], an iterative scheme is proposed to compute a (at least)
local minimum of the LTS criterion, which amounts to successive simple LS
computations; following the same idea, we propose the following scheme (we do
not give proof of convergence of this heuristic procedure, which practically gives
good results, see Fig. 1) to minimize

∑h
i=1(s)i:n:

– Step 1: compute the ML estimate Θ̃ of Θ on the whole dataset (y1, . . . , yn)
by an ECM algorithm

– Step 2: compute the residuals si = − log p(yi; Θ̃) on the whole dataset
– Step 3: sort out the residuals si

– Step 4: recompute the ML estimate Θ̃′ on the data that exhibit the h lowest
residuals, likely to be best suited to the model, by an ECM algorithm

– Step 5: go back to Step 2, set Θ̃ = Θ̃′, and iterate until convergence

4 Validation

4.1 Experiments on Synthetic MR Images

Which of these three models is best suited to real MR data? As there is no
ground truth for this latter, we propose a validation and comparison of the
three models based on the MR simulator of the Montreal Neurological Institute
[9], incorporating realistic models for bias field, measurement noise, uncorrupted
intra-tissue intensity distributions and partial volume effects. Practically, we sim-
ulated 6 isotropic T1-weighted MR volumes (of voxel size 1mm3) with different
levels of noise (0%, 3%, 7%) and bias (20%, 40%). We use the RMS difference
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Fig. 1. Robust estimation of the
parameters. Left: synthetic T1-
weighted MR image, generated by the
MNI simulator [9], with noise level
0% and bias field level 40%. Right:
intensity-corrected MR image (by
Algorithm 3); the voxels in white have
been rejected from the estimation.
Most of these voxels are close to the
tissue boundaries, and are affected by
partial volume effects.

between the applied and the computed bias field as a measure of error to eval-
uate the precision of the three algorithms. Figure 2 shows the results of these 6
experiments. When the noise is weak (0 or 3%), Algorithm 3 performs slightly
better than Algorithm 2, and both of them are largely better than Algorithm 1.
When the noise level is higher (7%), Algorithm 2 performs largely better than
Algorithms 1 and 3. On average, Algorithm 2, and thus the underlying Model
2, seems to be the best.
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Algorithm 3 Fig. 2. RMS errors on the

bias field for the three al-
gorithms applied to the six
simulated images. The degree
of the three polynomials of the
bias field models is D = 2. In av-
erage, Algorithm 2 performs bet-
ter than the two others.

4.2 Experiments on Real MR Images

We applied Algorithm 3 on 10 images of healthy subjects, provided by the MARI-
ARC, University of Liverpool, UK. Acquired by a MR scanner GE SIGNA 1,5
T using a circularly polarized coil, they are of size 256× 256 × 124 (voxel size
0.78125× 0.78125× 1.6). In Figure 3, we display 10 axial slices of the original
MR images and the estimated bias fields, which have a characteristic “diagonal”
structure. For each subject, the voxels in the right temporal and frontal lobes
have higher intensities than their counterparts in the other hemisphere; this pat-
tern is inverted in the occipital lobes. This result confirms works of other authors
[20], who link this bias field asymmetry with the elliptical shape of the head.
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Fig. 3. Bias field es-
timation on 10 MR
brain images. These
images are in neurological
conventions. D = 4. The
voxels in the temporal
and frontal lobes have
higher intensities than
their counterparts in the
other hemisphere; this
pattern is inverted in the
occipital lobes.

5 Conclusion

In this article, we have identified two widely used models of the imaging process
for bias field estimation. We have proposed a third model, and shown that it
is possible to use a common estimation framework for these three models to
identify the set of their unknown parameters. This iterative scheme rests on the
principle of Maximum Likelihood. The optimization is performed by an ECM
algorithm, in which we have included a procedure of outliers rejection. In this
way, we have derived three algorithms and compared them on a set of simulated
images. We have given a set of results on real MR images for which the bias field
has a typical diagonal pattern.
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