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Abstract. This manuscript tackles the registration of 2D biological im-
ages (histological sections or autoradiographs) to 2D images from the
same or different modalities (e.g., histology or MRI). The process of ac-
quiring these images typically induces composite transformations that
can be modeled as a number of rigid or affine local transformations em-
bedded in an elastic one. We propose a registration approach closely
derived from this model. Given a pair of input images, we first compute
a dense similarity field between them with a block matching algorithm. A
hierarchical clustering algorithm then automatically partitions this field
into a number of classes from which we extract independent pairs of
sub-images. Finally, the pairs of sub-images are, independently, affinely
registered and a hybrid affine/non-linear interpolation scheme is used to
compose the output registered image. We investigate the behavior of our
approach under a variety of conditions, and discuss examples using real
biomedical images, including MRI, histology and cryosection data.

1 Introduction

A key component of medical image analysis, image registration essentially con-
sists of bringing two images, acquired from the same or different modalities, into
spatial alignment. For instance, monomodal registration of a population’s MRIs
can be used to build anatomical atlases [1,2], while mono- or multi-modal regis-
tration of the same patient’s data can help determine the nature of an anomaly
or monitor the evolution of a tumor or other disease process.

In particular, pair-by-pair registration of a series of 2-D biological images
(histological sections or autoradiographs) enables the reconstruction of a 3D
biological image. Subsequent fusion with 3D data acquired from tomographic
imaging modalities (e.g. MRI) then allows the tissue properties to be studied in
an adequate anatomic framework, using in vivo reference data.

More formally, given two input images, registering the floating (i.e., move-
able) image to the reference (i.e., fixed) one entails finding the transformation
that minimizes the dissimilarity between the transformed floating image and the
reference. As such, it can be decomposed into 3 elements: a transformation space,
a similarity metric and an optimization algorithm (see [3] for an extensive review
of medical image registration). For iconic (i.e., intensity-based) methods, opti-
mal similarity measures can be derived from a careful analysis of the expected
relationships between the input images [4], with different hypotheses leading to
different measures. Similarly, a priori knowledge about the acquisition process
for biological images may allow the transformation space to be modeled more
accurately.



Fig. 1. Two consecutive myelin-stained histological sections of the human brain (a &
b); Human brain cryosection (c) and its associated Nissl-stained section (d).

In our case, the cutting process, successive chemical treatments, and the glass
mounting step that a slab of tissue undergoes during a histological preparation
yield a fairly flexible global transformation that is however locally affine for
some identifiable components of the section. In brain sections for instance, each
gyrus (compare white arrows in Figure 1.a & b, and white circles in c & d)
undergoes an affine transformation (due to successive manipulations) relatively
independent from those of other gyri. Consequently, even though a large variety
of transformation spaces have been discussed in the literature (among others,
one finds linear (rigid, affine) and non-linear transformations (polynomial [5],
elastic [6,7] or fluid [8]), their functional form may not reflect our specific needs.

Note that the utility of the above-stated transformation model extends to
medical as well as biological images (our primary motivation here). For instance,
abdominal or torso MRIs often include rigid structures such as bones (ribs,
vertebrae, etc.), deformable organs (liver, heart, etc.), and elastic tissues. Two
abdominal MRIs of the same patient are then linked by a complex transformation
which can be rigid in some regions (for bones) but potentially exhibits large local
dilations (in deformable organs). Global rigid or affine transformations obviously
cannot handle such a case adequately. Also, a single rigid transformation would
not correctly register all the vertebrae along the spinal column simultaneously.
Furthermore, high degree of freedom (e.g., fluid) transformations could correctly
map one image onto the other, but they may not ensure that specific components
(e.g., bones) will be only rigidly transformed.

To alleviate these issues, a few authors have developed local registration tech-
niques, where the input images are divided into a number of smaller sub-images,
and a transformation is associated with each. An automatic hierarchical elastic
image registration technique is presented in [9]. The initial 2-D images are par-
titioned into quadtree structures. At each level of the quadtree, the floating sub-
images are independently registered to their counterparts in the reference image,
before being merged via thin-plate spline interpolation. However, this technique
cannot apply a transform selectively to a specific region whose boundary does
not coincide with the quadtree grid. In [10], Little et al. describe an approach
where a user selects a number of pairs of corresponding rigid structures in the in-
put images along with associated linear transformations (also given by the user).



A number of pairs of landmarks further constrain a hybrid affine/non-linear in-
terpolation scheme that acts as a local registration algorithm. This method, even
though it fits our needs, still relies on interactive specification of the components
to be rigidly matched.

This paper addresses the problem of automatically registering two images,
when the images consist of a number of independent components, subject to
linear transformations. Figure 2 illustrates our approach. First a correspondence
field (section 2.1) is computed between the two images. From a hierarchical
clustering of this field (section 2.2), we automatically extract pairs of sub-images
(with an assumed linear transformation relation between the pairs). These pairs
are then, separately, rigidly or affinely registered. Finally, the hybrid affine/non-
linear interpolation scheme described in [10] is used to compose the registered
floating image (section 2.3). Results on phantom and real data are presented in
section 3.

2 Method

The first step of our approach consists of automatically partitioning the input
floating and reference images, IF and IR, into a number of pairs of correspond-
ing sub-images, where each sub-image is associated with an independent image
component (in terms of transformation). We approach this segmentation issue
as a process of partitioning a correspondence field computed from IF to IR. Our
method is motivated by the following observation. When both images are com-
posed of pairs of independent components, where each component is subject to
some linear transformation, the associated correspondence field should exhibit
rather homogeneous characteristics within each component, and heterogeneous
ones across them.

2.1 Computing the correspondence field
We use a block-matching algorithm [11] to compute the correspondence field. We
associate with IF and IR two sparse regular rectangular lattices LF = [1 . . . wF ]×
[1 . . . hF ] and LR = [1 . . . wR]× [1 . . . hR]. From these we discard, for histological
sections, sites that lie on the background. Note that we may choose to associate
a site to each pixel of the input images, in which case wF , hF and wR, hR would
be the width and height of IF and IR.

The correspondence field then associates to each site (i, j) in LF a 2-D spa-
tial similarity distribution and an “optimal” displacement, computed as follows.
For each site (i, j) in LF , we consider in IF a neighborhood Bi,j

IF
of the pix-

els associated with (i, j) (usually a square neighborhood of constant size called
a “block”), whose centroid is denoted by pi,j

F . We then compute the similarity
measures (given a similarity metric sim) between block Bi,j

F and every block
Bk,l

R in IR associated to sites (k, l) in the corresponding neighborhood Ni,j of
(i, j) in LR (the “exploration neighborhood”). For every site (i, j) in LF , we
then get a 2-D spatial similarity distribution (the values sim(Bi,j

F , Bk,l
R ) de-

fined in the neighborhood Ni,j of (i, j) in LR), and an “optimal” displacement
di,j defined by di,j = p

(k,l)max

R − pi,j
F where (k, l)max is the site of LR that



Fig. 2. Overview of our local registration approach

is associated to the block Bk,l
R in Ni,j which is the most similar to Bi,j

F , i.e.
(k, l)max = arg maxk,l sim(Bi,j

F , Bk,l
R ).

The quality of both the similarity distribution and the displacement field is
essentially determined by three parameters: the block size, the similarity metric
and the size of the exploration neighborhood in LR. The similarity metric and
block size must reflect the expected relationship between the intensity distribu-
tions of blocks in the floating and reference images, and the scale of the features
of interest within those blocks [12,1]. For most of our experiments, we used the
correlation coefficient [13] (which assumes an affine relation between the intensity
distributions of the blocks). The size of the exploration neighborhood is linked
to the expected magnitude of the residual displacements after global alignment.
It conditions the extent to which our registration algorithm can recover large
deformations. In our case, it is input by the user (typically 15 pixels here).

As a pre-processing step, we first rigidly register IF to IR to remove the global
rigid transform (that uniformly affects all components) from the subsequently
computed correspondence fields. We use the fully automated intensity-based reg-
istration algorithm presented in [11], where a robust multi-scale block-matching
strategy was introduced.

2.2 Extracting the image components

Clustering the correspondence field We are looking for a hierarchical clus-
tering of LF , that is, a sequence of partitions in which each partition is nested
into the next partition in the sequence [14]. Cluster analysis (unsupervised learn-
ing) essentially consists of sorting a series of multi-dimensional points into a
number of groups (clusters) to maximize the intra-cluster degree of association
and minimize the inter-cluster one. It is particularly well-suited here as it be-
haves adequately even when very little is known about the category structure of
the input set of points.

Our clustering method is adapted from the standard agglomerative hierar-
chical clustering algorithm [15]:



step 1: initialize a cluster list by placing each site of LF in an individual cluster,
and let the distance between any two of these clusters be the distance between
the sites they contain.

step 2: find the closest pair of clusters, remove them from the cluster list, merge
them into a new single cluster and add the new cluster to the cluster list.

step 3: compute the distances between the newly formed cluster and the other
ones in the cluster list.

step 4: repeat steps 2 and 3 until the desired number of clusters is reached.

The number of clusters can either be specified by the user (our case here), or by
using pre-indicators like the Davies-Bouldin index [16] or the cophenetic corre-
lation coefficient [14] to assist this choice.

Computation of these cluster distances is the pivotal element of the clustering
algorithm. The distance should be consistent with the model we choose for the
input images and the relationships we expect between them.

To define a distance on clusters, we first need a distance on sites. Given two
sites, t and u, their distance is defined as a linear combination of three distances:

Dsite(t, u) = α Dp(pt
F , pu

F ) + β Dd(dt, du) + γ Dρ(ρt, ρu) (1)

Dp(pt
F , pu

F ) is the geodesic distance between the block centroids. It ensures
that close blocks are more likely to be clustered than blocks that are far apart
(model constraint), while adequately representing proximity from an anatomical
point of view when the input images contain several pieces of tissue.

Dd(dt, du) is the distance between the block displacement vectors, we choose
the modulus of their difference, i.e. ‖dt − du‖.

Dρ(ρt, ρu) is the distance between the block similarity distributions. Clearly,
the “optimal” displacement may sometimes disagree with the actual movement
(because of noise, decoys, etc.). The similarity distribution is then better-suited
to capture fine structural elements and discriminate between blocks. We use
a normalized version ρ of these distributions to ensure that they all have the
same overall unit mass. For each site t in LF and each site u in its exploration
neighborhood, ρ is given by: ρt(pu

R − pt
F ) = sim(Bt

F , Bu
R)/

∑
v sim(Bt

F , Bv
R). As

a distance between distributions, we chose the Earth mover’s distance [17], a
discrete solution to the discrete Monge-Kantorovich mass-transfer problem [18].
Given the “ground distance” (the distance between elements of the distribution,
the Euclidean distance in our case), the Earth mover’s distance (EMD) between
two distributions becomes the minimal total amount of work (= mass× distance)
it takes to transform one distribution into the other. As argued by Rubner et al.
[17], this boils down to a bipartite network flow problem, which can be modeled
with linear programming and solved by a simplex algorithm.

α, β and γ are real-valued positive weights. We choose for β a value substan-
tially smaller than that of α and γ (typically, β = α

50 ).
Once we have a distance between blocks, a cluster distance can be defined.

We adapted the standard complete link distance [14] to additionally take into ac-
count the transformations that can be estimated on the clusters already formed.
Namely, when the size of a cluster reaches a given threshold (we usually take 20,



even though experiments showed that the value of that threshold does not really
impact the quality of the clustering), a rigid or affine transformation can be es-
timated, in a robust fashion, from the associated set of “optimal” displacement
vectors (e.g., the quaternion-based approach presented in [19]). The decision to
merge two clusters can then be biased by the agreements between the direc-
tions of the “optimal” displacement vectors of one cluster with the estimated
transformation of the other as this might indicate that they belong to the same
component.

Given a site t in LF , its distance to a transformation T is defined by the
coherence between T and the “optimal” displacement vector associated with t.
Consequently, the transformation-based distance between a site t and a cluster
C is defined by the distance between t and TC , the transformation estimated
over C: Dtran (t, C) = ‖TC(pt

F )− (pt
F + dt

F )‖ if TC is defined, and 0 otherwise.
Given two clusters of sites Ca = {a1, . . . , ana} and Cb = {b1, . . . , bnb

}, with
associated estimated transformations T a and T b respectively, the cluster distance
between them is defined as the longest distance from any block of Ca to any block
of Cb (complete-link) plus the sum of the “transformation distances” wherever
they can be computed:

Dcluster(Ca, Cb) = max
i,j

Dsite(ai, bj)+
∑

j

Dtran(bj , C
a)+

∑
i

Dtran(ai, C
b) (2)

Extracting the sub-images Let NC be the final number of clusters, C ={
C1, . . . , CNC

}
the cluster partition of LF , and

{
ci
1, . . . , c

i
ni

}
the ni sites of the

ith cluster Ci. We want to build a set of NC sub-images
{
Ii
F

}NC

i=1
, each of them

associated with a single cluster. Our clustering method does not ensure that the
borders between clusters are sufficiently precise to adequately represent the sub-
images’ borders. Moreover, as we are going to use these sub-images to find local
transformations, it is often better to choose larger supports to avoid boundary
effects.

Consequently, rather than build a partition of IF from the partition of LF ,
we build a covering of IF , i.e., a set of sub-images that could overlap. To do so,
we aggregate in Ii

F the pixels of IF in the vicinity of the sites of the cluster Ci.

We get: Ii
F = {(x, y) ∈ IF such that D((x, y), p

ci
j

F ) ≤ radius for some ci
j ∈ Ci}

In practice we use the L∞ distance. Then, if the blocks associated to the sites

are of size n× n, taking radius = n/2 we get Ii
F =

⋃
j B

si
j

IF
. In our experiments,

to ensure a large support for the sub-images, we chose radius = 3n/4.
The corresponding reference sub-images Ii

R are built identically, but with the
centroids p

(k,l)max

R of the most similar blocks (see Section 2.1): Ii
R = {(x, y) ∈

IR such that D((x, y), p
ci

j

F + dci
j ) ≤ radius, for some ci

j ∈ Ci}. Again, we use
the L∞ distance here, with radius = n (a larger extent than that of the floating
sub-image) to ensure that Ii

F can be effectively registered against Ii
R.

2.3 Composing the registered floating image
Once we have extracted the reference and floating sub-images, we use the robust
block-matching algorithm described in [11] to register them, independently, pair



by pair. For each pair
{
I l
R, I l

F

}
, l ∈ 1 . . . NC , we obtain an affine transform

T l. Note that as these registrations are robust, the sub-images do not need to
perfectly correspond to the anatomically separate components.

We then compose the final registered floating image using the Little et al.
method (see [10] for details). Their approach applies user-provided affine trans-
forms to user-defined structures and ensures a smooth interpolation in between
them. In our application, the set of floating sub-images forms a covering of the
input floating image, so we have to erode the sub-images to leave space for in-
terpolation. Furthermore, the floating sub-images must be cut to ensure that
they do not overlap, once transformed, as this may also impair the interpolation
scheme.

Note that the entire registration process could easily be included within an
iterative multi-scale framework to achieve a better trade-off between accuracy
and complexity. Such a framework could also handle both large-scale and small-
scale components.

3 Results

3.1 Synthetic experiments

Synthetic fields enable us to evaluate the quality of the clustering algorithm
independently from textural issues and aside of considerations regarding the
similarity distribution. That is, in simulated data, we can assume that the “opti-
mal” displacement field is the correct one. Due to a lack of space, we outline the
quantitative results only briefly here. Please refer to http://www-sop.inria.
fr/epidaure/personnel/apitiot/WBIR/index.html for the corresponding fig-
ures and tables.

The first experiment was designed to illustrate how our approach behaves
on images consisting of several separate independent components. We consid-
ered a spine-like structure with 4 components (4 squares) to which 4 different
affine transformations were applied. We computed for each component an exact
field and then corrupted it with a uniform noise: for each component, α% of the
displacement vectors were selected for perturbation. Our algorithm managed to
perfectly cluster the components even for very high values of noise (α = 75%),
mostly due to the use of the geodesic distance. Additionally, the estimated trans-
formations were within 5% of the desired ones up until α = 75%. A second ex-
periment demonstrated the behavior of our approach for a connected component.
We used similar settings for 3 more structures with 2 components each (a small
square inside a larger one, and two vertical halves of a large square). Since the
geodesic distance did not help here, we obtained inferior performances (20% more
wrongly clustered vectors at α = 50%). This may also be because the displace-
ment vectors were quite similar on both sides of the border between the com-
ponents. Throughout, clustering results with the transformation-based distance
were consistently better than without, and even more so when the noise level
increased (40% more wrongly clustered vectors at α = 25%, 50% at α = 75%).
Incidentally, a perfect clustering is not necessary since the subsequently extracted

http://www-sop.inria.fr/epidaure/personnel/apitiot/WBIR/index.html
http://www-sop.inria.fr/epidaure/personnel/apitiot/WBIR/index.html


sub-images are “larger” than the clusters and their independent registrations are
robust.

We used phantom images and the same experimental settings to evaluate
how our clustering algorithm performed under controlled textural conditions.
Namely, pairs of synthetic images were created with artifical textures (grayscale
cloud patterns) and the same transformations applied as above. We observed
better performances when the EMD distribution distance was used than when it
was not (15% better on average). The similarity distribution distance helps the
clustering algorithm to form, at early stages, sensible clusters. These are then
agglomerated with the aid of the robust estimation of the associated transfor-
mations. Again, results were better with the cluster transformations estimation
(9% better). However the difference in performance was less obvious than be-
fore: as the optimal displacement field is very noisy, the transform distance only
marginally helps the clustering process. A more thorough validation using com-
plete series of histological sections is in progress.

3.2 Biomedical Images

Figure 3 displays the results of our local registration for a pair of myelin-stained
histological sections (myelin-stained coronal section through the occipital cor-
tex, first row), and for a Nissl stained human brain section and its associated
cryosection image (second row). It demonstrates the behavior of the piecewise
approach (1) when reconstructing a histological block from a series of stained
sections, and (2) in a multi-modal registration problem. These examples present
two classic registration difficulties: in the first case, a gyrus (top left corner)
was detached during the histological preparation and manually realigned in an
unsatisfactory fashion; in the second case, many gyri were separated during his-
tological treatment.

The reference images are those of Figure 1. For each pair of images, we show
in Figure 3 the reference image with the superimposed edges of the globally
affinely registered floating image (a), the floating image with clustered optimal
displacement field (b), the image of a regular grid convected by the associated
hybrid affine/non-linear transformation (c), the locally registered floating image
(d), and the reference image with the superimposed edges of the locally registered
floating image (e).

To better demonstrate how our approach can register multiple component
images, we applied only rigid transforms to the sub-images of the myelin-stained
sections. The clustering algorithm adequately isolated in a separate sub-image
the floating gyrus which was subsequently correctly registered to its counter-
part in the reference image. Our technique also successfully compensated for
smaller rotations applied by the operator in the glass mounting step. An affine
transform would of course further decrease the discrepancy between the pairs
of sub-images. However, in the general case, when one suspects only a rigid
transformation between sub-images, opting for an affine registration would only
introduce unnecessary over-parameterization. Among other disadvantages this
could substantially alter textures.



Fig. 3. Registration of two consecutive myelin-stained histological sections of the hu-
man brain (first row) and of a Nissl-stained human brain section and its associated
cryosection (second row).

For the multi-modal example, we used affine registration and specified a
larger number of clusters (6) to take into account the many inadequately man-
ually realigned components. Our algorithm successfully closed most of the gyri
(see white arrow in Figure 3.d and compare circled area in 3.a and 3.e) while
minimizing the overall amount of deformation.

4 Conclusion and Perspectives

We have presented a fully automated local registration method, capable of deal-
ing with a variety of 2-D images. It builds complex spatial transformations by
elastically interpolating between rigid or affine transforms that are locally de-
fined on pairs of sub-images. Consequently, we minimize the overall number of
degrees of freedom of the transformation, following the guidelines of the par-
simony principle (see [20] for a discussion of some issues associated with high-
dimensional transformations). These sub-images represent geometrically coher-
ent components (in our biomedical applications, they are even anatomically co-
herent components). They are automatically extracted from an initial corre-
spondence field computed between the images. All user interaction is avoided,
by contrast with other approaches [10].

The use of a hierarchical clustering approach and a similarity distribution dis-
tance proved promising: while the distribution distance can effectively deal with
noise and textural issues to discriminate between image blocks, our clustering
algorithm manages to extract the expected sub-images.

Results on real data showed that the proposed method is adequate for sev-
eral specific problems in biomedical imaging. Finally, even though the presented



method works in 2-D, it could readily be extended to 3-D (or n-D) with a close-
to-linear increase in processing time.
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