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Abstract. We propose a learning method which introduces explicit knowl-
edge to the object correspondence problem. Our approach uses an a pri-
ori learning set to compute a dense correspondence field between two
objects, where the characteristics of the field bear close resemblance to
those in the learning set. We introduce a new local shape measure we call
the “observed transport measure”, whose properties make it particularly
amenable to the matching problem. From the values of our measure ob-
tained at every point of the objects to be matched, we compute a distance
matrix which embeds the correspondence problem in a highly expressive
and redundant construct and facilitates its manipulation. We present
two learning strategies that rely on the distance matrix and discuss their
applications to the matching of a variety of 1-D, 2-D and 3-D objects,
including the corpus callosum and ventricular surfaces.

1 Introduction

From signal processing to pattern recognition, the issue of object matching per-
meates a broad range of image related fields. In computer vision for instance,
the search for target patterns often requires matching a given template to pic-
torial elements in an input image [1]. In medical imaging, the objects may be
instances of a given anatomical structure, for which a statistical model, a shape
average, or a segmentation is desired [2]. In computer graphics, matched objects
may be used to derive a series of intermediate shapes to “morph” one object into
the other [3], etc. In this paper, we approach the issue of object matching as a
process of computing a dense correspondence field between two objects.

At a glance, defining a correspondence between two objects entails finding in
them pairs of corresponding elements that share particular similarities, in terms
of shape, position, or both. More formally, given two objects O1 and O2 with
any a priori parameterizations represented by two functions O1 and O2:

O1 :
I1 ⊂ Rm → Rn

x 7→ O1 (x) , O2 :
I2 ⊂ Rm → Rn(m ≤ n)

x 7→ O2 (x)

we are looking for a reparameterization of O1 and O2, that is, for two diffeo-
morphisms f1 and f2 , such that O∗1 = O1 ◦ f1 and O∗2 = O2 ◦ f2 and

∀x1 ∈ I1, ∀x2 ∈ I2, x1“close to” x2 ⇒ O∗1 (x1) “very similar to” O∗2 (x2) (1)

where “very similar to” is defined with respect to a given similarity metric.



Fig. 1. Illustration of the proposed matching framework in the case of 2-D parametric
curves (m = 1, n = 2)

Following [4], to allow multiple points in I1 to be matched to a single point in
I2 and conversely, we restate our problem (see Figure 1) as that of finding a mono-

tonically increasing and continuous function ϕ :
I ⊂ Rm → I1 × I2

x 7→ (ϕ1 (x) , ϕ2 (x))
such that:

∀x ∈ I, O1 (ϕ1 (x)) “very similar to” O2 (ϕ2 (x)) (2)

A number of automated methods for curve/surface matching have been pre-
sented in the literature, that tackle some or all of the above issues.

Trouvé and Younes detailed in [4] an axiomatic formulation for 1-D matching:
they introduced, among others, the concepts of symmetry (ϕO1→O2 should be the
inverse of ϕO2→O1) and consistent self-matching(∀object O, ϕO→O = (Id, Id);
in the general case, ϕ should not be not too dissimilar from the identity) and
proposed a matching framework for 2-D piecewise lines that statisfies their ax-
ioms. In [5], Cohen et al. compared the bending and stretching energies of one
curve (O1) and a reparameterization of the other (O∗2), in a PDE framework, to
find the best match. Fleuté et al. [6] minimized the Euclidean distance between
an input shape and a registered template, which assumed smooth transition
paths in between them. Wang et al. [7] used geodesic interpolation to compute
the dense correspondence field between two surfaces once an initial sparse set of
corresponding points had been obtained with an automated shape-based match-
ing algorithm. In [8], the first elliptical harmonics of the expansion of the input
objects (which must have spheroidal shapes) served to establish a correspon-
dence. In [9], Sebastian et al. used a dynamic programming approach similar
to [4] to find the best match between two 2-D curves, using a similarity mea-
sure based on “alignment” between segments of the curves. Elastic registration
and warping approaches have also been investigated. In [10], Thompson et al.
mapped the input surfaces to two spheres whose coordinates were then warped



Fig. 2. Matching two corpus callosum outlines

under anatomical feature curve constraints. Davatzikos et al. [11] also identified
corresponding points on object boundaries in two images before aligning them
using elastic warping. Along different lines, Davies et al. [12] presented a curve
matching method, in the context of the search for the most compact statistical
shape model. An information theoretic criterion was designed and controlled the
correspondence between objects.

The common drawback of those approaches, despite their diversity, lies in
their lack of control over the similarity measure introduced in equation 1, which
is often defined a priori, once and for all, and uses only limited domain-based
information (or information learned from examples). Typically, these matching
processes can be reduced to optimizing a functional whose minimum corresponds
to a “good” correspondence field. The difficulty of designing an adequate func-
tional comes from the difficulty of characterizing an adequate correspondence
field. In [5] for instance, the authors assume that points with similar curvature
should be matched. This may suit some applications, but is not always desir-
able. Figure 2 illustrates such a situation: here two corpus callosum have been
delineated and we wish to compute their average shape:

– Suppose that part of the fornix (a2) has been improperly delineated to-
gether with the corpus callosum, then we would like segments {a1, (b1,b2)},
{(a2,a3), b3} and {a4, b4} to be matched, in spite of the fact that the cur-
vature signature of segment a2 more closely resembles that of b2 than that
of b3.

– On the other hand, we may decide to trust the delineation and assume that
a lesion is the cause of the odd looking bulge (a1) in the corpus callosum in
2.a. Then, we would like a match: {a1, b1}, {a2, b2}, {a3, b3} and {a4, b4}.

Clearly, choosing between these 2 scenarios requires the introduction of ex-
plicit knowledge into the matching algorithm.

To overcome this issue, we propose a learning approach where a learning set
helps the matching algorithm compute a correspondence field whose characteris-
tics bear close resemblance to those of the a priori given learning correspondence
fields. Our method relies on the use of a distance matrix derived from the values
of a local shape measure which is computed on every pair of points of the objects
to be matched. We argue that this shape distance matrix embeds the matching
problem in a highly expressive and redundant construct which is more easily
manipulated. This matrix is both visually interesting (as it allows for visual in-
spection of the specific reparameterization problem at hand) and enables us to



Fig. 3. Observed Transport Measure principle

recast the matching problem as the search for a geodesic in another metrizable
space: the space of reparameterizations (which is a group).

We introduce in section 2 the so-called “observed transport” shape measure
and discuss the properties that make it particularly amenable to the matching
problem. We then present the various learning techniques that we have developed
in section 3 and discuss their applicability to 1-D, 2-D and 3-D objects along
with some examples from medical imaging.

2 Observed Transport Local Shape Measure

We first define our local shape measure in a variety of cases before presenting
some of its properties.

1-D case. Let C :
I ⊂ R → R2

u 7→ (x (u) , y (u)) be a 2-D curve (open or closed), pa-

rameterized with respect to a scalar u. We define the observed transport measure
ρC as follows:

∀t ∈ I, ρC (t) =
∫

VC(t)

‖C (t)− C (u)‖ .
∣∣∣C ′

(u)
∣∣∣ .du (3)

where VC (t) is the arc of C “visible” within range r ∈ R+ from C (t) :

VC (t) = {C (u) s.t. [C (t) C (u)] ∩ C = {C (t) ;C (u)} and ‖C (t) C (u)‖ ≤ r}

with [C (t) C (u)] the line segment between points C (t) and C (u).

ρC (t) can be regarded as the minimal total amount of work it takes to trans-
port the elementary elements du with mass

∣∣∣C ′
(u)

∣∣∣ · du that are visible within
range r from point C (t), from their location C (u), to C (t) (in the fashion of a
Monge-Kantorovich transport problem [13]). Figure 3 displays (thick lines) the
arcs of C that are visible from point P at range r, for a given vertebra outline.



2-D case. Let S :
I2 ⊂ R2 → R3

(u, v) 7→ S (u, v) = (x (u, v) , y (u, v) , z (u, v)) be a 2-D sur-

face, parameterized with scalars u and v. ρS becomes:

ρS

(
u
′
, v

′
)

=
∫ ∫

VS(u′ ,v′)

∥∥∥S (u, v)− S
(
u
′
, v

′
)∥∥∥ .

∣∣∣∣∂ (x, y, z)
∂ (u, v)

∣∣∣∣ .dudv (4)

where
∣∣∣∂(x,y,z)

∂(u,v)

∣∣∣ is the Jacobian of S, and VS is defined analogously to the 2-D
case.

Discrete approximation. We define a discrete version of object O as an unsorted
collection of n-D points: O = {Oi ∈ Rn}N

i=1(that is, we do not assume any a
priori parameterization). We then use a centered space finite difference approx-
imation to derive a discrete version of ρO in n-D:

∀i ∈ 1 . . . N,
ρO (i)

dg
=

N∑
j=1,Oj∈VO(Oi)

‖Oi −Oj‖ (5)

with dg the grid step size in the n directions.

Example. Figure 4 shows how our local shape measure ρ behaves on a few 2-
D and 3-D objects. Curve (a) demonstrates how our measure can model shape
characteristics: even though ρ evidently depends on the curvature of the curve
at the point at which it is computed, ρ (A) 6= ρ (B) and ρ (C) 6= ρ (D), which
correctly reflects the differences in the shape landscape surrounding those points.
As such, the observed transport measure is both a measure of local shape and
an indicator of context, that is, of where we are in the object (with large ranges
r): for instance, it adequately discriminates between the belly and the back of
the corpus callosum (Figure 4.d). Note that a curvature measure would not
necessarily exhibit such behavior since for instance, in Figure 4.a, the curvatures
at A and B, and at C and D, are the same.

Also, our measure bears some resemblance to the “shape contexts” [14]. It
can however intrisically handle both continuous and discontinuous objects, and
is an actual measure (that is, a scalar value, as opposed to a histogram).

Properties.
– The observed transport measure is independent of (i.e. invariant to) repa-

rameterization.
– Given an observed transport signature (a series of consecutive observed

transport values), there is only one curve that can be reconstructed from
it, modulo rotation and translation.

– It is invariant with respect to rigid transformation. However, it is not scale
invariant as we believe the scale of an object is an important shape character-
istic when trying to match anatomical structures. We could easily introduce
scale invariance by normalizing it to the largest observed transport value
across the entire object, or by using a scale parameter in subsequent opti-
mizations.



Fig. 4. Observed transport measure (black is lowest, white is highest) computed over:
(a) a u-parameterized 2-D curve, (b) a set of 2-D points, (c) a u,v -parameterized 2-D
surface (ventricle) and (d) a set of 3-D points (corpus callosum).

3 Learning the Correspondence Field
We present in this section the learning algorithms we have developed to bias the
search for a correspondence field between two objects towards instances that are
admissible with respect to an a priori given learning set. We first briefly describe
a non-learning algorithm before detailing how we can derive learning strategies
from this first approach. We have tackled 3 distinct cases, to which all or only
some of these methods can be applied:

1-D case: 2-D and 3-D u-parameterized curves: we consider objects defined on
an interval of R, taking values in R2 or R3 respectively; m = 1, n = 2 or 3
with notations of the first section.

2-D case: discrete 2-D point-set (unsorted collections of points of R2) and u,v -
parameterized 2-D surfaces; m = 2, n = 2 or 3.

3-D case: discrete 3-D point-set (unsorted collections of points of R3); m =
3, n = 3.

3.1 Optimal Path in the Shape Distance Matrix [m = 1, n = 2 or 3]

Following the Trouvé approach [4], we define the best reparameterization ϕ∗C1→C2

between curves C1 and C2 to be that which minimizes the overall cumulative
distance between measures computed for all pairs of matched points:

ϕ∗C1→C2
= arg min

ϕ

{∫
I

|ρC1 (ϕ1 (u))− ρC2 (ϕ2 (u))| .du

}
(6)

In the discrete case (and for piecewise linear curves, see [4] for details),
a dynamic programming approach can be used to find the optimal reparam-
eterization. Let D be the shape distance matrix associated with the curves
C1 =

{
C1

i

}N1

i=1
and C2 =

{
C2

i

}N2

i=1
:

D = [dij ] i = 1 . . . N1

j = 1 . . . N2

, ∀ (i, j) dij =
∣∣ρC1

(
C1

i

)
− ρC2

(
C2

i

)∣∣ (7)

Finding the best reparameterization then boils down to finding in D (see
Figure 1) the minimal cost path between points S (start) and E (end), which



Fig. 5. Non-learning reparameterization: (a & b) reparameterized curves, (c) shape
distance matrices and optimal paths (in white), (d) point by point average curves.

requires that a single matching pair (M1 ∈ C1, M2 ∈ C2) be given (for open
curves, one could choose the extremities; this condition can also be relaxed if
circular shifts are included in the optimization as well). A dynamic programming
approach then yields an O (N1.N2) complexity.

Note that when a number of consecutive points have the same shape measure
(in a circle for instance), there is not a unique best path with respect to the
above criterion. To bias the search towards “natural” reparameterizations (the
“consistent self-matching” axiom), we introduce in equation 6 a constraint to
prevent the path from deviating too much from the diagonal of D, i.e. for some
α ∈ [0, 1]:

ϕ∗C1→C2
= arg min

ϕ
(α.

∫
I

|ρC1 (ϕ1 (u))− ρC2 (ϕ2 (u))| .du +

(1− α) .

∫
I

∣∣∣ϕ1 (u) .C
′

2 (u)− ϕ2 (u) .C
′

1 (u)
∣∣∣ .du) (8)

Figure 5 displays four pairs of reparameterized curves (a pair per column)
along with the point by point averages derived from them. Some corresponding
pairs of points are indicated with Greek letters. Note in particular how the
discriminating power of our shape measure enabled the triangular indentations to
be correctly matched together in the first column, and against the corresponding
points in the rectangle in the second column.



Fig. 6. Pattern matching strategy

3.2 A Pattern Matching Approach to the 2-D Reparameterization
Problem [m = 1, n = 2 or 3]

An interesting feature of the shape distance matrix is that it embeds, in a highly
redundant way, information about all possible reparameterizations between the
two input objects. In Figure 5 for instance, we can notice clear patterns cor-
responding to the triangles on the first line. A local “matching scenario” (e.g.
“discarding the fornix” in Figure 2, or “matching the triangles together” in Fig-
ure 5) then corresponds to a path in a sub-matrix extracted from the shape
distance matrix of the objects. Note that even though our shape measure is
independent of reparameterization, pairs of objects with different initial param-
eterizations will produce different looking shape distance matrices. Care should
thus be taken to use the same (or similar) parameterization for the objects to
be matched and the ones in the learning set.

We derive the corresponding algorithm (see Figure 6):

Step 1 (a priori). Given a number of desired local matching scenarios, a hu-
man operator first forms a learning set by selecting instances for each sce-
nario (a careful process as the operator must ensure that the learning set
adequately represents the desired matching characteristics). An instance con-
sists of a 2-D sub-matrix Mi,j ∈ Mmi,j×ni,j

, and its associated connected
path Pi,j =

{(
xk

i,j , y
k
i,j

)}mi,j+ni,j

k=1
. The sub-matrices are extracted from shape

distance matrices computed from objects which should be “similar” to the



ones the operator wants the algorithm to reparameterize. Pi,j is the path in
Mi,j which represents a local matching scenario, in the same fashion that
the optimal cost path in Section 3.1 represents the“optimal”global matching
scenario. For each instance, we also compute the distance map of its path.
Let S1 = {S1,1, . . . , S1,N1} , . . . , SK = {SK,1, . . . , SK,NK

} be the K scenar-
ios, with their instances Si,j = (Mi,j , Di,j) where Mi,j is the shape distance
sub-matrix, and Di,j the associated distance map.

Step 2. Once we have computed the shape distance matrix M ∈ Mm,n from
the two input objects O1 and O2, a pattern matching algorithm is used to
find in M sub-matrices that bear close resemblance to those of the learn-
ing set. We have developed a straightforward multi-scale framework where
each sub-matrix Mi,j in the learning set is matched against sub-matrices, ex-
tracted from M , at a number of positions and scales. For each Mi,j , we record
the translation t∗i,j and scale s∗i,j for which the maximal similarity is achieved:(
t∗i,j , s

∗
i,j

)
= arg maxt,s (similarity (Mi,j ,M |[tx, tx + s.mi,j ]× [ty, ty + s.ni,j ] ))

where M |[tx, tx + s.mi,j ]× [ty, ty + s.ni,j ] is the sub-matrix of M of size
s.mi,j × s.ni,j which starts at index tx, ty (with t = [tx, ty]T ). We also dis-
card instances for which the associated similarity measure is too low.

Step 3. For each scenario in the learning set, we then average the distance maps
of the paths associated with their instances (once we have applied the proper
translation and scale from step #2). The averaging process is done pixel by
pixel. In Figure 6, we average the maps of the two instances of scenario #2;
no averaging is required for scenario #1 since it only has 1 instance.

Step 4. We then combine the average maps D∗
i,j with the underlying shape

distance matrix M to bias the dynamic programming search towards the
sub-paths from the learning set:

M∗
x,y = Mx,y +

K∑
i=1

Ni∑
j=1

(λi,j .1[t∗x
i,j ,t∗x

i,j+s∗i,j .mi,j]×[t∗y
i,j ,t∗y

i,j+s∗i,j .ni,j] (x, y) .

D∗
i,j (x, y)),with t∗i,j =

[
t∗xi,j , t

∗y
i,j

]T (9)

The relative weight of the average distance maps with respect to the shape
distance matrix λi,j could be controlled by the quality of the match between the
sub-matrices from the learning set and the matrix M . That quality could also
be used to compute a weighted average distance map instead of an equal-weight
one.

Figure 7 illustrates this approach on two geometric examples. In the first case
(first row), we make sure to match triangles together, whereas in the second case
(second row), we discard them as noise, and match them against the directly
corresponding rectangle pieces. The learning set sub-matrices were taken from
the matrices of Figure 5.

Incidentally, the same method can be used to rule out certain sub-matches.
When a pattern in the learning set has no associated sub-path, its distance map
is infinite everywhere and thus the dynamic programming algorithm will avoid
the corresponding area in the shape distance matrix.



Fig. 7. Pattern matching examples: (a) learning set, (b & c) reparameterized curves,
(d) the resulting point by point average curve

3.3 Towards a Registration Approach to the n-D
Reparameterization Problem [m ∈ N∗, n ∈ N∗, m ≤ n]

Even though noticeable patterns are still present in higher dimensional distance
matrices, the lack of a single-scalar parameterization for n-D objects prevents us
from using the dynamic programming approach. However, we can still capitalize
on the advantageous aspects of the shape distance matrix by considering the
problem of reparameterization between two objects to be that of deforming and
adapting a hyper-surface given a priori (associated to an a priori shape distance
matrix) to the shape distance matrix of the input objects. In doing so, we avoid
the issue of the parameterization of the input objects (and can thus consider
collections of points).

The resulting algorithm is very similar to that of section 3.2:

– Given a number of 2m-D shape distance matrices computed from pairs of
already matched objects (and their associated matching hyper-surfaces), we
non-linearly register them to the shape distance matrix computed from the
two input objects.

– The resulting non-linear transforms are then applied to the distance maps
of the hyper-surfaces associated to the learning items.

– These transformed distance maps are then averaged and the zero-level set of
the average map becomes the new reparameterization. Note that a matching
criterion (the integral of the deformation field for instance) could be used to
compute a weighted average.

With this approach, we transform an m-D matching issue into a 2m-D regis-
tration problem. Despite the curse of dimensionality, we are left with a simpler
problem given the high expressivity of the distance matrices (see [15] for a similar
dimension increase for surface matching). Consequently, the performance of our
method depends on the robustness and accuracy of the non-linear registration al-
gorithm. In the 1-D case (2-D shape distance matrix) we use the PASHA method
[16] where the amount of regularization depends on the estimated discrepancy
between the instances in the learning set and the objects to be reparameterized.
We have adapted it in 4-D to treat the 2-D case (4-D shape distance matrix).



Fig. 8. Registration examples. 3 sample caudates (left) and mean caudate (right)

Even though extending it to 6-D (3-D case) is not theoretically impossible, the
size of the search space makes the registration intractable. We are currently
experimenting with sparse space techniques to tackle this.

Figure 8 shows how our registration method behaved on a series of 20 caudate
nuclei (a u,v -parameterized surface). One caudate was selected as a target and
the remaining 19 others were resampled together with it, using a 2-item learn-
ing set built by an expert neuroanatomist. We show 3 sample caudates (out of
the 20) with some corresponding points (Greek letters) and the resulting mean
caudate (rightmost column), obtained by averaging homologous points across
the resampled test set. Visual inspection confirmed the agreement between the
parameterization of the structures in the learning set and those in the test set.

3.4 Building the Learning Set

Our approaches require that the correspondence between the objects of the learn-
ing set be established a priori. This may not be a trivial task for 3-D objects
with complex shapes. However, it only has to be specified once and for a small
number of instances. Also a sparse subset of the correspondence field could be
specified by the user to generate a learning set. Most of the fully automated
techniques presented in the introduction could produce a meaningful set that
could then be manually corrected if need be.

Note that using a learning set implies that the objects we want to repa-
rameterize should not be too different from those in the learning set. In fact,
similarities between objects do not matter so much as similarities between the
pairs of objects to be reparameterized and the pairs of objects in the learning set.
Of course, the former is a sufficient condition for the latter. However, a unique
advantage of our approach lies in its ability to learn a matching strategy for
even very dissimilar objects, provided that we apply it to the same dissimilar
matching situations.

4 Conclusion
We have presented a learning approach to the object correspondence problem.
Our method makes adequate use of known correspondences from an a priori
learning set to compute between two given objects a dense correspondence field
whose characteristics are similar to those of the learning set. We can then exert
explicit control over the reparameterization. As such, this technique proves use-
ful to put into correspondence the “outliers” of an object set whose “ordinary”
instances may be treated with direct non-learning algorithms.



We have also introduced a new local shape measure, the observed transport
measure, and illustrated the highly discriminating properties that make it par-
ticularly amenable in this context.

Finally, technical difficulties (curse of dimensionality) prevented us from im-
plementing our method for full 3-D objects. We are currently exploring alterna-
tive approaches to alleviate this problem.
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