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Abstract
Symmetric, positive-de�nite matrices, or tensors, are nowadays a common geometri-
cal tool for image processing and analysis. The recent emergence of di�usion tensor
MRI (DT-MRI or DTI) and computational anatomy (CA) brought importance of
tensors out to the medical community. In DTI, tensors are covariance matrices of
the Brownian motion of water molecules within tissues, and allows to reconstruct
white matter �bers through a process called tractography. In the context of CA
(modeling of organs), tensors are covariance matrices depicting the anisotropy
of shape variability. General processing of tensors is therefore highly demanded.
However, working with those is di�cult: the positive de�niteness constraint must
be satis�ed at any cost, which cannot be ensured in general with standard matrix
operations.

In this work, we propose two alternatives to the standard Euclidean calculus
on tensors. Instead of seeing the tensor space as a vector space, we consider it as
a manifold, i.e., a smooth curved space. Thanks to the Riemannian geometry, we
are able to �unfold� this space, and to generalize any operation on tensors with
astonishly simple implementations. In particular, we show how to recycle, at a very
cheap cost, any image processing algorithms to tensors.

In a second step, we review the applications of such frameworks in the context
of clinical DT-MRI and brain CA. In clinical DTI, the challenge is to exploit and
perform tractography on data that may be very noisy, which is almost impossible
with standard methods. To do so, we build a complete pipeline for this type of
data, from the design of optimal processing by modeling the true nature of the
MRI noise to their implementation in a convenient and ergonomic software. The
utility of such approach is demonstrated with a clinical survey on the indications
of DTI in spinal cord injuries.

In brain CA, we target the statistical modeling of the brain. We will show how,
by considering simple brain anatomical landmarks - the sulcal lines - we are able to
measure with tensors how much and in which prefered directions the brain varies
among individuals. Then, we look at another type of statistics: the anatomical cor-
relations between brain regions, telling how much two regions are statistically linked.
A new type of tensors called total covariance matrices is involved in this study. We
present results of so far unknown relationships between symmetric sucal positions,
and between a-priori unrelated sulci, which raises new fundamental questions about
the origin of such statistical dependencies.





Résumé
Les matrices symétriques dé�nies positives (tenseurs) ont un rôle majeur en
traitement et analyse des images. L'apparition de l'imagerie du tenseur de di�usion
(ITD) et de l'anatomie algorithmique (AA) a fortement contribué à leur notoriété.
Il est cependant di�cile de les manipuler, car la propriété dé�nie positive doit être
véri�ée à tout prix, ce que le calcul Euclidien ne permet pas.

Dans cette thèse, nous proposons deux cadres Riemanniens pour remplacer le
calcul Euclidien. Premièrement, nous proposons un cadre a�ne-invariant qui rend
inaccessible toute matrice non positive, mais qui se révèle assez coûteux en temps
de calcul. Nous proposons alors un second cadre, les métriques Log-Euclidiennes
(LE), qui possède (presque) les mêmes propriétés que le précédent avec un coup
algorithmique moindre. De manière surprenante, les deux cadres donnent des
résultats similaires lors d'opérations d'interpolation ou de lissage.

Nous utilisons alors le cadre LE pour deux applications. Tout d'abord, nous
proposons un panel de traitements des ITD cliniques. En particulier, nous repen-
sons l'estimation des tenseurs avec le bon modèle de bruit IRM (Ricien). Ensuite,
nous intégrons une partie des algorithmes développés dans le logiciel MedINRIA,
dont le but est de rester simple tout en proposant des algorithmes puissants. Nous
démontrons par ailleurs l'utilité d'une telle approche avec une étude clinique sur les
indications de l'ITD dans les lésions de la moelle épinière. La seconde application
vise l'AA du cerveau. Dans un premier temps, nous construisons un modèle de
variabilité en mesurant et en extrapolant des matrices de covariance le long de
lignes sulcales. Les cartes de variabilité obtenues sont cohérentes avec les résultats
établis en neuroscience.

Dans un deuxième temps, nous nous intéressons aux corrélations anatomiques
entre di�érentes zones du cerveau. Grâce à la matrice de covariance totale, nous
calculons les corrélations entre un point de référence et le reste du cerveau. Nous
montrons que la majorité du cerveau est corrélée symétriquement. D'autres régions
comme l'aire de Broca ne présentent pas une telle symétrie (leurs fonctions dépen-
dent de l'hémisphère également). Cela laisse penser que l'anatomie et la fonction
sont liées, et que ces corrélations résultent de la présence d'un faisceau nerveux, ou
ont une origine génétique ou environmentale.





Acknowledgments
First of all, I would like to thank Nicholas Ayache, my adviser during these 3
(almost 4) years of research in his group, for giving me the chance and the liberty
to express my creativity in research without restrictions nor hesitations.
I would like to warmly thank Xavier Pennec, co-adviser of my thesis, who
showed me the way when I was lost in the twilight zone of Riemannian geometry,
and who transmitted me his appetite for mathematics. I could not have gone so far
in my research without his precious and invaluable advices.
None of this could have been possible without Guido Gerig, who revealed to
my eyes the fascinating world of research in the �rst place, and I cannot be thankful
enough for this.
I would like to express my sincere gratitude to the members of the commit-
tee:

• Jean-François Mangin and Guido Gerig for kindly accepting to be reviewers
of this thesis. I would like to thank them for the time and attention they
devoted to my work, as well as for their encouraging compliments and judicious
comments.

• Rachid Deriche, who kindly accepted to chair this jury, Carl-Fredrik Westin
and Christian Barillot, who, by accepting to participate to the jury, demon-
strated their interest in my work. I could not thank all of them enough for
their compliments and advices.

• Peter Basser, Alfred Anwander and Thomas Knösche, who accepted three
days before the defense to be part of the jury, despite the amount of work
this required in such a short laps of time. I would like to thank them warmly
for their exceptional kindness, their active participation, and their pertinent
comments on my work.

I should not forget to express my immense gratitude to Paul M. Thompson,
whose help was demanded more than once. I am thankful for the time he took
to accurately analyze and interpret my results, and for the time taken to help me
writing publications.
I would like also to thank two important people to me, Jean-Marie Becker
and Catherine Mennessier, my professors in mathematics and computer science
during engineer school, in particular for transmitting me their passion for image
processing and analysis.
Naturally, none of this would have been possible without my parents, who
gave me an education and a favorable environment, without which I could not have



been so far. I wanted to thank to my brother and sister, Clément and Hélène, who
have been supporting me for now 28 years. I could not thank enough Ghislaine,
my girlfriend and forever soulmate, for her unconditional support, patience, and love.
I would like to express my sympathy and gratitude to present and past lab-
mates, with who I debated on various topics including research but not only:
Stanley Durrleman, Olivier Clatz, Olivier Commowick, Nicolas Toussaint, Vincent
Arsigny, Maxime Descoteaux, Maxime Sermesant, Ender Konukoglu, Jean-Marc
Peyrat, Jean-Christophe Souplet, Céline Fouard, Radu Stephanescu, Isabelle
Strobant, Heike Hufnagel, and Tommaso Mansi. I apologize to all people I forgot
to mention the names.



Contents

1 Introduction 1
1.1 Modeling of the Human Brain: A Neuroscience Challenge . . . . . . 3
1.2 Problems Investigated in this Thesis . . . . . . . . . . . . . . . . . . 4

1.2.1 Di�usion Tensor MRI: In Vivo White Matter Fibers Charac-
terization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Computational Anatomy: A Promising Emerging Field . . . . 9
1.2.3 Limitations of Euclidean Calculus on Tensors . . . . . . . . . 11

1.3 Manuscript Organization . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Introduction (français) 19

2.1 La modélisation du cerveau humain : un challenge en neurosciences . 20
2.2 Problèmes abordés dans cette thèse . . . . . . . . . . . . . . . . . . . 22

2.2.1 L'IRM du tenseur de di�usion : caractériser in-vivo les �bres
de la substance blanche . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 L'anatomie algorithmique : un domaine émergent prometteur 29
2.2.3 Limitations du calcul euclidien sur les tenseurs . . . . . . . . 31

2.3 Organisation du manuscrit . . . . . . . . . . . . . . . . . . . . . . . . 34

I A Riemannian Approach to Tensor Processing 39

3 Two Riemannian Frameworks for Tensor Processing 43
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Basic Tools of Riemannian Geometry . . . . . . . . . . . . . . . . . . 44

3.2.1 Exponential chart . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.2 Practical implementation . . . . . . . . . . . . . . . . . . . . 46
3.2.3 Basic statistical tools . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 An A�ne-Invariant Riemannian Metric for Tensors . . . . . . . . . . 48
3.3.1 Exponential, logarithm and square root of tensors . . . . . . . 48
3.3.2 An a�ne invariant distance . . . . . . . . . . . . . . . . . . . 49
3.3.3 An invariant Riemannian metric . . . . . . . . . . . . . . . . 50
3.3.4 Exponential and logarithm maps . . . . . . . . . . . . . . . . 52
3.3.5 Induced and orthonormal coordinate systems . . . . . . . . . 53
3.3.6 Gradient descent and PDEs: an intrinsic geodesic marching

scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 Log-Euclidean Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 De�nition of the Log-Euclidean Metrics . . . . . . . . . . . . 54
3.4.2 Invariance Properties of the Log-Euclidean Metrics . . . . . . 56
3.4.3 Log-Euclidean Computations on Tensors . . . . . . . . . . . . 57
3.4.4 Link with the A�ne-Invariant Metric . . . . . . . . . . . . . . 57



ii Contents

4 Riemannian Processing of DT-MRI 59
4.1 Statistical Analysis of Tensors . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 The Fréchet Mean . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.2 Covariance Matrix and Mahalanobis Distance . . . . . . . . . 61

4.2 Tensor Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.1 Example of the linear interpolation . . . . . . . . . . . . . . . 65
4.2.2 Multi-linear interpolation . . . . . . . . . . . . . . . . . . . . 67
4.2.3 Interpolation of non regular measurements . . . . . . . . . . . 67

4.3 Filtering of Tensor Fields . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.1 Gaussian Filtering . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.2 Spatial gradient of Tensor �elds . . . . . . . . . . . . . . . . . 73
4.3.3 Filtering using PDEs . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.4 Anisotropic Filtering . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Tensor Field Restoration . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.1 A least-squares data �delity term . . . . . . . . . . . . . . . . 84
4.4.2 A least-squares attachment term for sparsely distributed tensors 85
4.4.3 Extrapolation through di�usion . . . . . . . . . . . . . . . . . 85

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5 Conclusions and Discussion: Which Metric for Which Application? 89

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Which Metric for Which Application? . . . . . . . . . . . . . . . . . 91

5.2.1 Case of the Structure Tensor . . . . . . . . . . . . . . . . . . 91
5.2.2 De�nition of the Structure Tensor . . . . . . . . . . . . . . . 91
5.2.3 Gradient of a Structure Tensor Image . . . . . . . . . . . . . 92
5.2.4 Anisotropic Filtering of a Structure Tensor Image . . . . . . . 92

II An Optimal Work�ow for Using DT-MRI in Clinical Appli-
cations 95

6 DT-MRI Estimation and Smoothing with LE Metrics 99
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.1 How Does DTI Estimation Work? . . . . . . . . . . . . . . . 100
6.1.2 Di�usion Tensor Fields Regularization . . . . . . . . . . . . . 101
6.1.3 Tools for Tensor Computing . . . . . . . . . . . . . . . . . . . 103

6.2 A Variational Formulation with Three Noise Models . . . . . . . . . 106
6.2.1 Log-Gaussian Noise . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.2 Gaussian Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.3 Rician Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.4 An Anisotropic Regularization Term . . . . . . . . . . . . . . 109

6.3 Quantitative and Qualitative Evaluation . . . . . . . . . . . . . . . . 110
6.3.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4 Clinical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



Contents iii

6.4.1 Improvement of Tractography . . . . . . . . . . . . . . . . . . 119
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Clinical Integration DTI with MedINRIA 125
7.1 Software Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2 ImageViewer: A Simple yet Powerful Image Viewer . . . . . . . . . . 127
7.3 DTI Track: Log-Euclidean DT-MRI Processing . . . . . . . . . . . . 129
7.4 TensorViewer: Tensor Fields Visualization . . . . . . . . . . . . . . . 131
7.5 Image Fusion: Fast and Simple Image Registration Toolkit . . . . . . 132
7.6 Conclusion on MedINRIA . . . . . . . . . . . . . . . . . . . . . . . . 134

8 DT-MRI and Fiber Tracking in Spinal Cord Lesions 137
8.1 Di�usion Tensor Imaging and Fiber Tracking Methods . . . . . . . . 138

8.1.1 Image Acquisition . . . . . . . . . . . . . . . . . . . . . . . . 138
8.1.2 Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.1.3 Fiber Tracking Method . . . . . . . . . . . . . . . . . . . . . 140
8.1.4 Fractional Anisotropy Measurements . . . . . . . . . . . . . . 141

8.2 Clinical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2.1 Normal Anatomy . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2.2 Spinal Cord Tumors . . . . . . . . . . . . . . . . . . . . . . . 142
8.2.3 Spinal cord compression . . . . . . . . . . . . . . . . . . . . . 145
8.2.4 Myelitis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.2.5 Arteriovenous Malformations . . . . . . . . . . . . . . . . . . 148
8.2.6 Metabolic Disorders . . . . . . . . . . . . . . . . . . . . . . . 149
8.2.7 Syringomyelia . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.2.8 Spinal Cord Injuries . . . . . . . . . . . . . . . . . . . . . . . 151

8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9 Discussion 153

III Statistical Analysis of the Human Brain Cortex
Anatomy 155

10 Introduction 157
10.1 De�nition of Brain Variability . . . . . . . . . . . . . . . . . . . . . . 157
10.2 What Type of Data do we Need? . . . . . . . . . . . . . . . . . . . . 159

11 A Second-Order Model of Cortical Variability 163
11.1 Learning Local Variability from Sulcal Lines . . . . . . . . . . . . . . 164

11.1.1 Sulcal Curve Modeling . . . . . . . . . . . . . . . . . . . . . . 164
11.1.2 Estimation of the A�ne Transformation from Correspondences 166

11.2 Model Simpli�cation and Extrapolation . . . . . . . . . . . . . . . . 168
11.2.1 Model Simpli�cation using Tensor Interpolation . . . . . . . . 169
11.2.2 Extrapolating the Variability to the Full Brain . . . . . . . . 171



iv Contents

11.3 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
11.3.1 Intra-Sulcus Variability Recovery . . . . . . . . . . . . . . . . 174
11.3.2 Leave One Sulcus Out . . . . . . . . . . . . . . . . . . . . . . 176

11.4 Hemispheric Di�erences in Variability . . . . . . . . . . . . . . . . . 180
11.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

12 Accessing Correlations with the TCM 185
12.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

12.1.1 The Total Covariance Matrix . . . . . . . . . . . . . . . . . . 186
12.1.2 Analysis of Total Covariance Matrices . . . . . . . . . . . . . 187

12.2 Sulcal Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
12.2.1 Sulcal Correlation for 6 Speci�c Positions . . . . . . . . . . . 189
12.2.2 Special Case of Hemispheric Correlations . . . . . . . . . . . 190

12.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
13 Discussion 197

14 Conclusions and Future Work 199
14.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 199

14.1.1 Two alternatives to Euclidean Calculus on Tensors . . . . . . 200
14.1.2 Optimal Processing of Clinical DT-MRI . . . . . . . . . . . . 200
14.1.3 New Tools for Statistical Shape Analysis of the Brain . . . . 201

14.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
14.2.1 Validation of Variability Models with Data Fusion . . . . . . 203
14.2.2 Statistical Analysis of DT-MRI . . . . . . . . . . . . . . . . . 203
14.2.3 Inter-Subject Non-Linear Registration with a Prior on Brain

Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
14.2.4 More Technological Transfer towards Clinics . . . . . . . . . . 204

14.3 Publications of the Author . . . . . . . . . . . . . . . . . . . . . . . . 206
14.3.1 Methodological Articles . . . . . . . . . . . . . . . . . . . . . 206
14.3.2 Medical Articles . . . . . . . . . . . . . . . . . . . . . . . . . 208
14.3.3 Programming & Software Articles . . . . . . . . . . . . . . . . 208
14.3.4 Patent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

A Tensor regularization: the Laplace-Beltrami operator 211
A.1 Gradient of the L2 regularization of a tensor �eld . . . . . . . . . . . 211
A.2 Numerical Implementation of the Laplace-Beltrami Operator . . . . 212

B Estimation of the A�ne Transformation from Sulcal Correspon-
dences 215

C Practical Implementation of the Matrix Exponential Directional
Derivative 217

D Practical Implementation of α(x) 219



Contents v

Bibliography 221





Chapter 1

Introduction

Contents

1.1 Modeling of the Human Brain: A Neuroscience Challenge 3
1.2 Problems Investigated in this Thesis . . . . . . . . . . . . . . 4

1.2.1 Di�usion Tensor MRI: In Vivo White Matter Fibers Charac-
terization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Computational Anatomy: A Promising Emerging Field . . . 9
1.2.3 Limitations of Euclidean Calculus on Tensors . . . . . . . . . 11

1.3 Manuscript Organization . . . . . . . . . . . . . . . . . . . . . 15

The brain has been fascinating people for millennia. The role of this mysterious
organ, however, was uncertain and very often misunderstood. In Egypt, in the late
Middle Kingdom period (second millennium BC), in preparation for mummi�cation,
the brain was generally removed from the body through the nose, as it was the
heart that was assumed to be the seat of intelligence. According to Herodotus (a
Greek historian), during the �rst step of mummi�cation: �The most perfect practice
is to extract as much of the brain as possible with an iron hook, and what the hook
cannot reach is mixed with drugs�. Of course, over the next �ve thousand years,
this view was reversed and the brain is now known to be the seat of intelligence.
However, colloquial variations of the former remain as in �memorizing something
by heart�.

During the �rst millennium BC, the ancient Greeks developed di�erent views
on the function of the brain. It is said that it was the Pythagorean Alcmaeon
of Croton who �rst considered the brain to be the place where the mind was
located. Interestingly, during the 4th century BC, Aristotle thought that the
brain was a cooling mechanism for the blood. He reasoned that humans are more
rational than animals because they have a larger brain to cool their hot-bloodedness.

During the 1800s, scientists debated whether areas of the brain corresponded
to speci�c functions, or if the brain functioned as a whole (the �aggregate �eld
theory�). The work of Paul Broca, Karl Wernicke, and Korbinian Brodmann
eventually helped to show that areas of the brain had speci�c functions. Today,
modern neuroscience is rapidly growing due to the availability of computers capable
of processing information of unprecedented complexity. Rapidly developing imaging
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techniques such as magnetic resonance imaging (MRI), function MRI (fMRI)
and di�usion tensor MRI (DT-MRI) allows scientists to study the brain in living
humans and animals in ways their predecessors could not.

Up to now, only a little is known about the brain compared to other organs
like the heart. The mistakes of our predecessors may be risible, but are we sure
that our interpretations are correct? Most of our knowledge about brain anatomy
are collections of observations made by neuroanatomists. The brain as we know
it is identical as in the book �Gray's anatomy� �rst issued in...1858 [Gray 1958]!
Today, thanks to the emergence of medical imaging for the past 20 years, a new
hope arose to understand brain mechanisms. Brain can be observed in-vivo at very
�ne resolution with modern scanners. It can even be observed while �working� using
fMRI or PET imaging. It is time to show our predecessors that brain's secrets can
be revealed. Or maybe our successors will laugh of our mistakes. Future will tell.

Figure 1.1: Brain pictures taken from Gray's Anatomy (1858).
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1.1 Modeling of the Human Brain: A Neuroscience
Challenge

Understanding brain's mechanisms, from a computer science point of view, means
modeling those mechanisms. However, the complexity is such that a direct
algorithmic modeling of the brain is almost impossible. Indeed, the brain is not a
static arrangement of circuits, but a network of vastly interconnected neurons that
are constantly changing their connectivity and sensitivity. More recent work in both
neuroscience and arti�cial intelligence models the brain using the mathematical
tools of chaos theory and dynamical systems. Current research has also focused on
recreating the neural structure of the brain with the aim of producing human-like
cognition and arti�cial intelligence but with little success.

Construction of computational models of the brain is the grand challenge of the
neurosciences �eld. These models are the key for a better understanding of how
the brain works, and essentially why some brains don't work as they should. Only
little is known about many brain diseases like Parkinson, Alzheimer, schizophrenia,
autism, multiple sclerosis, or even cancer. Having a better insight on the normal
function of the brain would help detecting as early as possible these pathologies,
and treating them. Our societies are getting older, and neurological pathologies are
getting more and more frequent. The impact of such models, if they lead to actual
treatment, will be huge.

Understanding brain also means understanding brain change over time, from
birth to adult, and from adult to elderly. A better understanding of normal
brain maturation can help early detect and treat severe pathologies, like autism
or schizophrenia, that often appear during childhood. Another interesting point
is neuroplasticity, which is the ability of the brain to change its organization
(including localization of functions) as a result of experience. It is still mysterious
and may contain the keys to function recovery. We could imagine giving drugs to
a patient su�ering from amnesia, or temporary hemiplegia (meaning that physi-
cal nerves are still present), to speed up the recovery of memory and motor functions.

There are di�erent levels of modeling that need to be achieved, and we will dis-
cuss three of them. First, we need to model the functions, i.e., precisely delineate
which areas of the brain are responsible for which functional tasks (like the speech
area). Notice that this is a rather simpli�ed description of the problem, since some
higher functions may be distributed among di�erent brain regions (and not only
one). Moreover, there is an inter-individual variability of the localization of these
regions, which makes the problem even more complex. Nevertheless, this informa-
tion is accessible via fMRI, which is basically able to measure the neural response
to a stimulus. Second, we need to model the anatomy, i.e., identify (delineate) and
model the shape of brain structures. Modeling of anatomy (as well as functions)
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should be done on a population of normal controls to characterize what �normal-
ity� is. Structural (or anatomical) MRI is the main tool for such level of modeling.
Finally, there is a third level of modeling: the relationship between function and
anatomy. We need to understand how function is linked to structure and shape.
This modeling is making a bridge between the �rst two, and could help assessing
how genes, experience-driven neuroplasticity, etc. a�ect brain organization. The
emergence of di�usion MRI, a modality which eventually leads to a reconstruction
of the white matter �bers, is a very promising tool to study such relationships.

1.2 Problems Investigated in this Thesis
In the previous section, we introduced the central theme of this work, which is
the modeling of the human brain. Of course, this is a very complex problem that
will not be fully solved here, and will require many more years of collaborative
research between di�erent domains (medicine, neuroscience, physics, mathematics
and computer science) to be fully solved. In this thesis, we are investigating two
aspects of it: di�usion MRI processing and computational anatomy of the brain,
both having a major role to play in this long journey towards brain modeling.

First, di�usion MRI, as said earlier, is a promising tool to study the relationship
between functions and anatomy as it gives access to the white matter �ber archi-
tecture. Those �bers physically connect functional regions. However, this imaging
technique is relatively recent and not mature enough to be used for such precise
modeling. Indeed, many problems inherent to this modality need to be tackled
down �rst, especially in a clinical context. We will discuss these problems in Sec.
1.2.1, and a �rst contribution of this thesis is to address those problems.

Second, computational anatomy is a promising new �eld which speci�cally tar-
gets the study of an organ in a population, and whose goal is to create a model of
variability of this organ. We introduce computational anatomy in Sec. 1.2.2, and a
second contribution of this work is to build such model for the brain.

These two �elds, that may sound unrelated at �rst glance, have something in
common: the tensor. Tensors are a geometric tool to study statistical process, and
are more complex than simple scalars to work with. We will show throughout the
next two sections what are tensors, and which role they play in di�usion MRI and
computational anatomy. In Sec. 1.2.3, we list the limitations of tensor computing.
Finding a way to overcome these limitations will be the topic of another contribution
of this thesis.
1.2.1 Di�usion Tensor MRI: In Vivo White Matter Fibers Char-

acterization

The recent emergence of di�usion MRI, and in particular di�usion tensor MRI
[Basser 1994a], has been received with enthusiasm by the medical image commu-
nity. Indeed, di�usion MRI is the unique in-vivo technique to give an insight on the
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anisotropy of tissues. Basically, di�usion MRI consists in measuring, in any direc-
tion of space, the di�usion of water molecules. This motion is better known as the
Brownian motion formalized by Einstein in 1905 [Einstein 1956]. At a macroscopic
scale, this phenomenon is perceived as a di�usion. Einstein related the di�usion
coe�cient to the distance of di�usion of particles:

d =
1
2τ

〈
R>R

〉
,

where τ is the di�usion time, R is the displacement vector (R = r− r0, r0 being the
initial position of a particle and r the �nal position), and <> denotes the average
over all particles. The scalar d is a measure of the di�usion of the medium and
depends on the type of particles as well as the properties of the medium. However,
it does not indicate a potentially di�erent di�usion in a direction of space.

Certain media exhibit di�erent di�usion properties. In particular, brain white
matter �bers are protected by myelin sheaths that will "force" the water molecules
to move in a direction tangential to them rather than orthogonally. In other words,
water molecules move preferentially along the direction of the �bers than transvere
to them. In this case, a simple scalar is not suitable to characterize the di�usion of
such anisotropic tissue. Then, one can replace it by the covariance matrix D of the
particles displacement:

D =
1
6τ

〈
RR>

〉
.

D is a 3 × 3 symmetric, positive-de�nite matrix. The term di�usion tensor
comes from [Stejskal 1965] and is related to the fact that it is obtained by the
tensor product of the displacement vector R with itself. In rigorous mathematical
notations, a scalar is a 0th order tensor, a vector is a 1st order tensor, and a matrix
is a 2nd order tensor (without any restriction on its symmetry and positivity).
Thus, the denomination tensor is ambiguous since any matrix is a 2nd order tensor!
However, the term was adopted by the community and has been used for many
years. Then, we will use the word tensor as synonym of symmetric and positive
de�nite matrix from now on.

A symmetric, positive de�nite matrix is a symmetric matrix whose eigenvalues
are all strictly greater than zero. Let us take an eigen decomposition of a tensor
D: D = U V U>. U is the matrix of eigenvectors (it is an orthogonal matrix, i.e.,
U−1 = U>) and V is the matrix of eigenvalues (it is a diagonal matrix):

U =

 | | |
−→u 1

−→u 2
−→u 3

| | |

 and V =

 λ1 0 0
0 λ2 0
0 0 λ3


We say that eigenvalue λi is associated to eigenvector −→u i for all i. Moreover, when
working with di�usion tensors, we generally order the eigenvalues in descending
order, i.e., λi is greater than λi+1 ∀i. Consequently, λ1 is the greatest eigenvalue,
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Figure 1.2: Illustrations of brain white matter �bers. Left: Dissection of a
human brain showing some major �ber tracts (Courtesy of Lennart Heimer, MD,
University of Virginia). Right: Image taken from Gray's Anatomy [Gray 1958].

and we call the associated eigenvector −→u 1 the major eigenvector (also called the
principal direction of di�usion (PDD) in case of di�usion tensors). Of course, all of
this is valid for any n× n tensors, not only 3× 3.
Representation of tensors is commonly done using ellipsoids. Indeed, tensors are
nothing other than quadric forms. A quadric form whose eigenvalues are all positive
is an ellipsoid. Actually, the rigorous de�nition states that an ellipsoid is a quadric
form whose eigenvalues are all of the same sign, either positive or negative. But
as we are modeling the di�usion phenomenon, the eigenvalues are homogeneous to
a squared distance per second, so negative eigenvalues are physically not possible.
The shape and orientation of the ellipsoid is determined by the eigen components
of a tensor: the orientation of its axes are given by the eigenvectors, and the
magnitude of each axis is given by the corresponding eigenvalue.

Figure 1.3: A tensor represented by an ellipsoid. The axes directions are
given by the tensor's eigenvectors. The axes length is given by the eigenvalues.

We shall emphasize the fact that the di�usion tensor is a model of the covariance
matrix of the particles displacement. This is not the unique way of modeling the
di�usion. First, this model assumes a Gaussian distribution of the particle displace-
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ments. The validity of such assumption could be questioned for instance in regions
with crossing �bers: in this case, two or more Gaussian distributions are mixed
up and nothing ensures the result to be Gaussian. A more elaborate model would
be necessary in this situation and the literature o�ers a lot of alternatives to the
simple tensor model: bi-tensor model [Alexander 2001a, Tuch 2002], CHARMED
[Assaf 2005], Q-Ball imaging [Tuch 2004, Descoteaux 2007b], orientation density
function [Tournier 2004a], or even higher order tensors [Barmpoutis 2007b]. How-
ever, these techniques requires a large number of MRI acquisitions (from several
tens to several hundreds). Moreover, when one wants to have a robust estimate of
the model parameters, one often needs to repeat the scans or acquire more images
than the minimum number necessary. This is critical when working, for instance, in
a clinical environment where the scanning time is rather short (average time of 15
minutes per patient). We will address this later in this manuscript. With a single
tensor model, only six images are needed (in fact seven since a reference image is
required) because a tensor has 6 degrees of freedom, which gives 6 parameters to
estimate. Increasing the robustness of the model estimation (i.e., multiplying the
acquisitions) becomes more reasonable in this case. Finally, we believe that the
single tensor model still has a lot to o�er.

Figure 1.4: Slices of a DT-MRI acquisition typical of a clinical environ-
ment. (Courtesy of Denis Ducreux, MD, Bicêtre Hospital, Paris.) Image dimen-
sions: 128 × 128 × 30, spatial resolution: 1.8 × 1.8 × 4mm. The dataset is made
of one baseline image (the most-left image) plus 6 di�usion-weighted images (using
Basser's sequence [Basser 1994a] was used).

Practically, the di�usion tensor D is related to the di�usion-weighted images by
the Stejskal&Tanner di�usion equation:

Si = S0 exp
(
−b−→g >i D−→g i

)
, (1.1)
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where Si is the di�usion-weighted image, S0 is the baseline image (i.e., an image
without displacement encoding gradients, typically a T2-weighted image), −→g i the
di�usion gradient, and b the b-value in s.mm−2 which depends on the scanning
parameters (it is generally constant). For a more complete description of the
di�usion MRI acquisition, we refer the reader to [Poupon 1999]. Basically, the
coe�cient −→g >i D−→g i is a scalar giving a measure of the di�usion in the spatial
direction −→g i. It is identical to the isotropic di�usion scalar d that we discussed
previously except that it is measured in a spatial direction. −→g i is called a di�usion
gradient because it corresponds to an actual magnetic �eld gradient used in the
MRI sequence. Si is the signal returned by the scanner. The goal of di�usion
tensor MRI is to reconstruct the �eld of di�usion tensors D from the measures Si.
Once again, since D has six degrees of freedom, at least six DWIs are required.
Estimation is generally done by linearizing the di�usion equation 1.1 for all
di�usion gradients, and solving this system of equations in a least-squares sense
with algebraic methods. Once this estimation is done, one is able to represent
the white matter architecture (in case of brain DTI) via a process called tractography.

Figure 1.5: Slice of the tensor �eld estimated from DWI of Fig. 1.4
with classical techniques. We notice that the �eld looks rather noisy, and even
some parts of it are missing (bottom right corner of this slice) due to distort of the
acquisition.

Fiber reconstruction (or �ber tracking, or tractography), consists in building
a geometric representation of white matter �bers. The hypothesis is made that
di�usion tensors are aligned with the direction of oriented tissues like neural �bers
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in case of brain DTI (although this hypothesis is obviously wrong in case of crossing
�bers). Literature is abundant about �ber tracking and algorithms can be divided
into two categories: streamline tracking and probabilistic tracking. Schematically,
in streamline approaches, the �eld of principal direction of di�usion (i.e., the
vector �eld composed with the principal tensors eigenvectors) is integrated from
seed points and paths are then considered as �bers. The probabilistic approaches
simulates many times the di�usion phenomenon from a seed point and consider the
most likely path as a �ber.

In this thesis, we choose to place ourself in the context of clinical DT-MRI.
The main reason is that in France, only a few MRI scanners are dedicated to
research and most of the DTI acquisitions we get come from a clinical environment.
Moreover, medical experts are really looking forward this relatively new technique
as this is the unique in vivo modality allowing to study the integrity of white matter
�bers. There are some constraints inherent to clinical acquisitions that must be
taken into account though. First, the scanning time is rather short: 15 minutes
maximum per patient in general. During this period of time, imaging modalities
related to the pathology of the patient have to be acquired (T1, T2, proton density,
etc.). And if there is some extra time, DWI sequence can be launched. This leaves
most of the time 5 to 6 minutes for the di�usion sequences. This has a direct
consequence on the acquisition: only very few gradients can be obtained with
moderate to low signal-to-noise ratios. For instance, on a Siemens Sonata 1.5T
scanner, acquisitions are limited to 25 gradient directions with 1 repeated scan.
Di�usion tensor is then the best model for this type of acquisition, and switching
to more elaborate models would be hazardous. Finally, like any MR acquisition,
di�usion tensor MRI is subject to noise. This noise can seriously a�ect the quality
of the di�usion tensors (Fig. 1.5), and consequently the result of tractography
(Fig. 1.6): the estimation step can produce matrices that are not tensors (basically,
nothing ensures the result to be positive de�nite, and noise, image distortions,
or other acquisition-related artefacts - movement, etc. - a�ect the quality of the
tensors), and noise puts uncertainty on tensors directions and magnitude.

In conclusion, clinical DTI faces a certain number of problems: acquisitions have
only few encoding gradients (about 25) with relatively low SNRs. But the clinicians
still need to be able to perform �ber reconstruction on their patient's images. How
can we optimally exploit DTI typical of clinical acquisitions and give to clinicians
the possibility to do �ber reconstruction?

1.2.2 Computational Anatomy: A Promising Emerging Field

The goal of computational anatomy is to develop algorithms to model and analyze
the biological shape of tissues and organs. The goal is not only to estimate
representative organ anatomies across species, populations, diseases, aging, ages,
etc. but also to model the organ development across time (growth) and to establish
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Figure 1.6: Example of �ber tractography of the clinical dataset of Fig.
1.4. Fibers do not look realistic, due to noise and the rather low resolution of the
images, specially in the Z direction (dimensions: 128× 128× 30, spatial resolution:
1.8×1.8×4mm). Denoising and spatial interpolation become necessary in this case.

their variability. Another goal is to correlate this variability information with
other functional, genetic or structural information (e.g., �ber bundles as obtained
in di�usion tensor MRI). Computational anatomy is at the interface of geometry,
statistics, and image analysis.

Figure 1.7: Examples of brain anatomical landmarks that computational
anatomy needs. Left: Sulcal ribbons of 50 subjects were automatically extracted
with BrainVisa (Courtesy of J.-F. Mangin, Neurospin, CEA) and overlapped in the
same coordinate system. Right: Manual tracing of sulcal lines in a subject (the
sulcal line is de�ned as the �bottom� line of the sulcal ribbon), courtesy of Dr. Paul
M. Thompson.
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Finding a point-by-point correspondence between organs of di�erent subjects is
a di�cult task because of inter-subject variability. When one looks very roughly at
two brains, we conclude that they look alike, e.g., they all have folds, a cerebellum
and ventricles. But when we look closer, we begin to realize that many details
di�erentiate them. For instance, the folding patterns are quite di�erent from one
individual to another: some major sulci appear in both (like the central sulcus),
but others only appear in some individuals. Even common sulci and gyri vary
drastically in shape among subjects. This raises the need for adapted physical
models relating the anatomy of di�erent subjects, in order to learn the geometrical
relationship by statistical analysis. The general method is to identify anatomically
representative geometric features (points, lines, surfaces, etc. - see Fig. 1.7) and
to model their statistical distribution among a population (Fig. 1.8). This can
be done, for instance, by computing the mean shape and the covariance structure
after a group-wise alignment. In the case of the brain, one can rely on a wide range
of anatomical and functional landmarks including AC-PC [Talairach 1988], curves
(crest lines, sulcal lines) [Mangin 2004b, Le Goualher 1999, Le Goualher 1997], sur-
faces like sulcal ribbons [Cachia 2003, Rivière 2002], �ber bundles [Corouge 2006],
or images when seen as 3D functions [Arsigny 2006a, Glaunès 2005, Vaillant 2005].
There is some evidence that variations of these entities among individuals is
anisotropic. It means that the variability is depending on the spatial direction,
and a simple scalar (typically the variance) cannot characterize such anisotropic
variability. A parallel can be made with di�usion tensor MRI where the di�usion
coe�cient was replaced by a di�usion tensor: here we replace the variance by the
covariance matrix. In this case, the covariance matrix characterizes the anisotropy
of the variability taken at each individual position of the mean shape representation.
We call this matrix a variability tensor by analogy to the di�usion tensor.

Common problems as with di�usion tensors arise: how can we manipulate
these tensors? For instance, we may need to perform geometric operations, like
interpolation or extrapolation, operations that are well-known for scalar images.
Once again, is it possible to compute with tensors as we do with simple scalars?
This is the question we investigate in the next section.

1.2.3 Limitations of Euclidean Calculus on Tensors

We call Euclidean calculus on tensors the fact of acting on the tensor coe�cients
directly. One can write a 3× 3 tensor as:

D =

 dxx dxy dxz

dxy dyy dyz

dxz dyz dzz


Euclidean calculus consists in processing directly the tensor coe�cients
(dxx, dxy, dxz, dyy, dyz, dzz).
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Figure 1.8: Mapping brain variability in human populations. This map dis-
plays the magnitude and principal directions of anatomical variability in the brain,
based on a group of 40 normal subjects scanned with MRI. Pink colors indicate
brain regions with large anatomical variability across subjects, blue colors low vari-
ability. The ellipsoidal glyphs are elongated along directions in which variation is
greatest. These maps help distinguish pathological changes from normal variations.
Images courtesy of Paul M. Thompson, Andrew Lee, Kiralee Hayashi, Agatha Lee,
and Arthur Toga (LONI - UCLA School of Medicine).

To better understand how Euclidean calculus works, and what is actually going
on, let us look at the tensor space. Tensors are symmetric matrices with a special
condition on their eigenvalues. Thus, they live in a sub-space of the vector space of
symmetric matrices Symn. We call the tensor space Sym+∗

n , with a '+∗' representing
the positive de�nite constraint. It is also denoted sometimes SPD (for Symmetric
Positive De�nite). For simplicity reasons, let us look at the space Sym+∗

2 of 2 × 2
tensors. It is embedded in the space of 2 × 2 symmetric matrices Sym2 which is
actually isomorphic to R3 (a n × n symmetric matrix has n(n + 1)/2 degrees of
freedom). A 2× 2 tensor has its two eigenvalues positive. Thus, the determinant of
such tensor is positive:

D =
(
x y

y z

)
∈ Sym+∗

2 =⇒ det(D) = x z − y2 > 0

So this tensor space is entirely determined by this polynomial equation: xz−y2 > 0,
and its boundaries are given by: xz−y2 = 0. Let us look at the function f(x, y, z) =
x z − y2. This is a quadric form that can be written:

f(x, y, z) =
[
x y z

]
Q

 x

y

z

 with Q =

 0 0 0.5
0 −0.5 0
−1 0 0
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The matrix Q can be decomposed into eigen elements to express the function f in
a normalized form:

Q = PV P> with P =

 0
√

2/2
√

2/2
−1 0 0
0 −

√
2/2

√
2/2

 , V =

 −1 0 0
0 −0.5 0
0 0 0.5


Using the following change of coordinate: [x′, y′, z′]> = P [x, y, z]>, we obtain a
normalized form for f :

f(x′, y′, z′) = −x′2 − 0.5 y′2 + 0.5 z′2

Solving f(x′, y′, z′) = 0 gives the following equation for the tensor space surface (in
the coordinate system de�ned by P ):

x′2 +
y′2

2
− z′2

2
= 0,

which is the equation of a cone with two halves joined at the apex.
This cone delimits the space of symmetric matrices with a null determinant (Fig.
1.9). Inside this cone, matrices have a positive determinant, which is given either
by eigenvalues all positive or all negative. To determine which half corresponds to
actual positive tensors, one can write the following. A tensor can be written in
terms of eigenvectors/eigenvalues:

D = λ1
−→u 1

−→u >1 + λ2
−→u 2

−→u >2 =
(
x y

y z

)
By writing −→u 1 = [x1, y1] and −→u 2 = [x2, y2], we obtain x = λ1x

2
1+λ2x

2
2. x is then thesum of positive numbers (eigenvalues are positive), which restrict the tensor space

to the positive quadrant of R3. This is why the tensor space is sometimes called the
positive cone of symmetric matrices.
So the tensor space is a cone. It is a convex space, which means that any convex
combination of tensors is still a tensor. A convex combination is given by:

α1 D1 + α2 D2 + . . .+ αn Dn with αi ≥ 0 ∀i and
N∑

i=1

αi = 1

Examples of convex combinations include the (weighted) mean value and linear
interpolation. However, any non-convex combination of tensors is not ensured to be
a tensor. In general, if D1 and D2 are two tensors:

D1 −D2 /∈ Sym+∗
n .

With the same spirit, the multiplication by a negative scalar leads out of the tensor
space:

∀α ≤ 0, α.D /∈ Sym+∗
n .
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Figure 1.9: The space of 2 × 2 tensors is the half of this cone located in
the positive quadrant of R3. The other half corresponds to matrices with all
eigenvalues negative. Matrices on the surface have at least one null eigenvalue.

This lack of �vectorial� structure of the tensor space is problematic for many ap-
plications. For instance, extension of more elaborate vector-processing algorithms
like image restoration using partial di�erential equations (PDEs) to tensors is not
possible. It involves being able to do non-convex operations, which is not possible
with Euclidean calculus. We must avoid at any cost to go through the boundaries
of the tensor space. Is there any mathematical framework which allows to perform
any operation on tensors while ensuring the result to be a tensor? If yes, what are
the theoretical and practical properties of such framework(s)?

In summary, the three main themes that we investigate throughout this thesis
are: tensor processing, di�usion MRI typical of clinical acquisition, and computa-
tional anatomy of the brain. Tensor processing is developed �rst, as this is the
central tool that we use for the two ongoing applications. These two applications
share a common ultimate goal, the modeling of the human brain, with a di�erent
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aspect for each. Below, we give an overview of the manuscript organization.

1.3 Manuscript Organization
This manuscript is organized in three parts re�ecting the three main contributions
of this thesis:

• The �rst part is a theoretical investigation on the alternative to Euclidean
calculus to process tensors. In particular, we propose two original Rie-
mannian frameworks for tensor computing which completely overcome the
limitations of the Euclidean calculus. We demonstrate the feasibility of such
frameworks with many examples on synthetic and real tensor data as those
obtained in DT-MRI. This work has been published in three journal papers
[Arsigny 2006b, Arsigny 2006c, Pennec 2006] (as well as two INRIA research
reports [Pennec 2004b, Arsigny 2005b]), presented in one peer-reviewed
conference [Arsigny 2005a], and one workshop [Fillard 2005a].

• The second part is a solution to a concrete problem: how can we optimally
use and exploit di�usion tensor MRI typical from a clinical acquisition?
Using such imaging modality is subject to special constraints: short scanning
time leads to a limited number of acquisitions, and relatively old MRI
scanners produces images with moderate and low signal-to-noise ratios. These
constraints must be taken into account for a practical use of such modality
in clinics. Here, we present speci�c methods for estimation and smoothing
of DT-MRI of this type. We extensively use the frameworks developed
in the �rst part. Finally, we show how the developed methodologies are
actually integrated into a functional software called MedINRIA for an optimal
transfer of the methods to end-users (medical experts). This work has been
published in [Fillard 2007b, Ducreux 2007] (journal papers), [Fillard 2006a]
(peer-reviewed conference), [Toussaint 2007b] (peer-reviewed workshop), and
[Fillard 2005b] (INRIA research report).

• The third part is dedicated to the investigation of the modeling of brain
anatomy, and in particular the cortex. We start by creating average
models of certain sulcal lines that appear in all subjects by developing an
original methods for curve matchings. Second, we model the individual
variability of each sulcal positions by a variability tensor. We show how
to extrapolate tensors that may be sparsely distributed to obtain a dense
�eld, once again by using the frameworks developed in the �rst part. Third,
we introduce new tools for measuring the anatomical correlations between
any pairs of sulcal positions thanks to the total covariance matrix, a 6 × 6
tensor that is still compatible with our frameworks. We derive statistical
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tests and end-up with promising new approaches for brain anatomy mod-
eling. Publications relating this work are the following: [Fillard 2007c]
(journal paper), [Fillard 2007a, Fillard 2005c] (conference papers), and
[Fillard 2007d, Fillard 2006b] (INRIA research reports).

Below, we give more details about each part and a short description of each chapter.
Part I: A Riemannian Approach to Tensor Processing.

Chapter 3 is the core of the theoretical contribution of this thesis. We in-
troduce the notions of Riemannian geometry necessary to follow the development
that comes afterwards. We wanted to make this introduction as intuitive as possible
to allow any one, even not familiar with this type of geometry, to be able to follow
the rest of the chapter. Then, we propose two frameworks: the a�ne-invariant
Riemannian metric and the Log-Euclidean metrics. Properties of each framework
are analyzed and a comparison is made on their use in practice.
Chapter 4 is a demonstration of tensor processing using both frameworks.
We go through a large number of image processing algorithms: (weighted) mean,
multi-linear interpolation, Gaussian smoothing, anisotropic �ltering, �eld restora-
tion, all detailed with both metrics and compared to their Euclidean version. This
chapter is a toolbox for tensor processing and contains all numerical tools to a
practical implementation of the methods.
Chapter 5 concludes this part with a discussion on the choice of the met-
ric. In particular, we show that in some cases (the structure tensor for example),
the proposed frameworks are not adapted and fail. We left the reader with a
recommendation: we strongly encourage him to �gure out what type of properties
he desires as a result of tensor operations, and then make the correct choice for
the metric. This is summarized in this simple question: �Which metric for which
application�?
Part II: An Optimal Work�ow for Using DT-MRI in Clinical Ap-
plications.

Chapter 6 addresses the problem of di�usion tensor estimation and process-
ing typical of clinical application. We demonstrate that thanks to the use of the
proposed frameworks for tensor processing, and in particular the Log-Euclidean
metrics, one can estimate tensors with a better prior on MRI noise. We show that
MRI noise, which is Rician, induces a bias on the tensor estimates when the prior
on the noise is wrong. Log-Euclidean metrics are extensively used here to solve
this non-linear problem, and a comparison is made with two other noise models.
Finally, we apply this method to synthetic and clinical data and show quantitative
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improvements, as well a qualitatively better �ber reconstruction.
Chapter 7 describes the software MedINRIA. This project was started to
transfer the methods developed at the chapters 4 and 6 to the clinic. We tried
to meet the requirements of clinicians: they want a simple, ergonomic, reactive
and e�cient software. MedINRIA o�ers the possibility to process di�usion MRI,
from estimation to �ber reconstruction, with a simple click, and contains high
level algorithms, like Log-Euclidean tensor smoothing. This chapter describes the
software architecture along with the set of applications which composes it. We
show how MedINRIA has �nally become a more general platform for medical image
processing targetting the clinicians.
Chapter 8 is the accomplishment of the e�orts put in methods and soft-
ware development, as described in the two previous chapters. The context of the
work presented here is clinical. Thanks to the help of a radiologist, we investigate
the current and future indications of di�usion tensor MRI in spinal cord lesions.
A large panel of pathologies are analyzed and DT-MRI, as well as tractography,
appears to be more sensitive than classical T2 imaging for detecting certain spine
lesions.
This part is concluded in Chapter 9 with a discussion on the future work
and the future of di�usion tensors in the clinical world.
Part III: Statistical Analysis of the Human Brain Cortex Anatomy.

Chapter 10 introduces the notion of brain variability and some de�nitions
needed by the other chapters. We also discuss the type of data we need to
measure brain variability. In particular, we decide to rely on a set of sulcal
lines that appear commonly in brain anatomy. We argue that using these lower
dimensional landmarks helps recover inter-subject correspondences more easily than
higher dimensional structures like surfaces or volumes. Second, as the sulcal lines
are the locations of many functions, their study is of great interest to neuroscientists.
Chapter 11 describes, step by step, our strategy to build a second order
model of brain variability. This model aims at giving the individual variation of any
position of the cortex for a given population. We start by modeling each subject's
sulcal line as the deformation of an individual average line. Once we obtained the
mean lines, we extract along them variability tensors. Then, we show how to select
a subset of meaningful tensors, and how to extrapolate them to obtain a dense
�eld. This model is evaluated via two tests: the intra-sulcus recovery test (are we
able to recover the variability of a full sulcal line just with a few tensors?), and
the leave-one-out test (are we able to predict the variability of a missing line with
neighboring information?).
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Chapter 12 explores the potential correlations between any pairs of sulcal
positions. We use the total covariance matrix between two points, and derive from
it a correlation matrix. This type of covariance matrix is in fact a 6× 6 tensor that
�ts in our tensor-processing framework. Thus, we are able to extrapolate it and
obtain a dense map of correlations of one anatomical position to the rest of the
brain. Then, we study the potential correlations between speci�c sulcal positions
and the rest of the brain (namely three positions of the central and superior
temporal sulci, which lead us to analyze the correlations between any point and its
corresponding position in the opposite hemisphere. Very interesting new results are
shown and discussed.
This part is concluded in Chapter 13 with a discussion on the future work,
especially on how these statistical information could be incorporated back to the
registration as an a-priori.
Chapter 14 is the general conclusion section of the thesis. We summarize
the contributions, list the publications of the author, and discuss about the future
directions of this work. In particular, we focus on the need for validation of all
methodologies described here, and for a systematic transfer of new technologies
towards clinics.
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L'Homme est fasciné par le cerveau depuis des millénaires. Le rôle de cet
organe mystérieux a cependant souvent été mal compris. En Égypte, vers la �n du
Moyen Empire (deuxième siècle avant JC), lors de la momi�cation, le cerveau était
généralement ôté du corps par le nez, car on pensait que le siège de l'intelligence
résidait dans le c÷ur. Selon Hérodote, un historien grecque (souvent considéré
comme le premier historien de l'humanité), pendant les premières étapes de la
momi�cation : �La pratique la plus parfaite consiste à extraire le plus possible de
cerveau avec un crochet en fer, et tout ce que le crochet ne peut pas atteindre est
dissous à l'aide de substances�. Bien évidemment, pendant les cinq mille années
qui suivirent cette vue a été renversée et le cerveau a désormais le rôle qu'on lui
connait. Cette première vision est néammoins restée dans le langage courant,
notamment par le biais de l'expression : �Apprendre quelque chose par c÷ur�.

Pendant le premier millénaire avant JC, les anciens grecques ont développé
des points de vue di�érents sur la fonction du cerveau. Il est dit que c'est le
Pythagorien Alcmaeon de Croton qui a été le premier à considérer que la pensée
est localisée dans le cerveau. De manière anecdotique, pendant le 4me siècle avant
JC, Aristote pensait que le cerveau était un mécanisme de refroidissement du sang.
Son argument était que les hommes sont plus raisonnés que les animaux parce
qu'ils ont un plus grand cerveau pour refroidir leur �sang chaud�.

Au cours des années 1800 eu lieu un débat entre scienti�ques pour savoir si les
régions du cerveau correspondent à des fonctions spéci�ques, ou bien si le cerveau
fonctionne comme un tout (théorie du �aggregate �eld�). Les travaux de Paul Broca,
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Karl Wernicke et Korbinian Brodmann ont �nalement contribué à prouver que les
aires du cerveaux ont des fonctions bien spéci�ques. Aujourd'hui, les neurosciences
modernes sont en pleine expansion grâce à la disponibilité d'ordinateurs capables
de traiter des informations d'une complexité sans précédent. Le dévelopement
rapide de techniques d'imagerie comme l'imagerie par résonance magnétique (IRM),
l'IRM fonctionelle (IRMf) et l'IRM du tenseur de di�usion (IRM-TD) permet aux
scienti�ques d'étudier le cerveau in-vivo d'une manière impossible qui était pour
leurs prédécesseurs.

Jusqu'à présent, les connaissances sur le cerveau sont limitées par rapport à
d'autres organes comme le c÷ur. Les erreurs qu'ont faits nos prédécesseurs parais-
sent sans doute risibles, mais sommes-nous sûrs que nos interprétations soient cor-
rectes? La majeure partie de nos connaissances sur l'anatomie du cerveau est un
reccueil d'observations faites par des neuroanatomistes. Le cerveau tel que nous
le connaissons est identique à la description qui en est faite dans le livre �Gray's
anatomy� sorti en...1858 [Gray 1958]! Aujourd'hui, grâce à l'émergence de l'imagerie
médicale pendant les 20 dernières années, un nouvel espoir de comprendre les mé-
canismes du cerveau est né. On peut l'observer in-vivo à des résolutions très �nes
avec les scanners modernes. On peut même l'observer en train de �fonctionner� avec
l'IRMf ou l'imagerie PET. Il est temps de montrer à nos prédécesseurs que nous
sommes capables de briser les secrets du cerveau. Ou bien nos successeurs riront à
leur tour de nos erreurs. Seul l'avenir le dira.

2.1 La modélisation du cerveau humain : un challenge
en neurosciences

Comprendre les mécanismes du cerveau, d'un point de vue informatique, est
souvent synonyme de modélisation. Cependant, la complexité est telle qu'une
modélisation algorithmique directe est quasi-impossible. En e�et, le cerveau
n'est pas un arrangement statique de circuits, mais plutôt un réseau de neurones
vastement inter-connectés qui changent en permanence leur connectivité et leur
sensibilité. Des travaux récents à la fois en neuroscience et en intelligence arti�cielle
ont tenté de modéliser le cerveau en utilisant les outils mathématiques de la théorie
du chaos et des systèmes dynamiques. Des recherches actuelles se sont également
concentrées sur la création d'une structure neuronale du cerveau avec pour but
la production de pensées humaines et d'intelligence arti�cielle, mais sans grand
succès.

La construction de modèles algorithmiques du cerveau est le grand challenge
des neurosciences. Ces modèles sont la clé pour une meilleure compréhension du
fonctionnement du cerveau, et plus essentiellement, pourquoi certains cerveaux
ne fonctionnent pas comme ils devraient. Notre connaissance est très minime
sur de nombreuses pathologies comme Parkinson, Alzheimer, la schizophrénie,
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Figure 2.1: Images du cerveau empruntées au livre �Gray's Anatomy�
(1858).

l'autisme, la sclérose en plaques, ou même certains cancers. Avoir une meilleure
connaissance du fonctionnement cérébral normal nous aiderait à détecter et à
traiter le plus tôt possible ces pathologies. Nos sociétés allant en vieillissant, les
maladies neurologiques vont devenir de plus en plus fréquentes. L'impact de ces
modèles, s'ils aboutissent à des traitements e�ectifs, serait énorme.

Comprendre le cerveau signi�e également comprendre les changements du
cerveau avec le temps, de la naissance à l'âge adulte, et de l'âge adulte au troisième
âge. Une meilleure connaissance du processus normal de maturation cérébrale
peut aider à détecter tôt et traiter des pathologies lourdes comme l'autisme
ou la schizophrénie, qui apparaissent très souvent pendant la petite enfance ou
l'adolescence. Un autre sujet très intéressant concerne la neuroplasticité, qui est la
capacité qu'a le cerveau à changer son organisation (ce qui inclut la localisation des
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zones fonctionnelles) avec l'expérience. Ce processus reste toujours très mystérieux
et contient potentiellement la clé de la régénération fonctionnelle. On pourrait
imaginer donner des médicaments à un patient sou�rant d'amnésie, ou bien
temporairement d'hémiplégie (sous-entendu que les nerfs sont toujours intacts),
pour accélérer le processus de recouvrement de la mémoire et des fonctions motrices.

Il y a di�érents niveaux de modélisation qu'il est nécessaire de réaliser, et nous
discuterons trois d'entre eux. Premièrement, il faut modéliser les fonctions, i.e.,
identi�er avec précision quelles aires du cerveau sont responsables de quelles tâches
fonctionnelles (comme l'aire de la parole). On notera que c'est une description très
simpli�ée du problème, puisque certaines fonctions plus complexes sont vraisem-
blablement distribuées entre plusieurs régions cérébrales (et non juste une). De plus,
il existe une variabilité inter-individus sur la localisation de ces fonctions, ce qui rend
le problème encore plus complexe. Néammoins, cette information fonctionelle est
accessible en IRMf, qui est schématiquement capable de mesurer la réponse neu-
ronale à un stimulus. Deuxièmement, nous devons modéliser l'anatomie, i.e., iden-
ti�er (contourer) et modéliser la forme des structures du cerveau. La modélisation
anatomique (et fonctionnelle) doit être réalisée sur une population de contrôles nor-
maux pour caractériser ce qu'est la �normalité�. L'IRM structurelle (ou anatomique)
est le principal outil pour un tel niveau de modélisation. Finalement, il existe un
troisième niveau de modélisation : la relation entre anatomie et fonction. Nous
devons comprendre comment la fonction est liée à la structure et la forme. Cette
modélisation fait le lien entre les deux premiers niveaux, et pourrait aider à com-
prendre comment les gènes, la neuroplasticité guidée par l'expérience, etc. a�ectent
l'organisation du cerveau. L'émergence de l'IRM de di�usion, une modalité qui per-
met la reconstruction des faisceaux de �bres de la substance blanche, est un outil
très prometteur pour mesurer de telles relations de dépendance.

2.2 Problèmes abordés dans cette thèse
La section précédente nous a permis d'introduire le thème principal de cette thèse
qui est la modélisation du cerveau humain. Bien sûr, c'est un problème très
complexe que l'on ne résolvera pas entièrement ici, et qui demande encore de
nombreuses années de recherche collaborative entre di�érents domaines (médecine,
neurosciences, physique, mathématiques et informatique) pour être résolu entière-
ment. Dans cette thèse, nous abordons deux aspects de ce problème : le traitement
des IRMs de di�usion et l'anatomie algorithmique du cerveau, les deux jouant un
rôle majeur dans le long trajet qui mène à une modélisation �ne du cerveau.

Tout d'abord, l'IRM de di�usion, comme nous l'avons dit précédemment, est un
outil prometteur pour étudier les relations entre fonctions et anatomie, car il donne
accès à l'architecture des �bres de la substance blanche. Cependant, cette technique
d'imagerie est relativement récente et pas assez mature pour être utilisée dans une
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modélisation très précise. En e�et, de nombreux problèmes inhérents à cette modal-
ité doivent être résolus en premier, et en particulier dans un contexte clinique. Nous
discutons ces limitations dans la section 2.2.1, et une première contribution de cette
thèse est d'apporter une réponse à ces problèmes.

Ensuite, l'anatomie algorithmique est un nouveau domaine prometteur qui cible
tout particulièrement l'étude d'un organe dans une population et dont le but est
de créer un modèle de variabilité de cet organe. Nous introduisons l'anatomie al-
gorithmique dans la section 2.2.2, et une seconde contribution de cette thèse est la
construction de tels modèles pour le cerveau.

Ces deux domaines, qui peuvent sembler complètement indépendants à priori,
ont quelque chose en commun : le tenseur. Les tenseurs sont des outils géométriques
servant à étudier des processus statistiques et sont plus complexes à manipuler que
de simples scalaires. Nous montrons dans les deux prochaines sections ce que sont les
tenseurs, et quels rôles ils jouent en IRM de di�usion et en anatomie algorighmique.
Dans la section 2.2.3, nous listons les limitations du calcul sur les tenseurs. Dévelop-
per une solution pour pallier à ces limitations est le thème d'une autre contribution
de cette thèse.

2.2.1 L'IRM du tenseur de di�usion : caractériser in-vivo les �bres
de la substance blanche

L'émergence récente de l'IRM de di�usion, et en particulier de l'IRM du tenseur
de di�usion [Basser 1994a], a été accueillie avec enthousiasme par la communauté
médicale. En e�et, l'IRM de di�usion est l'unique technique in-vivo qui renseigne
quant à l'anisotropie des tissus. En pratique, l'IRM de di�usion consiste à mesurer,
dans chaque direction de l'espace, la di�usion des molécules d'eau. Ce phénomène
est plus connu sous le nom de mouvement brownien et a été formalisé par Einstein en
1905 [Einstein 1956]. À un niveau mascroscopique, ce phénomène est perçu comme
une di�usion. Einstein a établi la relation entre le coe�cient de di�usion et le
déplacement des particules :

d =
1
2τ

〈
R>R

〉
,

où τ est le temps de di�usion, R est le vecteur déplacement (R = r− r0, r0 étant la
position initiale d'une particule et r la position �nale), et <> dénote la moyenne
sur toutes les particules. Le scalaire d est une mesure de la di�usion du milieu et
dépend du type de particules ainsi que des propriétés du milieu. Cependant, il
n'indique pas une di�usion potentiellement di�érente dans chacune des directions
de l'espace.

Certains milieux ont des propriétés de di�usion di�érentes. En particulier, les
�bres de la substance blanche du cerveau sont protégées par des gaines de myé-
lines qui �obligent� les molécules d'eau à bouger dans une direction tangentielle à
ces gaines plutôt que dans une direction perpendiculaire. En d'autres termes, les
molécules d'eau bougent d'avantage le long des �bres que dans une direction trans-
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verse. Dans ce cas, un simple scalaire n'est pas capable de caractériser la di�usion
d'un tel tissu dit anisotrope. On le remplace alors par la matrice de covariance D
du déplacement des particules :

D =
1
6τ

〈
RR>

〉
.

D est une matrice 3×3, symétrique et dé�nie positive. Le terme tenseur de di�usion
a été utilisé pour la première fois par Stejskal et al. [Stejskal 1965] et provient du
fait qu'il est formé du produit tensoriel du vecteur déplacement R avec lui-même.
En notations mathématiques rigoureuses, un scalaire est un tenseur d'ordre 0, un
vecteur est un tenseur d'ordre 1, et une matrice est un tenseur d'ordre 2 (sans
restriction aucune sur sa symétrie et sur sa positivité). Ainsi, la dénomination
tenseur est ambigüe car toute matrice est un tenseur d'ordre 2! Cependant, le
terme a été adopté par la communauté et est utilisé comme tel depuis des années.
A partir de maintenant, nous utiliserons le terme tenseur comme synonyme de
matrice symétrique et dé�nie positive.

Figure 2.2: Illustrations de �bres de la substance blanche du cerveau.
Gauche : Image de dissection d'un cerveau révélant certains des principaux fais-
ceaux de �bres (courtoisie du Dr. Lennart Heimer, université de Virginie, USA).
Droite : Image empruntée au livre Gray's Anatomy [Gray 1958].

Une matrice symétrique et dé�nie positive est une matrice dont les valeurs pro-
pres sont toutes plus grandes que 0 strictement. Prenons une décomposition en
éléments propres d'un tenseur D : D = U V U>. U est la matrice des vecteurs
propres (c'est une matrice orthogonale, i.e., U−1 = U>) et V est la matrice des
valeurs propres (c'est une matrice diagonale) :

U =

 | | |
−→u 1

−→u 2
−→u 3

| | |

 et V =

 λ1 0 0
0 λ2 0
0 0 λ3


On dit que la valeur propre λi est associée au vecteur propre −→u i pout tout i.
De plus, lorsqu'on travaille avec des tenseurs de di�usion, on trie généralement
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les valeurs propres par ordre décroissant, i.e., λi est plus grand que λi+1 ∀i. Par
conséquent, λ1 est la plus grande valeur propre, et on appelle le vecteur propre
associé −→u 1 le vecteur propre principal (également appelé direction de di�usion
principale - DDP - dans le cas des tenseurs de di�usion). Bien sûr, tout ceci est
valable pour tout tenseur n× n, pas seulement 3× 3.

On utilise généralement un éllipsoïde pour représenter un tenseur (�gure 2.3).
En e�et, les tenseurs ne sont rien d'autre que des formes quadriques. Une forme
quadrique dont les valeurs propres sont toutes positives est un éllipsoïde. En
réalité, la dé�nition rigoureuse est qu'un éllipsoïde est une forme quadrique dont les
valeurs propres sont toutes du même signe, positif ou négatif. Mais puisque nous
nous intéressons au phénomène de di�usion, les valeurs propres sont homogènes à
une distance carré par seconde, si bien que les valeurs propres négatives ne sont pas
physiquement possibles. La forme et l'orientation de l'ellipsoïde sont déterminées
par les éléments propres du tenseur : l'orientation de ses axes est donnée par les
vecteurs propres, et l'amplitude le long de chaque axe est donnée par les valeurs
propres correspondantes.

Figure 2.3: Un tenseur représenté par un ellipsoïde. Les directions des axes
sont données par les vecteurs propres du tenseur. La longueur des axes est donnée
par les valeurs propres.

Il convient d'insister sur le fait que le tenseur de di�usion est un modèle : il
s'agit de la matrice de covariance du déplacement des particules. Ce n'est pas
l'unique moyen de modéliser la di�usion. Premièrement, ce modèle assume une
distribution gaussienne des déplacements des particules. La validité d'une telle
hypothèse peut être remise en question, notamment dans des régions avec des
croisements de �bres : dans ce cas, deux distributions gaussiennes se mélangent
et rien n'assure le résultat d'être toujours gaussien. Un modèle plus élaboré serait
nécessaire dans une telle situation et la littérature abonde d'alternatives au modèle
tenseur : le modèle bi-tenseur [Alexander 2001a, Tuch 2002], le modèle CHARMED
[Assaf 2005], l'imagerie Q-Ball [Tuch 2004, Descoteaux 2007b], la fonction de
densité d'orientations des �bres [Tournier 2004a], ou même des tenseurs d'ordre
supérieur [Barmpoutis 2007b]. Cependant, ces techniques nécessitent l'acquisition
d'un très grand nombre d'IRMs (de plusieurs dizaines à plusieurs centaines). De



26 Chapter 2. Introduction (français)

plus, si l'on veut une estimation robuste des paramètres de ces modèles, on doit très
souvent répéter les acquisitions ou acquérir plus d'images que le nombre nécessaire.
Cela peut être critique lorsque l'on travaille, par exemple, dans un environement
clinique où le temps dácquisition doit être le plus court possible (en moyenne 15
minutes par patient). Nous apporterons une solution à ce problème plus tard
dans ce manuscrit. Avec un modèle tenseur simple, six images seulement sont
nécessaires (en fait sept puisqu'une image de référence est également indispensable)
car le tenseur a six degrés de liberté et il y a donc six paramètres à estimer. Il est
alors plus raisonnable d'augmenter la robustesse de l'estimation (i.e., multiplier les
acquisitions) dans ce cas. Finalement, nous pensons que le modèle tenseur a encore
beaucoup à o�rir.

Figure 2.4: Coupes d'une acquisition IRM-TD typique d'un environnement
clinique. (Courtoisie du Dr. Denis Ducreux, hôpital Bicêtre, Paris.) Dimensions :
128×128×30, resolution spatiale : 1.8×1.8×4mm. Le jeu de données est composé
d'une image de référence (la plus à gauche) et de 6 images pondérées en di�usion
(la séquence de Basser [Basser 1994a] est utilisée).

En pratique, le tenseur de di�usion D est relié à l'image pondérée en di�usion
par l'équation de di�usion de Stejskal-Tanner :

Si = S0 exp
(
−b−→g >i D−→g i

)
, (2.1)

où Si est l'image pondérée en di�usion (IPD), S0 est l'image de référence (i.e.
une image sans gradient de di�usion, typiquement une image pondérée T2), −→g i

le gradient de di�usion, et b la valeur b exprimée en s.mm−2 qui dépend des
paramètres d'acquisition (elle est généralement constante pour toute les IPD). Pour
une description plus complète de l'acquistion d'IRM de di�usion, nous renvoyons
le lecteur vers [Poupon 1999]. Schématiquement, le coe�cient −→g >i D−→g i est un
scalaire donnant une mesure de la di�usion dans la direction spatiale −→g i. Il est
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identique au coe�cient de di�usion isotrope d que nous avons décrit précédemment
avec l'exception qu'il est mesuré dans une direction spatiale donnée. −→g i est appelé
un gradient de di�usion car il correspond réellement à un gradient de champ
magnétique utilisé dans la séquence IRM. Si est le signal produit par le scanner.
Le but de l'IRM du tenseur de di�usion est de reconstruire le champ de tenseurs
de di�usion D à partir des mesures Si. Une fois encore, puisque D a six degrés de
liberté, au moins six images pondérées en di�usion sont nécessaires. L'estimation
est réalisée généralement en linéarisant l'équation de di�usion 2.1 pour chacun des
gradients de di�usion, et en résolvant ce système aux moindres carrés grâce à des
méthodes algébriques. Une fois l'estimation e�ectuée, il est possible de représenter
l'architecture de la substance blanche (dans le cas d'ITD du cerveau) par un
processus appelé tractographie.

Figure 2.5: Coupe d'un champ de tenseurs estimé à partir des IRM-TD
de la �gure 2.4 avec une technique classique. On remarque que le champ
apparait plutôt bruité, et que des éléments sont manquants (coin inférieur droit de
la coupe) à cause des distorsions et du bruit d'acquisition.

La reconstruction de �bres (ou suivi de �bres, ou encore tractographie)
consiste à construire une représentation géométrique des �bres de la substance
blanche. On fait l'hypothèse que les tenseurs de di�usion sont alignés avec la
direction des tissus orientés sous-jacents comme les �bres nerveuses dans le case
de l'ITD du cerveau (bien que cette hypothèse soit questionable dans le cas de
croisements de �bres). La littérature est abondante sur le suivi de �bres et on
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peut classer les algorithmes en deux catégories : les algorithmes intégratifs et
probabilistes. Schématiquement, dans les approches intégratives, le champ composé
des directions de di�usion principale (i.e. le champ de vecteurs composé des
vecteurs propres principaux des tenseurs) est intégré à partir de points sources
et les chemins obtenus sont alors considérés comme des �bres. Les approches
probabilistes simulent quant-à-elles de nombreuses fois le phénomène de di�usion
à partir d'un point source et considèrent le chemin le plus probable comme une �bre.

Dans cette thèse, nous avons choisi de nous placer dans le contexte de l'IRM
de di�usion clinique. La principale raison est qu'en France, très peu de scanners
sont dédiés à la recherche et que la plupart des acquisitions ITD que nous obtenons
proviennent d'un environnement clinique. De plus, les experts médicaux sont très
intéressés par cette technique relativement récente car c'est la seule qui permette
d'étudier in-vivo l'intégrité des �bres de la substance blanche. Il existe néammoins
des contraintes inhérentes aux acquisitions cliniques qui doivent être prises en
compte. Premièrement, le temps d'acquisition est plutôt court : 15 minutes
maximum par partient en général. Pendant ce laps de temps, il est nécessaire
d'acquérir les modalités d'image liées à la pathologie du patient (T1, T2, densité de
protons, etc.). Et s'il reste du temps, la séquence d'IRM-TD peut être lancée. Cela
laisse la plupart du temps entre 5 à 6 minutes pour les séquences de di�usion. La
conséquence sur l'acquisition est directe : seul un faible nombre de gradients peut
être acquis avec un rapport signal-sur-bruit moyen voir faible. Par exemple, sur un
scanner Siemens Sonata à 1.5T, les acquisitions sont limitées à 25 gradients de dif-
fusion avec une seule répétition. Le tenseur de di�usion est alors le meilleur modèle
pour ce type d'acquisition, et passer à des modèles plus élaborés serait hasardeux.
Finalement, comme toute acquisition d'image par résonance magnétique, l'IRM de
di�usion est sujette au bruit d'acquistion. Ce bruit peut sérieusement a�ecter la
qualité des tenseurs de di�usion (�gure 2.5), et par conséquent le résultat de la
tractographie (�gure 2.6) : l'étape d'estimation peut produire des matrices qui ne
sont pas des tenseurs (rien n'assure le résultat d'être dé�ni positif, et le bruit, les
distorsions de l'image, ou tout autre artefact lié à l'acquisition - mouvement, etc. -
a�ecte la qualité des tenseurs), et le bruit ajoute une incertitude sur les directions
et l'amplitude des tenseurs.

En conclusion, l'ITD clinique doit faire face à un certain nombre de problèmes
: acquisitions avec un faible nombre de gradients (environ 25) et un rapport signal-
sur-bruit relativement faible. Néammoins les cliniciens doivent être en mesure de
reconstruire les �bres à partir des images d'un patient. Comment pourrions-nous
exploiter de manière optimale les ITD typiques d'acquisitions cliniques et donner
aux cliniciens la possibilité de reconstruire ces �bres?
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Figure 2.6: Exemple de tractographie des données cliniques de la �gure
2.4. Les �bres ne sont pas réalistes à cause du bruit et de la résolution assez faible
des images, en particulier dans la direction Z (dimensions : 128×128×30, résolution
spatiale : 1.8 × 1.8 × 4mm). Le débruitage et l'interpolation spatiale deviennent
nécessaires dans ce cas.

2.2.2 L'anatomie algorithmique : un domaine émergent promet-
teur

Le but de l'anatomie algorithmique est de développer des algorithmes pour
modéliser et analyser les formes biologiques des tissus et des organes. Le but est
non seulement d'estimer l'anatomie représentative d'un organe selon l'espèce, la
population, la maladie, l'âge, etc. mais aussi de modéliser le développement de
l'organe avec le temps (croissance) et d'établir sa variabilité. Un autre but est
de corréler cette information de variabilité avec d'autres informations, qu'elles
soient fonctionnelles, génétiques ou structurelles (par exemple les faisceaux de
�bres obtenus en IRM du tenseur de di�usion). L'anatomie algorithmique est au
croisement de la géométrie, des statistiques et de l'analyse d'images.

Trouver les correspondances point-à-point entre les organes de di�érents sujets
est une tâche di�cile du fait de la variabilité inter-individuelle. Lorsqu'on compare
grossièrement deux cerveaux, on conclut qu'ils se ressemblent, i.e., qu'ils possèdent
des replis corticaux, un cervelet et des ventricules par exemple. Mais si on s'attache
à les comparer avec précision, on réalise que de nombreux détails les séparent.
Par exemple, les schémas des replis sont très di�érents d'un individu à l'autre
: des sillons majeurs apparaissent chez chacun (comme le sillon central), mais
d'autres n'apparaissent que chez certains individus. Même des sillons et gyris
communs ont une forme qui peut varier de manière drastique entre individus. Cela
souligne le besoin de modèles physiques adaptés pour relier l'anatomie de di�érents
sujets entre elles, a�n d'apprendre les relations géométriques par des analyses
statistiques. La méthode générale est de d'identi�er des repères géométriques



30 Chapter 2. Introduction (français)

Figure 2.7: Exemples de repères anatomiques utilisés en anatomie algo-
rithmique. Gauche : Les rubans corticaux de 50 sujets ont été extraits automa-
tiquement avec le logiciel BrainVisa (courtoisie de J.-F. Mangin, Neurospin, CEA)
et superposés dans le même système de coordonnées. Droite : Tracés manuels de
lignes sulcales chez un sujet (la ligne sulcale est dé�nie comme étant la ligne de
�fond� du ruban cortical), courtoisie du Dr. Paul M. Thompson.

qui sont représentatifs de l'anatomie (points, lignes, surfaces, etc. - un exemple
est donné à la �gure 2.7) et de modéliser leur distribution statistique dans une
population (�gure 2.8). Cela peut être fait, par exemple, en calculant la forme
moyenne et la structure de covariance après un alignement de groupe. Dans le
cas du cerveau, on peut se reposer sur un large panel de repères anatomiques et
fonctionels comprenant l'AC-PC (points) [Talairach 1988], les courbes (lignes de
crêtes, lignes sulcales) [Mangin 2004b, Le Goualher 1999, Le Goualher 1997], les
surfaces comme les rubans corticaux [Cachia 2003, Rivière 2002], les faisceaux
de �bres [Corouge 2006], ou les images lorsqu'elles sont considérées comme des
fonctions 3D [Arsigny 2006a, Glaunès 2005, Vaillant 2005].
Il existe des signes évidents que la variabilité inter-individuelle de ces repères
est anisotrope. Cela signi�e que la variabilité dépend de la direction spatiale,
et qu'un simple scalaire (typiquement la variance) ne peut pas caractériser une
telle anisotropie. On peut faire un parallèle avec l'IRM du tenseur de di�usion
où le coe�cient de di�usion est remplacé par un tenseur de di�usion : ici la
matrice de covariance remplace la variance. Dans ce cas, la matrice de covariance
caractérise l'anisotropie de la variabilité prise à chaque position individuelle de la
représentation moyenne d'une forme. Nous appelons cette matrice un tenseur de
variabilité par analogie avec le tenseur de di�usion.

Des problèmes communs aux tenseurs de di�usion se posent : comment peut-on
manipuler ces tenseurs? Par exemple, on peut être amené à e�ectuer des opérations
géométriques comme l'interpolation et l'extrapolation de tenseurs, opérations bien
connues pour des images scalaires. Une fois encore, est-il possible de travailler avec
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Figure 2.8: Cartographie de la variabilité anatomique chez l'Homme. Cette
carte montre l'amplitude et les directions principales de la variabilité anatomique
du cerveau en se basant sur un groupe de 40 IRMs de sujets normaux. La couleur
rose indique les régions du cerveau où la variabilité anatomique inter-sujets est la
plus grande, tandis que la couleur bleue indique les régions peu variables. Ces cartes
aident à distinguer des changements dus à des pathologies des variations normales.
Les images sont la courtoisie de Paul M. Thompson, Andrew Lee, Kiralee Hayashi,
Agatha Lee, and Arthur Toga (LONI - UCLA School of Medicine).

les tenseurs comme nous le faisons avec de simples scalaires? C'est la question que
nous nous posons dans la prochaine section.

2.2.3 Limitations du calcul euclidien sur les tenseurs

Nous appelons calcul euclidien sur les tenseurs le fait d'agir sur les coe�cients du
tenseur directement. On peut écrire un tenseur 3× 3 de la manière suivante :

D =

 dxx dxy dxz

dxy dyy dyz

dxz dyz dzz


Le calcul euclidien consiste à traiter directement les coe�cients du tenseur
(dxx, dxy, dxz, dyy, dyz, dzz).

A�n de mieux comprendre comment le calcul euclidien fonctionne, et ce qu'il
se passe réellement, intéressons-nous à l'espace des tenseurs. Les tenseurs sont des
matrices symétriques avec une condition spéciale sur leurs valeurs propres. Ainsi,
ils vivent dans un sous-espace de l'espace vectoriel des matrices symétriques Symn.
Nous dénotons l'espace des tenseurs Sym+∗

n , avec un '+∗' qui représente la contrainte
dé�nie positive. Il est également dénoté quelques fois SDP (pour Symétrique Dé�ni
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Positif). Pour des raisons de simplicité, nous nous reposons sur l'espace Sym+∗
2 des

tenseurs 2× 2. Il est inclus dans l'espace des matrices symétriques 2× 2 Sym2, qui
est en fait isomorphe à R3 (une matrice symétrique n × n a n(n + 1)/2 degrés de
liberté). Un tenseur 2 × 2 a ses deux valeurs propres strictement positives. Ainsi,
le déterminant d'un tel tenseur est strictement positif :

D =
(
x y

y z

)
∈ Sym+∗

2 =⇒ det(D) = x z − y2 > 0

Donc, l'espace des tenseurs est entièrement dé�ni par l'équation polynomiale : xz−
y2 > 0, et ses frontières sont données par : x z − y2 = 0. Regardons maintenant la
fonction f(x, y, z) = x z− y2. Il s'agit d'une forme quadrique qui peut s'écrire de la
manière suivante :

f(x, y, z) =
[
x y z

]
Q

 x

y

z

 avec Q =

 0 0 0.5
0 −0.5 0
−1 0 0


La matrice Q peut être décomposée en éléments simples pour exprimer la fonction
f sous une forme normale :

Q = PV P> with P =

 0
√

2/2
√

2/2
−1 0 0
0 −

√
2/2

√
2/2

 , V =

 −1 0 0
0 −0.5 0
0 0 0.5


En utilisant le changement de coordonnées suivant : [x′, y′, z′]> = P [x, y, z]>, nous
obtenons une forme normale pour f :

f(x′, y′, z′) = −x′2 − 0.5 y′2 + 0.5 z′2

Résoudre f(x′, y′, z′) = 0 donne l'équation suivante de la surface de l'espace des
tenseurs (dans le repère dé�ni par P ) :

x′2 +
y′2

2
− z′2

2
= 0,

qui est l'équation d'un cône à deux nappes.
Ce cône délimite l'espace des matrices symétriques dont le déterminant est nul (Fig.
2.9). A l'intérieur du cône, les matrices ont un déterminant positif, qui est obtenu
par des valeurs propres toutes positives ou toutes négatives. Pour déterminer quelle
partie correspond réellement aux tenseurs, on considère ce qui suit. Un tenseur peut
s'écrire en termes de ses vecteurs propres/valeurs propres :

D = λ1
−→u 1

−→u >1 + λ2
−→u 2

−→u >2 =
(
x y

y z

)
En écrivant −→u 1 = [x1, y1] et −→u 2 = [x2, y2], on obtient x = λ1x

2
1 + λ2x

2
2. x est alors

la somme de nombres positifs (les valeurs propres sont positives), ce qui restreint
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Figure 2.9: L'espace des tenseurs 2× 2 est le cône situé dans le quadrant
positif de R3. L'autre cône correspond aux matrices dont les valeurs propres sont
toutes négatives. La surface représente les matrices dont au moins une des valeurs
propres est nulle.

l'espace des tenseurs au quadrant positif de R3. C'est la raison pour laquelle l'espace
des tenseurs est parfois appelé le cône positif des matrices symétriques.
Donc l'espace des tenseurs est un cône. C'est un espace convexe, ce qui signi�e que
toute combinaison convexe de tenseurs est toujours un tenseur. Une combinaison
convexe est donnée par :

α1 D1 + α2 D2 + . . .+ αn Dn avec αi ≥ 0 ∀i et
N∑

i=1

αi = 1

Parmi les opérations convexes, nous noterons le calcul de moyenne (pondérée) et
l'interpolation linéaire. Cependant, toute opération non-convexe de tenseurs n'est
pas assurée de produire un tenseur. En général, si D1 et D2 sont deux tenseurs :

D1 −D2 /∈ Sym+∗
n .
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Dans le même esprit, la multiplication par un scalaire négatif conduit en dehors de
l'espace des tenseurs :

∀α ≤ 0, α.D /∈ Sym+∗
n .

Ce manque de structure �vectorielle� est problématique dans de nombreuses
applications. Par exemple, l'extension aux tenseurs d'algorithmes de traitement
vectoriel plus élaborés comme la restoration d'image en utilisant des équations aux
dérivées partielles (EDPs) n'est pas possible. Cela implique d'être capable de faire
des opérations non-convexes, ce qui est impossible avec le calcul euclidien. On doit
éviter à tout prix de traverser les frontières de l'espace des tenseurs. Existe-t-il
un cadre mathématique qui autorise d'e�ectuer n'importe quelle opération sur les
tenseurs tout en assurant le résultat d'être un tenseur? Si oui, quelles sont les
propriétés théoriques et pratiques d'un tel cadre?

En résumé, les trois principaux thèmes que nous investiguons au travers de cette
thèse sont : le traitement des tenseurs, l'IRM de di�usion typique des acquisitions
cliniques, et l'anatomie algorithmique du cerveau. Le traitement des tenseurs est
développé en premier, car il est le thème central autour duquel s'articulent les deux
applications qui suivent. Ces deux applications partagent un but ultime, la modéli-
sation du cerveau humain, en abordant un aspect di�érent chacun. Dans le chapitre
suivant, nous donnons un aperçu de l'organisation du manuscrit.

2.3 Organisation du manuscrit
Ce manuscrit est organisé en trois parties re�étant les trois principales contributions
de cette thèse :

• La première partie est une investigation théorique sur les alternatives au
calcul euclidien pour traiter les tenseurs. En particulier, nous proposons deux
cadres riemanniens originaux pour le traitement des tenseurs qui gomment les
limitations du calcul euclidien. Nous démontrons l'utilité de tels cadres avec
de nombreux exemples sur des données synthétiques et réelles comme celles
obtenues en ITD. Ce travail a été l'objet de trois publications dans des revues
internationales [Arsigny 2006b, Arsigny 2006c, Pennec 2006] (deux rapports
de recherche sont également disponibles : [Pennec 2004b, Arsigny 2005b]), et
a été présenté lors d'une conférence avec comité de relecture [Arsigny 2005a],
et un workshop [Fillard 2005a].

• La seconde partie apporte une solution à un problème concret : comment
peut-on utiliser et exploiter de manière optimale les IRM du tenseur de
di�usion acquises en milieu clinique. Utiliser une telle modalité d'image
est sujet à des contraintes particulières : un temps d'acquisition court qui
mène à un nombre limité d'acquisitions, et des scanners relativement anciens
produisant des images avec un rapport signal-sur-bruit moyen voir faible. Ces
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contraintes doivent être prises en compte pour une réelle utilisation clinique
d'une telle modalité d'image. Ici, nous présentons des méthodes dédiées
d'estimation et de lissage des ITD de ce type. Nous utilisons de manière
intensive les cadres de travail développés dans la première partie. Finalement,
nous montrons comment les méthodologies proposées sont intégrées dans un
logiciel fonctionnel appelé MedINRIA pour assurer un transfert optimal de
ces méthodes vers les utilisateurs �naux (experts médicaux). Ce travail a été
publié dans [Fillard 2007b, Ducreux 2007] (articles de revues), [Fillard 2006a]
(conférence avec comité de relecture), [Toussaint 2007b] (workshop avec
comité de relecture), et [Fillard 2005b] (rapport de recherche INRIA).

• La troisième partie est dédiée à la modélisation de l'anatomie du cerveau,
et en particulier du cortex. Nous commençons par créer des modèles
moyens de certaines lignes sulcales qui sont présentes chez tous les sujets en
développant une méthode originale de mise en correspondance de courbes.
Ensuite, nous modélisons la variabilité de chaque position sulcale par un
tenseur de variabilité. Nous montrons comment extrapoler des tenseurs
qui peuvent être distribués de manière épars pour obtenir un champ dense,
une fois encore en utilisant les cadres de calcul développés à la première
partie. Finalement, nous introduisons de nouveaux outils pour mesurer les
corrélations anatomiques entre n'importe quelle paire de positions sulcales
grâce à la matrice de covariance totale, un tenseur 6× 6 qui reste compatible
avec nos cadres de calcul. Nous concluons avec de nouvelles approches
prometteuses pour la modélisation anatomique du cerveau. Les publications
reliées à ces travaux sont les suivantes : [Fillard 2007c] (article de revue),
[Fillard 2007a, Fillard 2005c] (conference avec comité de relecture), et
[Fillard 2007d, Fillard 2006b] (rapport de recherche INRIA).

Nous donnons maintenant plus de détails sur chaque partie ainsi qu'une brève
description de chaque chapitre.
Partie I : Un cadre riemannien pour le traitement des tenseurs.

Le chapitre 3 est le noyau de la contribution théorique de cette thèse.
Nous introduisons les notions de géométrie riemannienne nécessaires pour suivre
le dévelopement qui vient ensuite. Nous voulions rendre cette introduction la plus
intuitive possible pour que chacun puisse suivre le reste du chapitre, y compris
ceux qui découvrent ce type de géométrie pour la première fois. Ensuite, nous
proposons deux cadres de calcul : la métrique a�ne-invariante et les métriques
Log-Euclidienne. Les propriétés de chaque cadre sont analysées et une comparaison
est faite sur leurs utilisations en pratique.
Le chapitre 4 est une démonstration du traitement des tenseurs utilisant
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les deux cadres. Nous abordons un grand nombre d'algorithmes de traitement
d'images : la moyenne (pondérée ou non), l'interpolation multi-linéaire, le lissage
gaussien, le �ltrage anisotrope, la restoration de champs, que nous déclinons selon
les deux métriques et que nous comparons à la version euclidienne. Ce chapitre est
en quelque sorte une boite à outils pour le traitement des tenseurs et contient les
clés pour une implémentation pratique des méthodes.
Le chapitre 5 conclut cette partie avec une discussion sur le choix de la
métrique. En particulier, nous montrons que dans certains cas (le tenseur de
structure par exemple), les cadres que nous proposons ne sont pas adaptés.
Nous donnons une recommandation au lecteur : nous l'encourageons fortement à
déterminer quel type de propriétés il désire obtenir pour les résultat d'opérations
sur les tenseurs, et de faire ainsi le bon choix de la métrique. Ceci est résumé par
la simple question : �Quelle métrique pour quelle application�?
Partie II : Une chaîne de traitements optimale pour utiliser les
IRM-TD en applications cliniques.

Le chapitre 6 apporte une solution au problème de l'estimation et du traitement
des tenseurs de di�usion typique des acquisitions cliniques. Nous démontrons que
grâce aux cadres de calcul sur les tenseurs que nous proposons, et en particulier des
métriques Log-Euclidienne, il est possible d'estimer les tenseurs avec un meilleur
a-priori sur le bruit IRM. Nous montrons que le bruit IRM, qui est ricien, induit
un biais sur les tenseurs lorsque l'a-priori sur le bruit est faux. Les métriques
Log-Euclidiennes sont utilisées de manière intensive pour résoudre ce problème
non-linéaire, et nous faisons une comparaison avec deux autres modèles de bruit.
Finalement, nous testons cette méthode sur des données synthétiques et cliniques
et montrons une amélioration quantitative et qualitative de la reconstruction de
�bres.
Le chapitre 7 décrit le logiciel MedINRIA. Ce projet a été initié pour transférer
les méthodes développées aux chapitres 4 et 6 au monde clinique. Nous avons tenté
de satisfaire aux mieux les besoins des cliniciens : ils veulent un logiciel qui soit
simple, ergonomique, réactif et e�cace. MedINRIA o�re la possibilité de traiter
les IRM de di�usion, de l'estimation au suivi de �bres, par le biais d'une simple
clic de souris, et contient des algorithmes de haut niveau, comme le lissage des
tenseurs utilisant les métriques Log-Euclidiennes. Ce chapitre décrit également
l'architecture du logiciel, avec l'ensemble des applications qui le compose. Nous
montrons comment MedINRIA est devenu maintenant une plateforme générique de
traitement des images médicales ciblant les cliniciens.
Le chapitre 8 est l'aboutissement des e�orts entrepris lors des développements
méthodologiques et logiciel, comme décris dans les deux chapitres précédents.
Le travail présenté dans ce chapitre s'inscrit dans un contexte clinique. Grâce à
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l'aide d'un radiologue, nous avons investigué les indications courantes et futures de
l'IRM du tenseur de di�usion dans les lésions de la moëlle épinière. Nous passons
en revue un large panel de pathologies et l'IRM-TD ainsi que la tractographie
apparaissent comme étant plus sensibles que la classique image T2 pour détecter
certaines pathologies de la moëlle.
Nous concluons cette partie avec le chapitre 9 sur une discussion sur les
travaux futurs et l'avenir du tenseur de di�usion dans le monde clinique.
Partie III : Analyse statistique de l'anatomie du cortex cérébral
humain.

Le chapitre 10 introduit la motion de variabilité cérébrale et les dé�nitions
nécessaires dans les autres chapitres. Nous faisons également une discussion sur le
type de données dont nous avons besoin pour mesurer la variabilité du cerveau. En
particulier, nous décidons de nous reposer sur un ensemble de lignes sulcales qui
sont présentes dans toutes les anatomies. Nous argumentons sur le fait qu'utiliser
ces repères de faible dimension aide à recouvrer plus facilement les correspondances
inter-sujets que d'utiliser des structures de plus grande dimension comme des
surfaces ou des volumes. Ensuite, comme les lignes sulcales sont les lieux de
nombreuses fonctions, les neuroscienti�ques sont également très intéressés pour les
étudier.
Le chapitre 11 décrit, pas à pas, notre stratégie pour construire un modèle
du deuxième ordre de la variabilité du cerveau. Ce modèle a pour but de fournir
la variation individuelle de chaque position du cortex chez une population donnée.
Nous commençons par modéliser les lignes de chaque sujet comme la déformation
de lignes moyennes. Une fois que les lignes moyennes sont obtenues, nous extrayons
le long de ces lignes des tenseurs de variabilité. Ensuite, nous montrons comment
sélectionner un sous-ensemble de tenseurs porteurs d'information, et comment
les extrapoler pour obtenir un champ dense. Ce modèle est évalué via deux
tests : le test de recouvrement intra-sillon (sommes-nous capables de retrouver
la variabilité entière d'une ligne sulcale avec seulement quelques tenseurs?), et le
test du leave-one-out (sommes-nous capables de prédire la variabilité d'une ligne
manquante avec seulement des informations voisines?).
Le chapitre 12 explore les corrélations potentielles entre n'importe quelle
paire de positions sulcales. Nous utilisons la matrice de covariance totale entre
deux points, et nous en dérivons une matrice de corrélation. Ce type de matrice de
covariance est en fait un tenseur 6×6 qui est tout à fait compatible avec notre cadre
de traitement des tenseurs. Par conséquent, nous sommes capables de l'extrapoler
et d'obtenir une carte dense des corrélations entre une position anatomique et le
reste du cerveau. Ensuite, nous étudions les corrélations potentielles entre des
positions sulcales bien spéci�ques et le reste du cerveau (trois positions des sillons
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central et temporel supérieur), ce qui nous amène à analyser les corrélations entre
n'importe quel point et sa position correspondante dans l'hémisphère opposé. Nous
présentons et discuronts des résultats novateurs.
Nous concluons cette partie dans le chapitre 13 avec une discussion sur les
travaux futurs, et en particulier comment ces informations statistiques pourraient
être réinjectées comme a-priori dans le recalage.
Le chapitre 14 est la conclusion générale de cette thèse. Nous résumons
les contributions, nous listons les publications de l'auteur, et nous discutons les
futures directions de ce travail. En particulier, nous insistons sur le besoin de
validation des méthodes décrites ici, et sur le besoin d'un transfert systématique de
nouvelles technologies vers l'hôpital.
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�Do not worry about your di�culties in Mathematics.
I can assure you mine are still greater.�

Albert Einstein.

Medical image processing and analysis, as in the context of the computational
anatomy, has to deal with data of a complex nature: tensors, rigid and a�ne trans-
forms, or even di�eomorphisms to cite only a few examples. These data have the
serious drawback not to live in vector spaces, like simple scalars, and should be
manipulated with extreme care. For instance, adding two di�eomorphisms does not
return in general a di�eomorphism. Instead, these data rather live in �nite or in�-
nite manifolds. Manifolds can be seen as curved spaces, locally very close to a vector
space. It means that if we get in�nitesimally close to the manifold, the curvature
can be neglected and the manifold can be approximated by a vector space. A fa-
mous example of this approximation is...the surface of the earth! We know that our
planet is curved, however we keep drawing planar maps. Doing this implies that we
neglect its curvature, which is reasonable in a su�ciently small region (like France).
Riemannian geometry has gained a lot of interest within the medical imaging com-
munity as it provides the necessary tools to work with manifolds. It turns out that
the properties and tools of such non-linear geometry o�ers a very elegant, e�cient,
and mathematically grounded framework to manipulate data living in manifolds. Of
course, playing with Riemannian geometry is more complex than with the classical
Euclidean geometry, but we will show that reasoning in terms of this geometry is
not more complex than drawing a map of the earth.

In Chapter 3, we start by exploring the state-of-the-art in tensor processing, and
the basis of Riemannian geometry. Then, we propose two Riemannian frameworks as
alternatives to the Euclidean calculus on tensors. In Chapter 4, we demonstrate the
practical feasibility of these two Riemannian frameworks with geometric operations
on tensors like interpolation or �ltering (on both synthetic and real datasets). We
conclude in Chapter 5 with a discussion on the choice of the metric with respect to
the application.
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3.1 Related Work
Quite an impressive literature has now been issued on processing of tensor
�elds especially in the context of Di�usion Tensor Imaging (DTI) regularization
[Basser 1994a, Le Bihan 2001, Westin 2002]. Most of the works dealing with the ge-
ometric nature of tensors has been performed for the discontinuity-preserving regu-
larization of tensor �elds using Partial Di�erential Equations (PDEs). For instance,
[Coulon 2004] anisotropically restores the principal direction of the tensor, and uses
this regularized directions map as input for the anisotropic regularization of the
eigenvalues. A quite similar idea is adopted in [Tschumperlé 2002], where a spectral
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decomposition Σ(x) = U(x) D(x) U(x)T of the tensor �eld is performed at each
points to independently regularize the eigenvalues and eigenvectors (orientations).
This approach requires an additional reorientation step of the rotation matrices due
to the non-uniqueness of the decomposition (each eigenvector is de�ned up its sign
and there may be joint permutations of the eigenvectors and eigenvalues) in order to
avoid the creation of arti�cial discontinuities (see Fig. 3.1). Another problem arises

Figure 3.1: Independent interpolation of tensor eigenvectors and eigenvalues. A
re-orientation step is necessary to prevent this behavior to occur: the interpolated tensors
seem not to take the most direct path between the two extremities.

when two or more eigenvalues become equal: a whole subspace of unit eigenvectors
is possible, and even a re-orientation becomes di�cult.

Other possible frameworks for tensor processing include the J-divergence
[Wang 2004b], which is a symmetrized version of the Kullback-Leibler divergence
between distributions. While the J-divergence gives an a�ne-invariant dissimilar-
ity measure between tensors, it does not provide a complete framework to perform
interpolation, gradient descent and so on. Another interesting framework is the
Cholesky decomposition of tensors [Wang 2004a]. The Cholesky decomposition of
symmetric positive-de�nite matrices states that a tensor can be written in terms of
the product of a lower triangular matrix L: Σ(x) = L(x) L(x)T. As the space of
lower triangular matrices is a vector space, one can run computations on the �eld
L(x), and go back to the tensor space using L(x) L(x)T. However, we will show
later that it does not overcome all limitations of the Euclidean calculus.

3.2 Basic Tools of Riemannian Geometry
We summarize in this Section the theory of statistics on Riemannian manifolds
developed in [Pennec 1999, Pennec 2004a]. The aim is to demonstrate the fact that
choosing a Riemannian metric �automatically� determines a powerful framework to
work on the manifold through the use of a few tools from di�erential geometry.

In the geometric framework, one can specify the structure of a manifold M
by a Riemannian metric. This is a continuous collection of scalar products on
the tangent space at each point of the manifold. Thus, if we consider a curve on
the manifold, we can compute at each point its instantaneous speed vector and
its norm, the instantaneous speed. To compute the length of the curve, we can
proceed as usual by integrating this value along the curve. The distance between
two points of a connected Riemannian manifold is the minimum length among the
curves joining these points. The curves realizing this minimum for any two points
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of the manifold are called geodesics. The calculus of variations shows that geodesics
are the solutions of a system of second order di�erential equations depending on the
Riemannian metric. In the following, we assume that the manifold is geodesically
complete, i.e. that the de�nition domain of all geodesics can be extended to R. This
means that the manifold has no boundary nor any singular point that we can reach
in a �nite time. As an important consequence, the Hopf-Rinow-De Rham theorem
states that there always exists at least one minimizing geodesic between any two
points of the manifold (i.e. whose length is the distance between the two points).

Figure 3.2: Left: The tangent planes at points x and y of the sphere S2 are di�erent: the
vectors v and w of TxM cannot be compared to the vectors t and u of TyM. Thus, it is
natural to de�ne the scalar product on each tangent plane. Right: The geodesics starting
at x are straight lines in the exponential map and the distance along them is conserved.

3.2.1 Exponential chart

Let x be a point of the manifold that we consider as a local reference and −→xy a vector
of the tangent space TxM at that point. From the theory of second order di�erential
equations, we know that there exists one and only one geodesic starting from that
point with this tangent vector. This allows us to develop the manifold in the tangent
space along the geodesics (think of rolling a sphere along its tangent plane at a given
point). The geodesics going through the reference point are transformed into straight
lines and the distance along these geodesics is conserved (at least in a neighborhood
of x).

The function that maps to each vector −→xy ∈ TxM the point y of the manifold
that is reached after a unit time by the geodesic starting at x with this tangent
vector is called the exponential map. This map is de�ned in the whole tangent space
TxM (since the manifold is geodesically complete) but it is generally one-to-one only
locally around 0 in the tangent space (i.e. around x in the manifold). In the sequel,
we denote by −→xy = logx(y) the inverse of the exponential map: this is the smallest
vector such that y = expx(

−→xy). If we look for the maximal de�nition domain, we
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�nd out that it is a star-shaped domain delimited by a continuous curve Cx called
the tangential cut-locus. The image of Cx by the exponential map is the cut locus Cx

of point x. This is the closure of the set of points where several minimizing geodesics
starting from x meet. On the sphere S2(1) for instance, the cut locus of a point x
is its antipodal point and the tangential cut locus is the circle of radius π.

The exponential map within this domain realizes a chart called the exponential
chart. It covers all the manifold except the cut locus of the reference point x, which
has a null measure. In this chart, geodesics starting from x are straight lines, and
the distance from the reference point are conserved. This chart is somehow the
�most linear� chart of the manifold with respect to the reference point x.

3.2.2 Practical implementation

In fact, most of the usual operations using additions and subtractions may be rein-
terpreted in a Riemannian framework using the notion of bipoint, an antecedent of
vector introduced during the 19th century. Indeed, one de�nes vectors as equivalent
classes of bipoints (oriented couples of points) in a Euclidean space. This is possible
because we have a canonical way (the translation) to compare what happens at two
di�erent points. In a Riemannian manifold, we can still compare things locally (by
parallel transportation), but not any more globally. This means that each �vector�
has to remember at which point of the manifold it is attached, which comes back to
a bipoint.

However, one can also see a vector −→xy (attached at point x) as a vector of
the tangent space at that point. Such a vector may be identi�ed to a point on
the manifold using the geodesic starting at x with tangent vector −→xy, i.e. using
the exponential map: y = expx(

−→xy). Conversely, the logarithmic map may be
used to map almost any bipoint (x, y) into a vector −→xy = logx(y) of TxM. This
reinterpretation of addition and subtraction using logarithmic and exponential maps
is very powerful to generalize algorithms working on vector spaces to algorithms on
Riemannian manifolds, as illustrated by Table 3.1. It is also very powerful in terms
of implementation since we can practically express all the geometric operations in
these terms: the implementation of logx and expx is the basis of any programming
on Riemannian manifolds, as we will see in the following.

3.2.3 Basic statistical tools

The Riemannian metric induces an in�nitesimal volume element on each tangent
space, and thus a measure dM on the manifold that can be used to measure random
events on the manifold and to de�ne the probability density function (if it exists)
of these random elements. With the probability measure of a random element, we
can integrate functions from the manifold to any vector space, thus de�ning the
expected value of this function. However, we generally cannot integrate manifold-
valued functions. Thus, one cannot de�ne the mean or expected �value� of a random
manifold element using a weighted sum or an integral as usual. One solution is to
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rely on a distance-based variational formulation: the Fréchet or Karcher expected
features basically minimize globally (or locally) the variance. As the mean is now
de�ned through a minimization procedure, its existence and uniqueness are not en-
sured any more (except for distributions with a su�ciently small compact support).
In practice, one mean value almost always exists, and it is unique as soon as the
distribution is su�ciently peaked. The properties of the mean are very similar to
those of the modes (that can be de�ned as central Karcher values of order 0) in the
vectorial case.

To compute the mean value, [Pennec 1999, Pennec 2004a] designed an original
Gauss-Newton gradient descent algorithm that essentially alternates the computa-
tion of the barycenter in the exponential chart centered at the current estimation
of the mean value, and a re-centering step of the chart at the point of the manifold
that corresponds to the computed barycenter (geodesic marching step). To de�ne
higher moments of the distribution, they used the exponential chart at the mean
point: the random feature is thus represented as a random vector with null mean in
a star-shaped domain. With this representation, there is no di�culty to de�ne the
covariance matrix and potentially higher order moments. Based on this covariance
matrix, they de�ned a Mahalanobis distance between a random and a deterministic
feature that basically weights the distance between the deterministic feature and
the mean feature using the inverse of the covariance matrix. Interestingly, the ex-
pected Mahalanobis distance of a random element with itself is independent of the
distribution and is equal to the dimension of the manifold, as in the vectorial case.

As for the mean, [Pennec 1996, Pennec 1999, Pennec 2004a] chose a variational
approach to generalize the Normal Law: they de�ne it as the distribution that
minimizes the information knowing the mean and the covariance. This amounts
to consider a Gaussian distribution on the exponential chart centered at the mean
point that is truncated at the cut locus (if there is one). However, the relation
between the concentration matrix (the �metric� used in the exponential of the prob-
ability density function) and the covariance matrix is slightly more complex than
the simple inversion of the vectorial case, as it has to be corrected for the curvature
of the manifold. Last but not least, using the Mahalanobis distance of a normally
distributed random feature, the χ2 law can be generalized: they were able to show

Vector space Riemannian manifold
Subtraction −→xy = y − x −→xy = logx(y)
Addition y = x+−→xy y = expx(

−→xy)

Distance dist(x, y) = ‖y − x‖ dist(x, y) = ‖−→xy‖x

Mean value (implicit) ∑
i
−→
x̄xi = 0

∑
i logx̄(xi) = 0

Gradient descent xt+ε = xt − ε∇C(xt) xt+ε = expxt
(−ε∇C(xt))

Linear (geodesic) interpolation x(t) = x1 + t−−→x1x2 x(t) = expx1
(t−−→x1x2)

Table 3.1: Re-interpretation of basic standard operations in a Riemannian manifold.
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that is has the same density as in the vectorial case up to an order 3 in σ. This
opens the way to the generalization of many other statistical tests, as we may expect
similarly simple approximations for su�ciently centered distributions.

3.3 An A�ne-Invariant Riemannian Metric for Tensors
The a�ne-invariant Riemannian metric we detail in this section may be traced back
to the work of [Nomizu 1954] on a�ne invariant connections on homogeneous spaces.
It is implicitly hidden under very general theorems on symmetric spaces in many
di�erential geometry textbooks [Kobayashi 1969, Helgason 1978, Gamkrelidze 1991]
and sometimes considered as a well known result as in [Bhatia 2003]. In statistics, it
has been introduced as the Fisher information metric [Skovgaard 1984] to model the
geometry of the multivariate normal family. Interestingly, the invariant metric has
been independently proposed by [Förstner 1999] to deal with covariance matrices,
and recently by [Fletcher 2004] for the analysis of principal modes of sets of di�usion
tensors. By looking for a suitable metric on the space of Gaussian distributions for
the segmentation of di�usion tensor images, [Lenglet 2006b] also ended up with the
same metric. They further used it to denoise tensor �eld using an anisotropic reg-
ularization scheme [Castaño-Moraga 2006, Castaño-Moraga 2007], which is similar
in essence to the one we proposed in [Pennec 2006] and which will be detailed later
in this manuscript (Sec. 4.3). Nethertheless, it is interesting to see that completely
di�erent approaches, relying on an a�ne-invariant requirement on the one hand, and
relying on an information measure to evaluate the distance between distributions
on the other hand, lead to the same metric on the tensor space. However, to our
knowledge, this Riemannian metric has not been promoted as a complete computing
framework, as we propose here.

Let us now focus on the space Sym+
n of positive de�nite symmetric matrices

(tensors). The goal is to �nd a Riemannian metric with interesting enough proper-
ties. It turns out that it is possible to require an invariance by the full linear group.
This leads to a very regular manifold structure where tensors with null and in�nite
eigenvalues are both at an in�nite distance of any positive de�nite symmetric ma-
trix: the cone of positive de�nite symmetric matrices is replaced by a space which
has an in�nite development in each of its n(n+ 1)/2 directions. Moreover, there is
one and only one geodesic joining any two tensors, and we can even de�ne globally
consistent orthonormal coordinate systems of tangent spaces. Thus, the structure
we obtain is very close to a vector space, except that the space is curved.
3.3.1 Exponential, logarithm and square root of tensors

In the following, we will make extensive use of a few functions on symmetric matrices.
The exponential of any matrix can be de�ned using the series exp(M) =

∑∞
k=0

Mk

k! .In the case of symmetric matrices, we have some important simpli�cations. Let Σ =
UDUT be a diagonalization, where U is an orthonormal matrix, and D = DIAG(di)
is the diagonal matrix of the eigenvalues. We can write any power of Σ in the same
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basis: Σk = U Dk UT. This means that we may factor out the rotation matrices in
the series and map the exponential individually to each eigenvalue:

exp(Σ) =
+∞∑
k=0

W k

k!
= U DIAG(exp(di)) UT.

The series de�ning the exponential function converges for any (symmetric) ma-
trix argument, but this is generally not the case for the series de�ning its in-
verse function: the logarithm. However, any tensor can be diagonalized into
Σ = U DIAG(di) UT with strictly positive eigenvalues di. Thus, the function

log(Σ) = U (DIAG(log(di)))UT

is always well de�ned on tensors. Moreover, if all the eigenvalues are small enough
(|di − 1| < 1), then the series de�ning the usual log converges and we have (using
the identity matrix Id):

log(Σ) = U

(
DIAG

(
+∞∑
k=1

(−1)k+1

k
(di − 1)k

))
UT =

+∞∑
k=1

(−1)k+1

k
(Σ− Id)k. (3.1)

The logarithm we de�ned is obviously the inverse function of exp. Thus, the matrix
exponential realizes a one-to-one mapping between the space of symmetric matrices
to the space of tensors.

Classically, one de�nes the (left) square root of a matrix B as the set {B1/2
L } =

{A ∈ GLn / A AT = B}. One could also de�ne the right square root: {B1/2
R } =

{A ∈ GLn / A
T A = B}. For tensors, we de�ne the square root as:

Σ1/2 = {Λ ∈ Sym+
n / Λ2 = Σ}.

The square root is always de�ned and moreover unique: let Σ = U D2 UT be a
diagonalization (with positives values for the di's). Then Λ = U D UT is of course
a square root of Σ, which proves the existence. For the uniqueness, let us consider
two symmetric and positive square roots Λ1 and Λ2 of Σ. Then, Λ2

1 = Σ and Λ2
2 = Σ

obviously commute and thus they can be diagonalized in the same basis: this means
that the diagonal matrices D2

1 and D2
2 are equal. As the elements of D1 and D2 are

positive, they are also equal and Λ1 = Λ2. Last but not least, we have the property
that

Σ1/2 = exp
(

1
2
(log Σ)

)
.

3.3.2 An a�ne invariant distance

Let us consider the following action of the linear group GLn on the tensor space
Sym+

n :
A ? Σ = AΣAT ∀A ∈ GLn and Σ ∈ Sym+

n .
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This group action corresponds for instance to the standard action of the a�ne group
on the covariance matrix Σxx of a random variables x in Rn: if y = Ax + t, then
ȳ = Ax̄+ t and Σyy = E[(y − ȳ) (y − ȳ)T] = AΣxxA

T.
This action is naturally extended to tangent vectors is the same way: if Γ(t) =

Σ + t W + O(t2) is a curve passing at Σ with tangent vector W , then the curve
A ? Γ(t) = A Σ AT + t A WAT + O(t2) passes through A ? Σ with tangent vector
A ?W .

Following [Pennec 1998], any invariant distance on Sym+
n satis�es dist(A?Σ1, A?

Σ2) = dist(Σ1,Σ2). Choosing A = Σ−1/2
1 , we can reduce this to a pseudo-norm, or

distance to the identity:
dist(Σ1,Σ2) = dist

(
Id,Σ

− 1
2

1 Σ2Σ
− 1

2
1

)
= N

(
Σ
− 1

2
1 Σ2Σ

− 1
2

1

)
.

Moreover, as the invariance has to hold for any transformation, N should be invari-
ant under the action of the isotropy group H( Id) = On = {U ∈ GLn / UU

T = Id}:
∀U ∈ On, N(U Σ UT) = N(Σ).

Using the spectral decomposition Σ = UD2UT, it is easy to see that N(Σ) has to be
a symmetric function of the eigenvalues. Moreover, the symmetry of the distance
dist(Σ, Id) = dist( Id,Σ) imposes that N(Σ) = N(Σ(-1)). Thus, a good candidate is
the sum of the squared logarithms of the eigenvalues:

N(Σ)2 = ‖ log(Σ)‖2 =
n∑

i=1

(log(σi))2. (3.2)

This �norm� veri�es by construction the properties of symmetry and positiveness.
N(Σ) = 0 implies that σi = 1 (and conversely), so that the separation axiom is
satis�ed. However, we do no know any simple proof of the triangle inequality,
which should read N(Σ1) + N(Σ2) ≥ N(Σ−1/2

1 Σ2Σ
−1/2
1 ), even if we can verify it

experimentally (see e.g. [Förstner 1999]).
3.3.3 An invariant Riemannian metric

Another way to determine the invariant distance is through the Riemannian metric.
Let us take the most simple scalar product on the tangent space at the identity
matrix: if W1 and W2 are tangent vectors (i.e. symmetric matrices, not necessarily
de�nite nor positive), we de�ne the scalar product to be the standard matrix scalar
product 〈W1 |W2 〉 = Tr(WT

1 W2). This scalar product is obviously invariant by
the isotropy group On. Now, if W1 and W2 are two tangent vectors at Σ, we
require their scalar product to be invariant by the action of any transformation:
〈W1 |W2 〉Σ = 〈A ?W1 |A ?W2 〉A?Σ. This should be true in particular for A =
Σ−1/2, which allows us to de�ne the scalar product at any Σ from the scalar product
at the tangent space at the identity matrix:

〈W1 |W2 〉Σ =
〈

Σ− 1
2W1Σ− 1

2

∣∣∣ Σ− 1
2W2Σ− 1

2

〉
Id

= Tr(Σ− 1
2W1Σ−1W2Σ− 1

2

)
.
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One can easily verify that this de�nition is left unchanged if we use any other
transformation A = UΣ−1/2 (where U is a free orthonormal matrix) that transports
Σ to the identity: A ? Σ = A ΣAT = U UT = Id.

To �nd the geodesic without going though the computation of Christo�el
symbols, we may rely on a result from di�erential geometry [Gamkrelidze 1991,
Helgason 1978, Kobayashi 1969] which says that the geodesics for the invariant met-
rics on a�ne symmetric spaces are generated by the action of the one-parameter
subgroups of the acting Lie group. Since the one-parameter subgroups of the linear
group are given by the matrix exponential exp(tA), geodesics on our tensor manifold
going through Σ with tangent vector W should have the following form:

Γ(Σ,W )(t) = exp(t A) Σ exp(t A)T with W = A Σ + ΣAT. (3.3)
For our purpose, we need to relate explicitly the geodesic to the tangent vector

in order to de�ne the exponential chart. Since Σ is a symmetric matrix, there is
hopefully an explicit solution to the Sylvester equation W = A Σ + Σ AT. We
get A = 1

2

(
W Σ(-1) + Σ1/2 Z Σ−1/2

), where Z is a free skew-symmetric matrix.
However, introducing this solution into the equation of geodesics (Eq. 3.3) does not
lead to a very tractable expression. Let us look at an alternative solution.

Since our metric (and thus the geodesics) is invariant under the action of the
group, we can focus on the geodesics going through the origin (the identity). In that
case, a symmetric solution of the Sylvester equation is A = 1

2W , which gives the
following equation for the geodesic going through the identity with tangent vector
W :

Γ( Id,W )(t) = exp
(
t

2
W

)
exp

(
t

2
W

)T
= exp(t W ).

We may observe that the tangent vector along this curve is the parallel trans-
portation of the initial tangent vector. If W = U DIAG(wi) UT,

dΓ(t)
dt

= U DIAG (wi exp(t wi)) UT = Γ(t)
1
2 W Γ(t)

1
2 = Γ(t)

1
2 ? W.

By de�nition of our invariant metric, the norm of this vector is constant: ‖Γ(t)1/2 ?

W‖2
Γ(t)1/2? Id

= ‖W‖2
Id = ‖W‖2

2. This was expected since geodesics are parameter-
ized by arc-length. Thus, the length of the curve between time 0 and 1 is

L =
∫ 1

0

∥∥∥∥dΓ(t)
dt

∥∥∥∥2

Γ(t)

dt = ‖W‖2
Id.

Solving for Γ( Id,W )(1) = Σ, we obtain the �norm� N(Σ) of Eq.(3.2). Using the
invariance of our metric, we easily obtain the geodesic starting from any other point
of the manifold using our group action:

Γ(Σ,W )(t) = Σ
1
2 ? Γ( Id,Σ−1/2?W)(t) = Σ

1
2 exp

(
t Σ− 1

2WΣ− 1
2

)
Σ

1
2 . (3.4)

Coming back to the distance dist2(Σ, Id) =
∑

i(log σi)2, it is worth noticing
that tensors with null eigenvalues are located as far from the identity as tensors
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with in�nite eigenvalues: at the in�nity. Thanks to the invariance by the linear
group, this property holds for the distance to any (positive de�nite) tensor of the
manifold. Thus, the original cone of positive de�nite symmetric matrices (a linear
manifold with a �at metric but which is incomplete: there is a boundary at a �nite
distance) has been changed into a regular and complete (but curved) manifold with
an in�nite development in each of its n(n+ 1)/2 directions.

3.3.4 Exponential and logarithm maps

As a general property of Riemannian manifolds, geodesics realize a local di�eomor-
phism from the tangent space at a given point of the manifold to the manifold itself:
Γ(Σ,W )(1) = expΣ(W ) associates to each tangent vector W ∈ TΣSym+

n a point of
the manifold. This mapping is called the exponential map, because it corresponds
to the usual exponential in some matrix groups. This is exactly our case for the
exponential map around the identity:

exp Id(UDU
T) = exp(UDUT) = U DIAG (exp(di)) UT.

However, the Riemannian exponential map associated to our invariant metric has a
more complex expression at other tensors:

expΣ(W ) = Σ
1
2 exp

(
Σ− 1

2WΣ− 1
2

)
Σ

1
2 .

In our case, this di�eomorphism is global, and we can uniquely de�ne the inverse
mapping everywhere:

logΣ(Λ) = Σ
1
2 log

(
Σ− 1

2 ΛΣ− 1
2

)
Σ

1
2 .

Thus, expΣ gives us a collection of one-to-one and complete maps of the manifold,
centered at any point Σ. As explained in Section 3.2, these charts can be viewed
as the development of the manifold onto the tangent space along the geodesics.
Moreover, as the manifold has a non-positive curvature [Skovgaard 1984], there is
no cut-locus and the statistical properties detailed in [Pennec 2004a] hold in their
most general form. For instance, we have the existence and uniqueness of the mean
of any distribution with a compact support [Kendall 1990].
For completeness, we give here the a�ne-invariant distance between two ten-
sors:

dist2 (Σ1,Σ2) =
〈
logΣ1

(Σ2) | logΣ1
(Σ2)

〉
Σ1

= Tr
(

log
(
Σ−1/2

1 Σ2Σ
−1/2
1

)2
)

(3.5)
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3.3.5 Induced and orthonormal coordinate systems

One has to be careful because the coordinate system of all these charts is not or-
thonormal. Indeed, the coordinate system of each chart is induced by the stan-
dard coordinate system (here the matrix coe�cients), so that the vector −→ΣΛ cor-
responds to the standard derivative in the vector space of matrices: we have
Λ = Σ +

−→
ΣΛ + O(‖

−→
ΣΛ‖2). Even if this basis is orthonormal at some points of

the manifold (such as at the identity for our tensors), it has to be corrected for the
Riemannian metric at other places due to the manifold curvature.

From the expression of the metric, one can observe that
‖
−→
ΣΛ‖2

Σ = ‖ logΣ(Λ)‖2
Σ = ‖Σ− 1

2 logΣ(Λ)Σ− 1
2 ‖2

Id = ‖ log(Σ− 1
2 ? Λ)‖2

2.

This shows that −→ΣΛ⊥ = log(Σ− 1
2 ? Λ) ∈ TId

Sym+
n is the expression of the vec-

tor −→ΣΛ in an orthonormal basis. In our case, the transformation Σ1/2 ∈ GLn

is moreover uniquely de�ned (as a positive square root) and is a smooth func-
tion of Σ over the complete tensor manifold. Thus, −→ΣΛ⊥ results in an atlas
of orthonormal exponential charts which is globally smooth with respect to the
reference point1 Σ. This group action approach was chosen in earlier works
[Pennec 1996, Pennec 1997, Pennec 1998] with what was called the placement func-
tion.

For some statistical operations, we need to use a minimal representation (e.g. 6
parameters for 3× 3 tensors) in a (locally) orthonormal basis. This can be realized
through the classical �Vec� operator that maps the element ai,j of a n × n matrix
A to the (i n + j)th element Vec(A)i n+j of a n × n dimensional vector Vec(A).
Since we are working with symmetric matrices, we have only n(n+1)/2 independent
coe�cients, say the upper triangular part. However, the o�-diagonal coe�cients are
counted twice in the L2 norm at the identity: ‖W‖2

2 =
∑n

i=1w
2
i,i + 2

∑
i<j≤nw

2
i,j .Thus, to express our minimal representation in an orthonormal basis, we need to

multiply the o� diagonal terms by √2:
Vec Id(W ) =

(
w1,1,

√
2 w1,2, w2,2, . . . ,

√
2 w(n−1),n, wn,n

)T
.

Now, for a vector −→ΣΛ ∈ TΣSym+
n , we de�ne its minimal representation in the

orthonormal coordinate system as:
VecΣ(

−→
ΣΛ) = Vec Id(

−→
ΣΛ⊥) = Vec Id

(
log(Σ− 1

2 ? Λ)
)
. (3.6)

The mapping VecΣ realizes an explicit isomorphism between TΣSym+
n and Rn(n+1)/2

with the canonical metric.
1On most homogeneous manifolds, this can only be realized locally. For instance, on the sphere,

there is a singularity at the antipodal point of the chosen origin for any otherwise smooth placement
function.
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3.3.6 Gradient descent and PDEs: an intrinsic geodesic marching
scheme

Let f(Σ) be an objective function to minimize, Σt the current estimation of Σ,
and Wt = ∂Σf = [∂f/∂σij ] its matrix derivative at that point, which is of course
symmetric. The principle of a �rst order gradient descent is to go toward the steepest
descent, in the direction opposite to the gradient for a short time-step ε, and iterate
the process. However, the standard operator Σt+1 = Σt− εWt is only valid for very
short time-steps in the �at Euclidean matrix space, and we could easily go out of
the cone of positive de�nite tensors. A much more interesting numerical operator
is given by following the geodesic backward starting at Σ with tangent vector Wt

during a time ε. This intrinsic gradient descent ensures that we cannot leave the
manifold. It can easily be expressed using the exponential map:

Σt+1 = Γ(Σt,Wt)(−ε) = expΣt
(−εWt) = Σ

1
2 exp(−εΣ− 1

2WtΣ− 1
2 )Σ

1
2 .

This intrinsic scheme is trivially generalized to partial di�erential evolution
equations (PDEs) on tensor �elds such as ∂tΣ(x, t) = −W (x, t): we obtain
Σ(x, t+ dt) = expΣ(x,t)(−dt W (x, t)).

In the next section, we present a second family of metrics, the Log-Euclidean
metrics.

3.4 Log-Euclidean Metrics
Log-Euclidean metrics are another type or Riemannian metrics that we have devel-
oped. They rely on a very simple fact: the matrix exponential and logarithm are
two di�eomorphisms between the tensor space and the space of symmetric matrices.
As a consequence, computation on tensors will be drastically simpli�ed while keep-
ing almost the same properties as the a�ne-invariant family. In the following, we
�rst present the theory of Log-Euclidean metrics, and then show how to use them
in practice.
3.4.1 De�nition of the Log-Euclidean Metrics

The notion of matrix logarithms and exponentials are central in the theoretical
framework presented here. We recall that the matrix exponential exp is the general-
ization to square matrices of the classical scalar exponential. For any square matrix
M , it is given by: exp(M) =

∑∞
k=0M

k/k!. Basically, the matrix logarithm, denoted
�log�, is de�ned as in the scalar case as the inverse of the matrix exponential. But
in the general matrix case, this is complicated by the fact that the logarithm of a
given invertible matrix can fail to exist [Culver 1966], and that whenever it exists,
an in�nity of logarithms may also exists. This complex situation is typical of general
Lie groups [Bourbaki 1989].

By contrast, the situation is very simple in the tensor case. A tensor Σ has
a unique matrix logarithm L = log(Σ). It is uniquely de�ned by the equation
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Σ = exp(L) and L is a simple symmetric matrix. Conversely, each symmetric
matrix is associated with a unique tensor by the exponential. L is obtained from
Σ by changing its eigenvalues into their natural logarithms, which can be done
easily in an orthonormal basis in which Σ (and L) is diagonal. This simple spectral
decomposition of tensors allows for the generalization of the notion of powers (and
in particular square roots) to tensors: for any real number α and any tensor Σ, Σα

is well-de�ned. It is obtained by transforming its eigenvalues into their αth power.
For example, the square root of a tensor is obtained by replacing its eigenvalues by
their square roots, and its inverse (corresponding to the �−1th� power) by replacing
its eigenvalues by their inverses.

Based on the speci�c properties of the matrix exponential on tensors, we can
now de�ne a novel structure of vector space on tensors. Since there is a one-to-
one mapping between the tensor space and the vector space of symmetric matrices,
one can transfer to tensors the addition �+� and the scalar multiplication �.� with
the matrix exponential. This de�nes on tensors the logarithmic product � and the
logarithmic scalar multiplication ~, given by:{

Σ1 � Σ2
def
= exp (log(Σ1) + log(Σ2))

λ~ Σ
def
= exp (λ. log(Σ)) = Σλ.

(3.7)

The logarithmic product is commutative and coincides with matrix multiplication
whenever the two tensors Σ1 and Σ2 commute in the matrix sense. With � and ~,
the tensor space has by construction a vector space structure, which is not the usual
structure directly derived from the addition and scalar multiplication on square
matrices.

When one considers only the multiplication � on the tensor space, one has a
Lie group structure [Gallot 1993], i.e. a space which is both a smooth manifold
and a group in which algebraic operations are smooth mappings. This comes from
the fact that both the exponential and the logarithm mappings are smooth, as
shown in [Arsigny 2005b]. Among Riemannian metrics in Lie groups, the most
convenient in practice are biinvariant metrics, i.e. distances that are invariant by
multiplication and inversion. When they exist, these metrics are used in di�erential
geometry to generalize properly the notion of mean to Lie groups as in the case
of rotations [Pennec 1996, Moakher 2002]. However, such metrics are not always
available, as in the case of the groups of Euclidean motions [Pennec 2004a] and
a�ne transformations. It is remarkable that biinvariant metrics exist in the tensor
Lie group. Moreover, they are particularly simple. This existence results from the
commutativity of the logarithmic product between tensors. We have named such
metrics Log-Euclidean metrics, since they correspond to Euclidean metrics in the
domain of logarithms. From a Euclidean norm ‖.‖ on symmetric matrices, they can
be written:

dist(Σ1,Σ2) = ‖ log(Σ1)− log(Σ2)‖. (3.8)
As one can see, the Log-Euclidean distance is much simpler than the equivalent
a�ne-invariant distance given by Eq. (3.5), where the two tensors are mixed with
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square roots and inverses before taking norm of the logarithm. Log-Euclidean met-
rics take this form because they are simply Euclidean distances for the vector space
structure we have de�ned earlier. We did not de�ne them directly from the latter
algebraic structure to emphasize the fact that they are Riemannian metrics, like
a�ne-invariant ones.

The greater simplicity of Log-Euclidean metrics can also be seen from Log-
Euclidean geodesics in the tensor space. The shortest path between two tensors Σ1

and Σ2 parametrized proportionally to its arc length by a parameter t between 0
and 1 is a straight line in the domain of logarithms in the Log-Euclidean case. It is
given by:

exp ((1− t) log(Σ1) + (t) log(Σ2)) . (3.9)
The equivalent a�ne-invariant geodesic involves the use of square roots and inverses
(Eq. 3.4). Contrary to the classical Euclidean framework on tensors, and similarly
to the a�ne-invariant framework, one can see from Eq. [3.8] that matrices with null
or negative eigenvalues are at an in�nite distance from tensors and will not appear
in practical computations. Indeed, among symmetric matrices, only tensors are at a
�nite distance from any tensor, whereas the distance between the null matrix (which
is not a tensor) and the identity (which is a tensor) is �nite in the Euclidean case.

3.4.2 Invariance Properties of the Log-Euclidean Metrics

A metric on tensors will be all the more relevant as it exhibits as many natural
invariance properties as possible. First, distances are not changed by inversion,
since taking the inverse of a system of matrices only results in the multiplication by
−1 of their logarithms, which does not change the value of the distance given by
Eq. [3.8].

Also, Log-Euclidean metrics are by construction invariant with respect to any
logarithmic multiplication, i.e. are invariant by any translation in the domain of
logarithms. But there is more. Although Log-Euclidean metrics will not yield full
a�ne-invariance as the a�ne-invariant metrics de�ned previously, a number of them
are invariant by similarity (orthogonal transformation and scaling). This means
that computations on tensors using these metrics will be invariant with respect
to a change of coordinates obtained by a similarity. The similarity-invariant Log-
Euclidean metric used throughout this thesis is given by:

dist(Σ1,Σ2) =
(Trace ({log(Σ1)− log(Σ2)}2

)) 1
2 . (3.10)

The invariance by similarity of this metric can be simply proved by using the fol-
lowing elementary algebraic property for two symmetric matrices: Trace(A.B) =
Trace(B.A) and the fact that a scaling in the domain of tensors corresponds to a
translation by a multiple of the identity in the domain of logarithms.
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3.4.3 Log-Euclidean Computations on Tensors

From a practical point of view, one would ideally like operations such as averag-
ing, �ltering, etc. to be as simple as possible. In the a�ne-invariant case, such
operations rely on an intensive use of matrix exponentials, logarithms, inverses and
square roots. But here, the vector space of tensors with a Log-Euclidean metric is
in fact isomorphic (the algebraic structure of vector space is conserved) and isomet-
ric (distances are conserved) with the corresponding Euclidean space of symmetric
matrices. As a consequence, the Riemannian framework for statistics and analysis
is extremely simpli�ed [Arsigny 2005b].

In general and contrary to the a�ne-invariant case, the processing of tensors in
the Log-Euclidean framework is simply Euclidean in the logarithmic domain. Ten-
sors are �rst converted into symmetric matrices (i.e. vectors) using the matrix
logarithm. Then vector processing tools are directly used on logarithms. Finally,
results obtained on logarithms are mapped back to the tensor domain with the ex-
ponential. Hence, statistical tools or PDEs are very readily generalized to tensors
in this framework.

3.4.4 Link with the A�ne-Invariant Metric

The Log-Euclidean metric is strongly linked to the a�ne-invariant one. Indeed, it
can be seen as the special case where all tangent vectors are expressed in the tangent
space at the identity matrix: logId

(Σ) = log(Σ). In Table 3.2, we express the basic
operations on Riemannian manifolds with the a�ne-invariant and Log-Euclidean
metrics.

Operation A�ne-Invariant metric Log-Euclidean metric
−−−→
Σ1Σ2 = logΣ1

(Σ2) Σ1/2
1 log(Σ−1/2

1 Σ2Σ
−1/2
1 )Σ1/2

1 log(Σ2)− log(Σ1)
Σ2 = expΣ1

(
−−−→
Σ1Σ2) Σ2 = Σ1/2

1 exp(
−−−→
Σ1Σ2)Σ

1/2
1 Σ2 = exp(log(Σ1) +

−−−→
Σ1Σ2)

dist2(Σ1,Σ2) Tr(log(Σ−1/2
1 Σ2Σ

−1/2
1 )2) Tr((log(Σ2)− log(Σ1))2)

Table 3.2: Basic Riemannian operations in the a�ne-invariant and Log-Euclidean frame-
works.

We have developed throughout this chapter two alternatives to the �awed Eu-
clidean calculus. Both of them use tools from Riemannian geometry, and reject any
non-positive matrix at an in�nite distance of any tensor. Schematically, they �un-
fold� the tensor space to turn it into a vector space, where operations are simple, and
then �fold� it again to �project� the result back onto the tensor space. Moreover,
they exhibit interesting invariance properties: invariance by any a�ne transform
(case of the a�ne-invariant Riemannian metric), or by a similitude transform (case
of the Log-Euclidean metric). However, their practical implementation is di�erent,
though they both use the matrix logarithm and exponential that appear as the key
functions to act on the tensor space. One may wonder whether one framework is
more valuable practically than another, in terms of quality of the result, compu-
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tational e�ciency, and ease of implementation. In the next chapter, we illustrate
the practical use of these two Riemannian frameworks with geometric and image
processing operations on tensors.
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We have presented the theory of two Riemannian frameworks for tensor process-
ing, which overcomes the limitations of the standard Euclidean calculus. In this
chapter, we demonstrate the use of these metrics in practice. In particular, we show
how to apply some statistical tools to tensors (mean, covariance), to perform multi-
linear interpolation, and to smooth or restore tensor images. To keep a close eye
on the potential of these tools on real data, some examples will be done on tensor
�elds obtained from di�usion weighted MRI, thus illustrating their practical use on
this type of data. For each processing, we will detail the a�ne-invariant and the
Log-Euclidean implementations, and confront them.
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Figure 4.1: Convergence of the a�ne-invariant mean calculation of 1000 random Gaussian
tensors. Left: The graph shows the evolution of the distance between successive iterations
(i.e., estimations of the mean). The convergence is clearly very fast. Right: Log of the
previous graph. The slope was evaluated at −3, which shows that the convergence is cubic.

4.1 Statistical Analysis of Tensors
4.1.1 The Fréchet Mean

Let Σ1 . . .ΣN be a set of measures of the same tensor. Let ω1 . . . ωN be a set of
positive weights such that ∑N

i=1 ωi = 1. The Fréchet mean is the set of tensors (it
does not have to be unique in general) minimizing the sum of squared distances:
C(Σ) =

∑N
i=1 ωi dist2(Σ,Σi).

4.1.1.1 The A�ne-Invariant Case:

Endowed with the a�ne-invariant metric, the tensor manifold has a non-positive
curvature [Skovgaard 1984], so that there is one and only one mean value Σ̄
[Kendall 1990]. Moreover, a necessary and su�cient condition for an optimum is a
null gradient of the criterion. Thus, the intrinsic Newton gradient descent algorithm
gives the following mean value at estimation step t+ 1:

Σ̄t+1 = expΣ̄t

(
N∑

i=1

ωi logΣ̄t
(Σi)

)
= Σ̄

1
2
t exp

(
N∑

i=1

ωi log
(

Σ̄
− 1

2
t ΣiΣ̄

− 1
2

t

))
Σ̄

1
2
t . (4.1)

Note that we cannot easily simplify this expression further as in general the data Σi

and the mean value Σ̄t cannot be diagonalized in a common basis. However, this
gradient descent algorithm usually converges very fast (about 10 iterations, see Fig.
4.1).

4.1.1.2 The Log-Euclidean Case:

The Log-Euclidean Fréchet mean is straightforward to calculate. It is a direct gen-
eralization of the geometric mean of positive numbers and is given explicitly by:
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Σ̄ = exp

(
N∑

i=1

wi log(Σi)

)
. (4.2)

The closed form given by Eq. [4.2] makes the computation of Log-Euclidean means
immediate. To illustrate the di�erences between the Euclidean, a�ne-invariant and
Log-Euclidean frameworks for the mean tensor computation, we did the following
experiment. First, we created 1000 random Gaussian tensors using the following
procedure: we generated n(n + 1)/2 independent and normalized real Gaussian
samples, multiplied the corresponding vector by the square root of the desired co-
variance matrix (expressed in our Vec coordinate system), and come back to the
tensor manifold using the inverse Vec mapping. Using this procedure, we can easily
generate noisy measurements of known tensors (see Fig. 4.2). Second, we computed
the Euclidean, a�ne-invariant and Log-Euclidean means. We compared the com-
putational time, and the Frobenius distance between the estimated mean and the
true mean which tells us how close the estimations are from the true mean. Finally,
we iterated this process for several variances (from 0.1 to 1.0) and plot a graph of
the computational time w.r.t. variance, and accuracy of the mean estimation w.r.t.
the variance (Fig. 4.3). The reason why we increase the variance is because the
a�ne-invariant computation is an iterative process, and the convergence is decided
when the Frobenius distance between two consecutive iterations is less than 1.10−6.
The increase of the variance spreads the samples far from the mean value, which
forces the a�ne-invariant computation to perform more iterations to converge to the
solution. Another remark is that the Euclidean estimated mean gets worse when the
variance increases. This is mainly due to the swelling e�ect: average tensors tend
to get bigger than the original samples. We will discuss this e�ect more in details
in Sec. 4.2.1. Notice that the type of noise added is well adapted to our Rieman-
nian metrics (Gaussian on a tangent space), and not to the Euclidean framework,
which explains also why the results with the Euclidean metric are so bad. However,
one should keep in mind that adding a Gaussian noise directly on the mean tensor
coe�cients (which would be the Euclidean way of creating noisy tensors) does not
necessarily produce tensors, i.e., positive de�nite symmetric matrices. Indeed, when
the noise variance is too high w.r.t. the coe�cients, negative eigenvalues appear
and one cannot correctly generate noisy tensors.

4.1.2 Covariance Matrix and Mahalanobis Distance

4.1.2.1 The A�ne-Invariant Case:

As described in [Pennec 2004a], we may generalize most of the usual statistical meth-
ods by using the exponential chart at the mean point. For instance, the empirical
covariance matrix of a set of N tensors Σi of mean Σ̄ is de�ned using the tensor
product: 1

N−1

∑n
i=1

−−→
Σ̄Σi⊗

−−→
Σ̄Σi. Using our Vec mapping, we may come back to more

usual matrix notations and write its expression in a minimal representation with an



62 Chapter 4. Riemannian Processing of DT-MRI

Figure 4.2: A 10×10 �eld of Gaussian random tensors. Mean: Id, variance: 0.1.

Figure 4.3: Mean tensor calculation: Euclidean vs. A�ne-Invariant vs. Log-
Euclidean. 1000 random tensors were used. Implementation was made with Matlab on
a Pentium M at 2GHz with 1Gb of RAM. Left: Time versus variance of random tensors.
While Euclidean (blue line) and Log-Euclidean (black line) computational times are con-
stant w.r.t. the variance, the a�ne-invariant computational time (red line) increases with
the variance. Indeed, more iterations are necessary when the spread of the samples around
the mean is greater. Right: Euclidean distance between estimated and true means. A�ne-
Invariant and Log-Euclidean estimations have a constant accuracy w.r.t. the variance. The
Euclidean estimation, however, gets worse when the variance increases, mainly because of
the swelling e�ect.

orthonormal coordinate system:

Γ =
1

N − 1

N∑
i=1

VecΣ̄
(−−→
Σ̄Σi

) VecΣ̄
(−−→
Σ̄Σi

)T
.

One may also de�ne the Mahalanobis distance:
µ2

(Σ̄,Γ)(Σ) = VecΣ̄
(−→̄
ΣΣ
)T

Γ(-1) VecΣ̄
(−→̄
ΣΣ
)
.
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Looking for the probability density function that minimizes the information with
a constrained mean and covariance, we obtain a generalization of the Gaussian
distribution of the form:

NΣ̄,Γ(Σ) = k exp
(
−1

2
µ2

Σ̄,Γ(Σ)
)
.

The main di�erence with a Euclidean space is that we have a curvature to
take into account: the invariant measure induced on the manifold by our metric is
linked to the usual matrix measure by dM(Σ) = dΣ/det(Σ). Likewise, the curva-
ture slightly modi�es the usual relation between the covariance matrix, the concen-
tration matrix Γ and the normalization parameter k of the Gaussian distribution
[Pennec 2004a]. These di�erences have an impact on the calculations using contin-
uous probability density functions. However, from a practical point of view, the
curvature correction term is here very small [Lenglet 2006a] and could be neglected.

To check the implementation of our charts and geodesic marching algorithms,
we veri�ed experimentally the central limit theorem. This theorem states that
the empirical mean of N independently and identically distributed (IID) random
variables with a variance γ2 asymptotically follows a Gaussian law of variance γ2/N ,
centered at the exact mean value. The principle of our experiments is now as
follows. We randomly generated N Gaussian tensors around a random average
tensor Σ̄ with a variance of γ2 = 1, using the same strategy as in Sec. 4.1.1.2. We
computed the mean Σ̂ using the algorithm of Eq. 4.1. Now, if the error between
the computed and the exact mean really follows a Gaussian law of variance γ2/N ,
then the normalized Mahalanobis distance µ2 = N dist(Σ̄, Σ̂)2/γ2 should follow a χ2

6distribution. However, this simple experiment only gives us one measurement. Thus,
to verify the distribution, we repeated this experiment with N varying from 10 to
1000. Figure 4.4 presents the histogram of the normalized Mahalanobis distances we
obtain. The empirical distribution follows quite well the theoretical χ2

6 distribution,as expected, with an empirical mean of 5.85 and a variance of 12.17 (expected values
are 6 and 12). Moreover, a Kolmogorov-Smirnov test con�rms that the distance
between the empirical and theoretical cumulative pdf is not signi�cant (p-value of
0.19).

4.1.2.2 The Log-Euclidean Case:

Similarly to the Fréchet mean, the covariance matrix Γ of a set of N tensors Σi with
mean Σ̄ in the Log-Euclidean case is simply expressed in terms of matrix logarithms:

Γ =
1

N − 1

N∑
i=1

VecId

(
log(Σi)− log(Σ̄)

) VecId

(
log(Σi)− log(Σ̄)

)>
The Mahalanobis distance is given by:

µ2
(Σ̄,Γ) (Σ) = VecId

(
log(Σ)− log(Σ̄)

)
Γ−1 VecId

(
log(Σ)− log(Σ̄)

)>
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Figure 4.4: Histogram of the renormalized Mahalanobis distance µ2 = N dist(Σ̄, Σ̂)2/γ2

between the computed and the exact mean tensors. The red curve is the pdf of the χ2
6

distribution.

As in the a�ne-invariant case, the process to generate random Gaussian tensors is
the following: we generate a set of n(n + 1)/2 independent real Gaussian samples
whose mean is the logarithm of the desired value and whose variance is 1.0. Then,
we multiply the vector (as obtained with V ec) by the square root of the desired
covariance matrix, and come back to the tensor space by using the matrix exponen-
tial. We veri�ed experimentally that the normalized Mahalanobis distance between
the expected mean and the estimation has a χ2

6 distribution (mean: 6.01, variance:
11.98).

4.2 Tensor Interpolation
One of the important operations in geometric data processing is to interpolate values
between known measurements. In 3D image processing, (tri-) linear interpolation
is often used thanks to its very low computational load and comparatively much
better results than nearest neighbor interpolation. Other popular methods include
the cubic and, more generally, spline interpolations [Thévenaz 2000, Meijering 2002].

The standard way to de�ne an interpolation on a regular lattice of dimension d
is to consider that the interpolated function f(x) is a linear combination of samples
fk at integer (lattice) coordinates k ∈ Zd: f(x) =

∑
k ω(x − k) fk. To realize an

interpolation, the �sample weight� function ω has to vanish at all integer coordinates
except 0 where it has to be one. A typical example where the convolution kernel has
an in�nite support is the sinus cardinal interpolation. With the nearest-neighbor,
linear (or tri-linear in 3D), and higher order spline interpolations, the kernel is
piecewise polynomial, and limited to a few neighboring points in the lattice.

When it comes to an irregular sampling (i.e. a set of measurements fk at
positions xk), interpolation may still be de�ned using a weighted mean: f(x) =∑N

k=1 ωk(x) fk. To ensure that this is an interpolating function, one has to require
that ωi(xj) = δij (where δij is the Kronecker symbol). Moreover, the coordinates
are usually normalized so that∑N

k=1 ωk(x) = 1 for all position x within the domain
of interest. Typical examples in triangulations or tetrahedrizations are barycentric
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and natural neighbor coordinates [Sibson 1981].
4.2.1 Example of the linear interpolation

The linear interpolation is simple as this is a walk along the geodesic joining the
two tensors. For instance, the interpolation in the standard Euclidean matrix space
would give, for t ∈ [0, 1]:

Σ(t) = (1− t) Σ1 + t Σ2.

This operation is convex (i.e., the weights are positive and the sum is equal to
one), thus the result is still a tensor. With the Riemannian metrics, we have the
closed-form expression:

Σ(t) = expΣ1

(
t logΣ1

(Σ2)
)

= expΣ2

(
(1− t) logΣ2

(Σ1)
)
, t ∈ [0, 1],

which gives with the a�ne-invariant metric:
Σ(t) = Σ1/2

1 exp
(
t log

(
Σ−1/2

1 Σ2Σ
−1/2
1

))
Σ1/2

1 .

In the Log-Euclidean framework, it is even simpler:
Σ(t) = exp((1− t) log(Σ1) + t log(Σ2)).

We displayed in Fig. 4.5 the Euclidean, a�ne-invariant and Log-Euclidean interpo-
lations between 2D tensors of eigenvalues (5,1) horizontally and (1,50) at 45 degrees,
along with the evolution of their trace, product (i.e., determinant of the matrix or
area of the ellipses) and fractional anisotropy (i.e., distance from the circle).

With the standard matrix coe�cient interpolation, the evolution of the trace is
perfectly linear (which was expected since this is a linear function of the coe�cients).
What is much more annoying is that the determinant (i.e., area of the ellipses in
2D, or volume of the ellipsoids in 3D) does not grow regularly in between the two
tensors, but goes through a maximum. If we interpret tensors as covariance matrices
of Gaussian distributions, this means that the probability of a random point to
be accepted as a realization of the distributions is larger in between than at the
measurement points themselves! We call this the swelling e�ect (�rst described
by Tschumperlé in [Tschumperlé 2002]), and we will see in the following that it is
encountered quite often in tensor processing. On the contrary, one can clearly see a
regular evolution of the eigenvalues and their product with the a�ne-invariant and
Log-Euclidean interpolations. Moreover, there is a much smoother rotation of the
eigenvectors than with the Euclidean interpolation.

Interestingly, there is almost no di�erence between the a�ne-invariant and Log-
Euclidean interpolations: both behave quite similarly (smooth interpolation of the
eigenvectors, monotonic evolution of the determinant), with slightly more anisotropy
in the LE case. In fact, one can show that they are exactly the same when the two
tensors commute. Let us assume that Σ1 and Σ2 commute. Then, they can be
decomposed in the same basis, i.e., there exists an orthogonal matrix U such that
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Figure 4.5: Left: Linear interpolation between 2D tensors of eigenvalues (5,1) horizontally
and (1,50) at 45 degrees. Top: interpolation in the standard matrix space (interpolation of
the coe�cients). Middle: geodesic interpolation with the a�ne-invariant metric. Bottom:
geodesic interpolation with a Log-Euclidean metric. Right: Evolution of the trace (red),
product (blue) and fractional anisotropy (black).

Σ1 = UV1U
> and Σ2 = UV2U

>. As V1 and V2 are diagonal matrices, they commute
and then any power of Σ1 commute with any power of Σ2. One can write, in the
a�ne-invariant case:

Σ(t) = expΣ1

(
t logΣ1

(Σ2)
)

= Σ1/2
1 exp

(
t log

(
Σ−1/2

1 Σ2Σ
−1/2
1

))
Σ1/2

1

= Σ1/2
1 exp

(
t log

(
Σ2Σ−1

1

))
Σ1/2

1

= Σ1/2
1 exp (t log (Σ2)− t log (Σ1))Σ1/2

1

= Σ1/2
1 Σ−t

1 Σt
2Σ

1/2
1

= Σ1Σ−t
1 Σt

2

Σ(t) = Σ1−t
1 Σt

2

In the Log-Euclidean case, on has:
Σ(t) = exp ((1− t) log(Σ1) + t log(Σ2))

Σ(t) = Σ1−t
1 Σt

2

Both are the geometric interpolation of the two tensors.
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4.2.2 Multi-linear interpolation

The bi- and tri-linear interpolation of tensors on a regular grid in 2D or 3D are
almost as simple, except that we do not have any longer an explicit solution in the
a�ne-invariant case since there are more than two points. After computing the
(bi-) tri-linear weights with respect to the neighboring sites of the point we want
to evaluate, we now have to go through the iterative optimization of the weighted
mean (Eq. 4.1) in the a�ne-invariant case to compute the interpolated tensor. The
Euclidean and Log-Euclidean cases have both a closed form solution for the weighted
mean calculation (see e.g. Eq. 4.2 for the Log-Euclidean mean).

We display an example of bi-linear interpolation in Figure 4.6. One can see that
the surface of the 2D tensors (or volume in 3D) is much more important with the
Euclidean than with the Riemannian interpolations. This fact is exempli�ed with
the interpolation of the determinant which is not monotonic in the Euclidean case
(see Fig. 4.6 third row), while it is with the A�ne-Invariant and Log-Euclidean
metrics. Like for the geodesic interpolation, the fractional anisotropy goes trough a
minimum value for the three interpolations, but the e�ect is less pronounced with
the Riemannian interpolations (Fig. 4.6 last row). We also get a much smoother
interpolation of the principal directions with these Riemannian methods. Once
again, both A�ne-Invariant and Log-Euclidean frameworks give very close results,
with a slightly higher FA for the last one.
4.2.3 Interpolation of non regular measurements

When tensors are not measured on a regular grid but �randomly� localized in space,
de�ning neighbors becomes an issue. One solution, proposed by [Sibson 1981] and
later used for surfaces by [Cazals 2001], is the natural neighbor interpolation. For
any point x, its natural neighbors are the points of {xi} whose Voronoi cells are
chopped o� upon insertion of x into the Voronoi diagram. The weight wi of each
natural neighbor xi is the proportion of the new cell that is taken away by x to xi in
the new Voronoï diagram. One important restriction of these interesting coordinates
is that they are limited to the convex hull of the point set (otherwise the volume or
surface of the cell is in�nite).

Another idea is to rely on radial-basis functions to de�ne the relative in�uence of
each measurement point. A radial basis function (RBF) is a a real-valued function
whose value depends only on the distance from the origin, so that φ(x) = φ(||x||);
or alternatively on the distance from some other point c, called a center, so that
φ(x, c) = φ(||x−c||). Interpolating a set of discrete measures yi de�ned at positions
xi, i ∈ [1, N ] via a RBF φ consists in �nding the coe�cients λi that de�ne a function
y(x) such that:

y(x) =
N∑

j=1

λjφ(x− xj), with y(xi) = yi.

The weights λi are determined by the linear system: ∀i ∈ [1, N ], y(xi) = yi. In
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Euclidean A�ne-Invariant Log-Euclidean

Figure 4.6: Bi-linear interpolation between the four 2D tensors at the corners, using the
standard Euclidean calculus (left column), the a�ne-invariant metric (middle column),
and the Log-Euclidean framework (right column). To better illustrate the behavior these
di�erent interpolations, we computed the corresponding images of the trace (second row),
of the surface (third row), and of the FA (last row).

practice, one has to solve the following system:

H.

 λ1...
λN

 =

 y1...
yN

 , with [H](i,j) = φ(xi − xj).
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[H](i,j) corresponds to the element of H at the ith row and jth column. A solution
to this system is ensured to exist if the matrix H is positive de�nite. This is the
case, for instance, when using RBF like:

• The Gaussian: φ(x) = exp(−α‖x‖2);
• Functions of the family: φ(x) = 1

1+(‖x‖2/α2)γ ;

• The Thin Plate Spline: φ(x) = ‖x‖2 log(‖x‖).
So far, this interpolation is only valid for scalar measures. For general vector spaces,
and in particular matrix (and tensors)-valued functions, one needs to: 1. convert
matrices into vectors using the Vec mapping (Eq. 3.6), 2. interpolate independently
each vector coordinate using the RBF, and 3. map the result back to the tensor
space using the inverse V ec mapping. Note that it is necessary to solve one system
(i.e., compute a set of λi) per coe�cient. For instance, interpolating 3D tensors
with RBF requires solving 6 linear systems (tensors are turned into 6-dimensional
vectors). However, the systems can be solved once for all as they are the same for
a given set of measures.
4.2.3.1 The A�ne-Invariant Case:

This strategy works in Euclidean calculus. In the a�ne-invariant framework, one
needs to map all tensors to a common tangent plane so that tensors become elements
of the same vector space in order to be able to combine them. It implies a choice
on the point of reference. A reasonable choice is the (a�ne-invariant) mean of all
measures, which is by nature close to each measure. Let (Σi, xi), i ∈ [1, N ] be a
set of N tensor measures at positions xi. The �rst step is to compute the reference
tensor Σ̄, and turn all measures into vectors in the tangent space de�ned at this
reference:

∀i ∈ [1, N ],Wi = logΣ̄ (Σi) .

Second, these tangent vectors are turned into vectors using the Vec mapping (Eq.
3.6):

Vi = V ecΣ̄ (Wi) =

 v0
i...
vp
i


We denote by vp

i the pth component of vector Vi. Third, for each component p, one
compute the weights λp

j , such that:

∀i ∈ [1, N ], vp
i =

N∑
j=1

λp
jφ(xi − xj).

Finally, we obtain the interpolated tensor-valued function by mapping the inter-
polated value back to the tensor space using the inverse Vec function and the
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exponential map:

Σ(x) = expΣ̄

V ec−1
Σ̄


 v1(x)...
vp(x)



 , where vp(x) =

N∑
j=1

λp
jφ(x− xj)∀p.

4.2.3.2 The Log-Euclidean Case:

In the Log-Euclidean framework, one simply needs to take the logarithm of each
measure, turn them into vectors using the Vec mapping, and perform RBF interpo-
lation on these vectors by computing the weights per vector component exactly as
in the a�ne-invariant case. To map the result back to the tensor space, one needs
to turn the interpolated vectors back into matrices using the inverse Vec mapping
and exponentiate them as usual. Notice that doing so implicitly uses the identity
matrix as tensor of reference. Indeed, one can write:

Wi = log (Σi) = log (Σi)− log (Id)

In fact, this is similar to the a�ne-invariant case when the identity tensor is chosen as
reference. One can choose another value of reference, like the mean of all measures:

Wi = log (Σi)− log
(
Σ̄
)

One should not forget to add the reference value when exponentiating the result:
Σ(x) = exp

(
log(Σ̄) +W (x)

)
Results of an RBF interpolation with the thin plate spline function is given in
Fig. 4.7. As expected, the Euclidean interpolation tends to make tensor swell,
while a�ne-invariant and Log-Euclidean interpolations preserve the volumes. A�ne-
invariant and Log-Euclidean results are so closed that they cannot be visually dif-
ferentiated (we display only one image).

Figure 4.7: RBF tensor interpolation using the Thin Plate Spline function. Left: The
four initial measures. Middle: The Euclidean interpolation. Right: The A�ne-Invariant
and Log-Euclidean interpolations (results are too close to be di�erentiated).

We will describe in Section 4.4.2 a last alternative that performs the interpolation
and extrapolation of sparsely distributed tensor measurements using di�usion.
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4.3 Filtering of Tensor Fields
Let us now consider that we have a tensor �eld, for instance like in Di�usion Tensor
Imaging (DTI). One of the goals of DTI is to retrieve the main �ber tracts from
the di�usion tensor �eld. However, it is obtained from noisy images typical of MR
acquisition (we will see in the next chapter an optimal work�ow to estimate tensors
from raw MR data) and needs to be regularized before being further analyzed. A
naive but simple and often e�cient regularization on signal or images is the Gaussian
�lter. Its generalization to tensor �elds is quite straightforward using once again
weighted means (Section 4.3.1 below). An alternative is to consider a regularization
using di�usion. This will be the subject of Sections 4.3.3 and 4.3.4.
4.3.1 Gaussian Filtering

In the continuous setting, the convolution of a vector �eld F0(x) by a Gaussian is:
F (x) =

∫
y
Gσ(y − x) F0(y) dy.

In the discrete setting, coe�cients are renormalized since the neighborhood V is
usually limited to points within one to three times the standard deviation:

F (x) =

∑
u∈V(x)Gσ(u) F0(x+ u)∑

u∈V(x)Gσ(u)
= arg min

F

∑
u∈V(x)

Gσ(u) ‖F0(x+ u)− F‖2.

Like in Section 4.2.2, this weighted mean can be solved in the a�ne-invariant
framework using our intrinsic gradient descent scheme. The Log-Euclidean formu-
lation is once again a weighted mean on the tensor logarithms mapped back to the
tensor space via the matrix exponential.

We illustrate in Fig. 4.8 the comparative Gaussian �ltering of a slice of a DT
MR image using the Euclidean metric on the coe�cients (since weights are posi-
tive, a weighted sum of positive de�nite matrices is still positive de�nite) and our
Riemannian metrics. One can see that tensors around the ventricles tend to swell
and blur the nearby smaller anisotropic ones (e.g., as inside the genu tract). Indeed,
the large isotropic tensors within the ventricles largely in�uence the smoothing of
the nearby region due to the fact that in general, the Euclidean average tensor of
a set of tensors have a greater determinant (i.e., tensor volume) than each sample.
This swelling e�ect is problematic and gives the impression that the ventricles have
swelled after the smoothing. Riemannian metrics prevent this undesirable behavior
and gives results intuitively close to what we are expecting of a Gaussian smoothing
on tensors.

However, Gaussian smoothing is in general not the best �ltering approach, in
particular when one wants to perform �ber reconstruction as a �nal processing. In
that case, one would like to preserve the discontinuities of the tensor �elds using an
anisotropic regularization procedure. For instance, the smoothed �eld of Fig. 4.8
right shows a corpus callosum less anisotropic than it should and dimished in size
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Figure 4.8: Regularization of a DTI slice by isotropic Gaussian �ltering. Top: The
original slice (left), after Euclidean �ltering (middle), and after a�ne-invariant or Log-
Euclidean �ltering (right). Bottom: Close-up on the junction between the ventricles and
the genu of the corpus callosum. Euclidean �ltering produces outliers (large tensors inside
the ventricles for example), due to the fact that this metric advantages large values. Notice
how the ventricles �swelled� compared to the Riemannian �ltering, which is closer to what
we would expect of a Gaussian smoothing on tensors.

due to the in�uence of the tensors inside the ventricles: we would rather prefer to
have the boundaries between those to regions preserved by the smoothing. But �rst
of all, one needs to de�ne what the �discontinuities� of a tensor �eld are. As we
are in the discrete setting, we are not looking for discontinuities in the topological
sense, but rather for places where the tensor �eld varies much more rapidly within
a given neighborhood. In other words, we need to express the spatial gradient of a
tensor image, and to measure its strength. This last point is intrinsically related to
the metric used on tensors.
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4.3.2 Spatial gradient of Tensor �elds

On a n-dimensional vector �eld F (x) = (f1(x1, . . . xd), . . . fn(x1, . . . xd))T over Rd,
one may express the spatial gradient in an orthonormal basis as:

∇FT =
(
∂F

∂x

)
= [∂1F, . . . ∂dF ] =


∂f1

∂x1
, . . . ∂f1

∂xd... . . . ...
∂fn

∂x1
, . . . ∂fn

∂xd

 .
The linearity of the derivatives implies that we could use directional derivatives in

more than the d orthogonal directions. This is especially well adapted to stabilize the
discrete computations: the �nite di�erence estimation of the directional derivative
is ∂uF (x) = F (x + u) − F (x). By de�nition, the spatial gradient is related to
the directional derivatives through < ∇F |u >= ∂uF (x). Thus, we may compute
∇F as the matrix that best approximates (in the least-square sense) the directional
derivatives in the neighborhood V (e.g., 6 or 26 connectivity in 3D):

∇F (x) = arg min
G

∑
u∈V

‖GT u− ∂uF (x)‖2 =

(∑
u∈V

u uT

)(−1) (∑
u∈V

u ∂uF (x)T
)

'

(∑
u∈V

u uT

)(−1) (∑
u∈V

u (F (x+ u)− F (x))T
)
.

It was experimentally shown in other applications (e.g. to compute the Jaco-
bian of a deformation �eld in non-rigid registration [Rey 2002, p. 169]) that this
gradient approximation scheme was more stable and much faster than computing
all derivatives using convolutions, for instance by the derivative of the Gaussian.

To quantify the local amount of variability independently of the space direction,
one usually takes the norm of the gradient: ‖∇F (x)‖2 =

∑d
i=1 ‖∂iF (x)‖2. Once

again, this can be approximated using all directional derivatives in the neighborhood

‖∇F (x)‖2 ' d

Card(V)

∑
u∈V

‖F (x+ u)− F (x)‖2

‖u‖2
, (4.3)

where Card(V) represents the total number of neighbors at the considered point
(typical values in 3D are 6 or 26). Notice that this approximation is consistent with
the previous one only if the directions u are normalized to unity.
4.3.2.1 A�ne-Invariant Formulation:

For the tensor manifold endowed with the a�ne-invariant metric, we can proceed
similarly, except that the directional derivatives ∂iΣ(x) are now tangent vectors of
TΣ(x)M. They can be approximated just like above using �nite �di�erences� in the
exponential chart:
∂uΣ(x) '

−−−−−−−−−−→
Σ(x) Σ(x + u) = Σ(x)

1
2 log

(
Σ(x)−

1
2 Σ(x+ u) Σ(x)−

1
2

)
Σ(x)

1
2 . (4.4)
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As observed in Section 3.3.5, we must be careful that this directional derivative is
expressed in the standard matrix coordinate system (coe�cients). Thus, the basis
is not orthonormal: to quantify the local amount of variation, we have to take the
metric at the point Σ(x) into account, so that:

‖∇Σ(x)‖2
Σ(x) =

d∑
i=1

‖∂iΣ(x)‖2
Σ(x) '

d

Card(V)

∑
u∈V

∥∥∥log
(
Σ(x)−

1
2 Σ(x+ u) Σ(x)−

1
2

)∥∥∥2

2

‖u‖2
.

(4.5)
4.3.2.2 Log-Euclidean Formulation:

Log-Euclidean formulation of the directional derivatives is straightforward. Using
the same �nite di�erence scheme, one can write:

∂uΣ(x) ' log (Σ(x+ u))− log (Σ(x))

The norm of the gradient is:
‖∇Σ(x)‖2

Σ(x) '
d

Card(V)

∑
u∈V

‖ log (Σ(x+ u))− log (Σ(x)) ‖2
2

‖u‖2
. (4.6)

Example of the gradient norm of a DTI slice is shown in Fig. 4.9. The same win-
dowing was used for both Euclidean and Riemannian gradients, so that images can
be visually compared. The a�ne-invariant and Log-Euclidean metrics gave results
almost similar, we display only one of them. What is striking is that the Riemannian
gradient exhibits a more detailed structure inside the brain white matter compared
to the Euclidean gradient. In particular, the Euclidean gradient shows a high con-
trast around the ventricles and at the periphery of the brain: these regions are
made with large isotropic tensors (cortico-spinal �uid inside the ventricles, and grey
matter at the periphery), which once again in�uence a lot the result. By contrast,
the Riemannian gradient acts like a �normalizer� for the gradient: interface between
large and smaller tensors (like around the ventricles) have the same contrast as in-
terfaces between two tensor regions of the same size but with di�erent orientations
(like within the white matter). It is especially interesting since such interfaces are
generally delimiting two distinct �ber tracts, and should be preserved during an
anisotropic smoothing for example. This is the topic of the next sections.
4.3.3 Filtering using PDEs

Regularizing a scalar, vector or tensor �eld F aims at reducing the amount of its
spatial variations. The �rst order measure of such variations is the spatial gradient
∇F that we dealt with in the previous section. To obtain a regularity criterion over
the domain Ω, we just have to integrate: Reg(F ) =

∫
Ω ‖∇F (x)‖2 dx. Starting from

an initial �eld F0(x), the goal is to �nd at each step a �eld Ft(x) that minimizes
the regularity criterion by gradient descent in the space of (su�ciently smooth and
square integrable) functions.
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Figure 4.9: Norm of the gradient of a tensor �eld (same slice as Fig. 4.8), computed on
the coe�cients with Eq. 4.3 (left), and computed with either the a�ne-invariant (Eq. 4.5)
or Log-Euclidean metrics (Eq. 4.6) (right). One can see much more structures within the
brain, which will be better preserved during an anisotropic regularization step.

To compute the �rst order variation, we write a Taylor expansion for an incre-
mental step in the direction of the �eld H.

Reg(F + ε H) = Reg(F ) + 2 ε
∫

Ω
〈 ∇F (x) | ∇H(x)〉 dx+O(ε2).

We get the directional derivative: ∂HReg(F ) = 2
∫
Ω 〈 ∇F (x) | ∇H(x)〉 dx. To

compute the steepest descent, we now have to �nd the gradient ∇Reg(F ) such that
for all variation H, we have ∂HReg(F ) =

∫
Ω 〈 ∇Reg(F )(x) |H(x)〉F (x) dx. Noticethat ∇Reg(F )(x) and H(x) are elements of the tangent space at F (x), so that the

scalar product should be taken at F (x) for a tensor �eld.
4.3.3.1 The case of a scalar �eld

Let f : Rd → R be a scalar �eld. Our regularization criterion is Reg(f) =∫
Ω ‖∇f(x)‖2 dx. Let us introduce the divergence div(.) = 〈 ∇ | .〉 and the Laplacian
operator ∆f = div(∇f). The divergence is usually written ∇T = (∂1, . . . , ∂d), so
that in an orthonormal coordinate system we have ∆f = 〈 ∇ | ∇f 〉 =

∑d
i=1 ∂

2
i f .Let now G(x) be a vector �eld. Typically, we will use G(x) = ∇f(x). Using the

standard di�erentiation rules, we have:
div(h G) = 〈 ∇ | h G〉 = h div(G) + 〈 ∇h |G〉 .
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Now, thanks to the Green's formula (see e.g. [Gallot 1993]), we know that the
�ux going out of the boundaries of a (su�ciently smooth) region Ω is equal to the
integral of the divergence inside this region. If we denote by n the normal pointing
outward at a boundary point, we have:∫

∂Ω
〈 h G | n〉 dn =

∫
Ω
div(h G) =

∫
Ω
h div(G) +

∫
Ω
〈 ∇h |G〉 .

This result can also be interpreted as an integration by part in Rd. Assuming
homogeneous Neumann boundary conditions (gradient orthogonal to the normal on
∂Ω: 〈G | n〉 = 0), the �ow across the boundary vanishes, and we are left with:∫
Ω 〈G | ∇h〉 = −

∫
Ω h div(G). Thus, coming back to our original problem, we have:

∂hReg(f)(x) = 2
∫

Ω
〈 ∇f(x) | ∇h(x)〉 dx = −2

∫
Ω
h(x) ∆f(x) dx.

Since this last formula is no more than the scalar product on the space L2(Ω,R) of
square integrable functions, we end-up with the classical Euler-Lagrange equation:
∇Reg(f) = −2∆f(x). The evolution equation used to �lter the data is thus

ft+1(x) = ft(x)− ε∇Reg(f)(x) = ft(x) + 2 ε∆ft(x).

4.3.3.2 The vector case

Let us decompose our vector �eld F (x) into its n scalar components fi(x). Likewise,
we can decompose the d×n gradient∇F into the gradient of the n scalar components
∇fi(x) (columns). Thus, choosing an orthonormal coordinate system on the space
Rn, our regularization criterion is decoupled into n independent scalar regularization
problems:

Reg(F )(x) =
n∑

i=1

∫
Ω
‖∇fi(x)‖2 dx =

n∑
i=1

Reg(fi).

Thus, each component fi has to be independently regularized with the Euler-
Lagrange equation: ∇Reg(fi) = −2∆fi. With the convention that the Laplacian
is applied component-wise (so that we still have ∆F = div(∇F ) = ∇T ∇F =
(∆f1, . . .∆fn)T), we end-up with the vectorial equation:

∇Reg(F ) = −2∆F for Reg(F ) =
∫

Ω
‖∇F (x)‖ dx.

The associated evolution equation is Ft+1(x) = Ft(x) + 2 ε∆Ft(x).
4.3.3.3 Tensor Fields

Let (x1, . . . xd) be an orthonormal coordinate system of Rd and Σ(x) ∈ Sym+
n a

tensor �eld over Rd. Our regularization criterion is:

Reg(Σ) =
∫

Ω
‖∇Σ(x)‖2

Σ(x) dx =
d∑

i=1

∫
Ω
‖∂iΣ(x)‖2

Σ(x) . (4.7)
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The idea is to write this criterion as the Trace of sums and products of stan-
dard Euclidean matrices and to compute its directional derivative ∂WReg for a
perturbation �eld W . This expression contains of course derivatives ∂iW that we
need to integrate. However, as everything is expressed in the standard Euclidean
chart (matrix coe�cients), and assuming the proper Neumann boundary conditions,
we shall safely use the previous integration by part formula ∫Ω Tr((∂iW ) Λi) =
−
∫
Ω Tr(W (∂iΛi)). Notice that we are using the matrix coe�cients only as a chart

and not as a metric. Eventually, we rewrite the obtained expression in terms of
our Riemannian metrics to obtain the formula de�ning the gradient of the crite-
rion: ∂WReg =

∫
Ω 〈W | ∇Reg 〉Σ. By identi�cation, we get: ∇Reg(Σ) = −2 ∆Σ,

where ∆ is the Laplace-Beltrami operator on our manifold that we need to express
in the a�ne-invariant and Log-Euclidean frameworks. Before detailing the Laplace-
Beltrami operators, we give the gradient descent on the regularization criterion with
the intrinsic geodesic marching scheme of Section 3.3.6:

Σt+1(x) = expΣt(x) (−ε∇Reg(Σ)(x)) = expΣt(x) (2 ε∆Σ(x))

= Σt(x)1/2 exp
(
2 ε Σ−1/2

t (x)∆Σ(x)Σ−1/2
t (x)

)
Σ1/2

t (x) (AI)(4.8)
= exp (log (Σt(x)) + 2 ε∆Σ(x)) (LE) (4.9)

The A�ne-Invariant Laplace-Beltrami operator: We show in Appendix A.1 that
the Laplace-Beltrami in the a�ne-invariant case can be expressed as:

∆Σ =
d∑

i=1

∆iΣ with ∆iΣ = ∂2
i Σ− (∂iΣ) Σ(-1) (∂iΣ). (4.10)

As we can see, the Euclidean second order directional derivatives ∂2
i Σ are corrected

by an additional term due to the curvature of our manifold.
For the numerical computation of the Laplacian, we may approximate the �rst

and second order AI derivatives by Euclidean �nite di�erences. This gives a fourth
order approximation of the Laplace-Beltrami operator (details can be found in
Appendix A.2). However, this numerical scheme is extrinsic since it is based on
(Euclidean) di�erences of tensors. We propose here an intrinsic scheme based on
the exponential chart at the current point. We already know from Eq. 4.4 that−−−−−−−−−→
Σ(x)Σ(x+ u) is an approximation of the �rst order directional derivative ∂uΣ(x).
We show in Appendix A.2 that −−−−−−−−−→Σ(x)Σ(x+ u) +

−−−−−−−−−→
Σ(x)Σ(x− u) is a fourth order

approximation of the Laplace Beltrami operator in the direction u:

∆uΣ = ∂2
uΣ−(∂uΣ)Σ(-1) (∂uΣ) =

−−−−−−−−−→
Σ(x)Σ(x+ u) +

−−−−−−−−−→
Σ(x)Σ(x− u)

‖u‖2
+O(‖u‖4). (4.11)

To compute the complete manifold Laplacian of Eq. 4.10, we just have to com-
pute the above numerical approximations of the tensor �eld derivatives along d

orthonormal basis vectors xi. However, like for the computation of the gradient, we
may improve the stability of the numerical scheme by averaging the derivatives in



78 Chapter 4. Riemannian Processing of DT-MRI

all possible directions in the neighborhood V. Assuming a symmetric and isotropic
neighborhood, we �nally obtain:

∆Σ(x) =
d

Card(V)

∑
u∈V

∆uΣ(x)

' d

Card(V)

∑
u∈V

(
Σ1/2(x) log

(
Σ(x)−1/2Σ(x+ u)Σ(x)−1/2

)
Σ1/2(x)

‖u‖2
+

Σ1/2(x) log
(
Σ(x)−1/2Σ(x− u)Σ(x)−1/2

)
Σ1/2(x)

‖u‖2

)
(4.12)

The Log-Euclidean Laplace-Beltrami operator: The Log-Euclidean formulation
of the Laplace-Beltrami operator boils down to the vectorial case on the logarithms
of tensors:

∆Σ =
d∑

i=1

∆iΣ with ∆iΣ = ∂2
i log (Σ)

Using a �nite di�erence scheme over a neighborhood V, one can write:

∆Σ(x) ' d

Card(V)

∑
u∈V

log (Σ(x+ u))− 2 log (Σ(x)) + log (Σ(x− u))
‖u‖2

(4.13)

Remark that contrary to the a�ne-invariant case, one is not obliged to go back to
the tensor space (by taking the matrix exponential) at each iteration. Indeed, the
evolution equation acts on the logarithms, which are computed once for all. Taking
the exponential is required at the end of the process to obtain the �nal tensors.

In the following, we illustrate the use of the PDE tensor �ltering strategy we
presented with the anisotropic �ltering.

4.3.4 Anisotropic Filtering

In practice, we would like to �lter within homogeneous regions, but not across their
boundaries. The basic idea is to penalize the smoothing in the directions where the
derivative is important [Perona 1990, Gerig 1992]. If c(.) is a weighting function
decreasing from c(0) = 1 to c(+∞) = 0, this can be realized directly in the discrete
implementation of the Laplacian (Eq. 4.12 and 4.13): the contribution of the spatial
direction u to the Laplace-Beltrami operators is weighted by our decreasing function
according to the norm of the gradient in that direction. The important point here
is that we should evaluate the norm of the directional derivatives of the tensor �eld
with the corresponding metric (a�ne-invariant or Log-Euclidean). With our �nite
di�erence approximations, this leads to the following modi�ed Laplacian:

∆anisoΣ(x) =
d

Card(V)

∑
u∈V

c
(
‖∂uΣ(x)‖Σ(x)

)
∆uΣ(x) (4.14)
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Figures 4.10 and 4.11 present example results of this simple anisotropic �ltering
scheme on synthetic and real DTI images. Although the a�ne-invariant implemen-
tation was used, di�erences between AI and Log-Euclidean implementation are very
small and discussed later. We used the function c(x) = exp

(
−x2/κ2

), where the
threshold κ controls the amount of local regularization: for a gradient magnitude
greater than 2 to 3 times κ, there is virtually no regularization, while the �eld is al-
most linearly smoothed for gradient magnitudes below a fraction (say 0.1) of κ. For
both synthetic and real data, the histogram of the gradient norm is clearly bimodal
so that the threshold κ is easily determined.

In Fig. 4.10, we generated a tensor �eld with a discontinuity, and add inde-
pendent Gaussian noises according to Section 4.1.1. The anisotropic smoothing
perfectly preserves the discontinuity while completely smoothing each region. In
this synthetic experiment, we retrieve tensor values that are very close to the initial
tensor �eld. This could be expected since the two regions are perfectly homogeneous.
After enough regularization steps, each region is a constant �eld equal to the mean
of the 48 initially noisy tensors of the region. Thus, similarly to the Euclidean mean
of identically and independently distributed measurements, we expect the standard
deviation of the regularized tensors to be roughly 7 '

√
48 times smaller than the

one of the noisy input tensors.

Figure 4.10: Left: 3D synthetic tensor �eld with a clear discontinuity. Middle: The �eld
has been corrupted by a Gaussian noise (in the Riemannian sense). Right: result of the
regularization after 30 iterations (time step ε = 0.01, κ = 0.05).

In Figure 4.11, we display the evolution of (a slice of) the tensor �eld, the norm
of the gradient and the FA at di�erent steps of the anisotropic �ltering of a 3D DTI.
One can see that the tensors are regularized in �homogeneous� regions (ventricles,
temporal areas), while the main tracts are left unchanged. It is worth noticing
that the fractional anisotropy is very well regularized even though this measure has
almost nothing in common with our invariant tensor metric.

Figure 4.12 displays closeups around the ventricles to compare the di�erent reg-
ularization methods developed so far. One can see that the Riemannian metrics
(AI and LE) give much less weight to large tensors, thus providing a regularization
which is more robust to outliers. The anisotropic �ltering further improves the re-
sults by preserving the discontinuities of the tensor �eld (e.g. at the boundary of the
ventricles), but also the discontinuities of the tensor orientation, which is exactly
what is needed for �ber tracking in DTI.
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Figure 4.11: Anisotropic �ltering of a DTI slice (time step 0.01, κ = 0.05). From left to
right: at the beginning, after 10 and after 50 iterations. Top: A 3D view of the tensors as
ellipsoids. The results are to be compared with the isotropic Gaussian �ltering displayed in
Figure 4.8. Middle: Riemannian norm of the gradient. Bottom: Fractional anisotropy.
Note that after 50 iterations we start bluring out some structures like the sulci in the
exterior part of the images. The number of iterations should not exceed 30 to 40 for an
optimal result.
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Figure 4.12: Closeup on the results of the di�erent �ltering methods around the splenium
of the corpus callosum.Top left: Original image. Top right: Gaussian �ltering using the
Euclidean metric (5x5 window, σ = 2.0). This metric gives too much weight to tensors
with large eigenvalues, thus leading to clear outliers in the ventricles or in the middle of
the splenium tract. Bottom left: Gaussian �ltering using the Riemannian metrics (5x5
window, σ = 2.0). Outliers disappeared, but the discontinuities are not well preserved, for
instance in the ventricles at the level of the cortico-spinal tracts (upper-middle part of the
images). Bottom right: Anisotropic �ltering in the Riemannian frameworks (time step
0.01, 50 iterations). The ventricles boundary is very well preserved with an anisotropic �lter
and both isotropic (ventricles) and anisotropic (splenium) regions are regularized. Note that
the U-shaped tracts at the boundary of the grey/white matter (lower left and right corners
of each image) are preserved with an anisotropic �lter and not with a Gaussian �lter.
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We show on Fig. 4.13 an illustration of the swelling e�ect with the Euclidean
smoothing. First of all, Euclidean anisotropic �ltering is di�cult to realize because
the gradient descent is not a convex operation and negative eigenvalues appear very
quickly. To prevent negatives values to come up, one has to take an integration
step extremely small (in this case 1.10−6) and increase the number of iterations so
that the product: number of iterations × integration step remains the same in the
Euclidean and Riemannian cases. One notices that the Euclidean result seriously
su�ers from the swelling e�ect: tensors are restored but are much bigger than the
original values. This e�ect is due to the fact that this type of smoothing can be seen
as a weighted mean calculation at each positions and at each iterations. Of course,
the weights are chosen so that it gives an anisotropic behavior to the smoothing. We
saw previously that in general, Euclidean averaging of tensors produces results that
have a larger determinant (i.e., volume) than the samples. If this process is iterated
an important number of times, this leads to the swelling e�ect of Fig. 4.13. As ex-
pected, the Riemannian smoothing does not su�er from this drawback and correctly
denoised homogeneous regions while preserving the boundary with the ventricles.
On Fig. 4.13 bottom right, we displayed the di�erence, magni�ed by 100, between
the a�ne-invariant and Log-Euclidean results! Di�erences are almost inexistent,
which gives advantage to the Log-Euclidean framework as its computational time is
by far less than the a�ne-invariant one (see table 4.1 for the computational times).
Notice that the only di�erences appear in regions where tensor anisotropy is high,
con�rming the observation we made on the linear interpolation of Sec. 4.2.1.

Euclidean A�ne-Invariant Log-Euclidean
time (s/iteration) 1.8 20.24 1.8

total time 90002 (50000 ite) 1012 (50 ite) 90 (50 ite)
Table 4.1: Computational times for one iteration of the anisotropic di�usion scheme of Sec.
4.3.4. The dimensions of the tensor �eld are: 128 × 128 × 58. Implementation was made
in C++ using optimized numerical libraries (for the eigen decomposition), on a Pentium
M at 2GHz with 1Gb of memory. Euclidean and Log-Euclidean frameworks are obviously
much more performant than the a�ne-invariant one. However, one should retain that the
integration step to make the Euclidean smoothing stable must be extremely low (for stability
reasons), and consequently we had to increase the number of iterations proportionally:
when Log-Euclidean and A�ne-Invariant smoothings require only 50 iterations with an
integration step of 0.1 to converge, one must perform 50000 iterations with an integration
step of 0.0001 in the Euclidean case to obtain the same �amount� of smoothing!

4.4 Tensor Field Restoration
The pure di�usion is e�cient to reduce the noise in the data, but it also reduces
the amount of information. Moreover, the amount of smoothing is controlled by
the time of di�usion (time step ε × the number of iterations), which is not an
easy parameter to tune. At an in�nite di�usion time, the tensor �eld will be com-
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Figure 4.13: Anisotropic Smoothing: Euclidean vs. Riemannian. Top Left: Origi-
nal slice (closeup around the left big ventricle). Top Right: Euclidean anisotropic smooth-
ing. Bottom Left: Log-Euclidean smoothing. Bottom Right: Di�erence between a�ne-
invariant and Log-Euclidean smoothing magni�ed by 100.

pletely homogeneous (or homogeneous by part for the anisotropic di�usion scheme),
with a value corresponding to the mean of the measurements over the region (with
Neumann boundary conditions). Thus, the absolute minimum of our regularization
criterion alone is of little interest.

To keep close to the measured tensor �eld Σ0(x) while still regularizing, a more
theoretically grounded approach is to consider an optimization problem with a com-
petition between a data �delity term (also called data attachment term) and a
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possibly non-linear anisotropic regularization term:
C(Σ) = Sim(Σ,Σ0) + λ Reg(Σ)

Like before, the intrinsic evolution equation leading to a local minimum is:
Σt+1(x) = expΣt(x) (−ε (∇Sim(Σ,Σ0)(x) + λ∇Reg(Σ)(x))) ,

In the following, we will focus on de�ning the data attachment term. We use the
isotropic regularization of Eq. 4.7 as regularization term.

4.4.1 A least-squares data �delity term

Usually, one considers that the data (e.g., a scalar image or a vector �eld F0(x))
are corrupted by a uniform (isotropic) Gaussian noise independent at each spatial
position. With a maximum likelihood approach, this amounts to considering a least-
squares criterion Sim(F ) =

∫
Ω ‖F (x)−F0(x)‖2 dx. Like in the previous section, we

compute the �rst order variation by writing the Taylor expansion:
Sim(F + ε H) = Sim(F ) + 2 ε

∫
Ω
〈H(x) | F (x)− F0(x)〉 dx+O(ε2).

This time, the directional derivative ∂HSim(F ) is directly expressed using a scalar
product with H in the proper functional space, so that the steepest ascent direction
is ∇Sim(F ) = 2 (F (x)− F0(x)).

On tensors, assuming a uniform (generalized) Gaussian noise independent at
each position also leads to a least-squares criterion through a maximum likelihood
approach. The only di�erence is that it uses either one or the other of our Rieman-
nian frameworks:

Sim(Σ) =
∫

Ω
dist2 (Σ(x) , Σ0(x)) dx =

∫
Ω

∥∥∥−−−−−−−→Σ(x)Σ0(x)
∥∥∥2

Σ(x)
dx,

Thanks to the properties of the exponential map, one can show that the gradient
of the squared distance is: ∇Σ dist2(Σ , Σ0) = −2

−−→
ΣΣ0 [Pennec 2004a]. Finally, we

obtain a steepest ascent direction (gradient) of our criterion which is similar to the
vector case (in formula):

∇Sim(Σ)(x) = −2
−−−−−−−→
Σ(x)Σ0(x), (4.15)

which gives for the a�ne-invariant case:
∇Sim(Σ)(x) = −2 Σ1/2(x) log

(
Σ−1/2(x)Σ0(x)Σ−1/2(x)

)
Σ1/2(x),

and for the Log-Euclidean case:
∇Sim(L)(x) = −2 (log (Σ0(x))− log (Σ(x))) .
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4.4.2 A least-squares attachment term for sparsely distributed ten-
sors

Now, let us consider the case where we do not have a dense measure of our tensor
�eld, but only N measures Σi at irregularly distributed sample points xi. Assuming
a uniform Gaussian noise (w.r.t. the considered metric) independent at each position
still leads to a least-squares criterion:

Sim(Σ) =
N∑

i=1

dist2 (Σ(xi) , Σi) =
∫

Ω

N∑
i=1

dist2 (Σ(x) , Σi) δ(x− xi) dx.

In this criterion, the tensor �eld Σ(x) is related to the data only at the measurement
points xi through the Dirac distributions δ(x − xi). If the introduction of distri-
butions may be dealt with for the theoretical di�erentiation of the criterion with
respect to the continuous tensor �eld Σ, it is a real problem for the numerical im-
plementation. In order to regularize the problem, we consider the Dirac distribution
as the limit of the Gaussian function Gσ when σ goes to zero. Using that scheme,
our criterion becomes the limit case σ = 0 of:

Simσ(Σ) =
∫

Ω

N∑
i=1

dist2 (Σ(x) , Σi) Gσ(x− xi) dx. (4.16)

From a practical point of view, we need to use a value of σ which is of the order of
the spatial resolution of the grid on which Σ(x) is evaluated, so that all measures
can at least in�uence the neighboring nodes.

Now that we came back to a smooth criterion, we may di�erentiate it exactly as
we did for the dense measurement setup. The �rst order variation is:

Simσ(Σ + εW ) = Simσ(Σ)− 2 ε
N∑

i=1

∫
Ω

〈
W (x)

∣∣∣Gσ(x− xi)
−−−−→
Σ(x)Σi

〉
dx+O(ε2),

so that we get:
∇Simσ(x) = −2

N∑
i=1

Gσ(x− xi)
−−−−→
Σ(x)Σi. (4.17)

Of course, this gradient should be expressed with the a�ne-invariant or Log-
Euclidean metric, depending on which framework is preferred.

We will now use the criteria described above for de�ning a new type of extrap-
olation by di�usion.

4.4.3 Extrapolation through di�usion

With the sparse data attachment term (4.16) and the isotropic �rst order regulariza-
tion term (4.7), we are looking for a tensor �eld that minimizes its spatial variations
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while interpolating (or more precisely approximating at the desired precision) the
measurement values:

C(Σ) =
N∑

i=1

∫
Ω
Gσ(x− xi) dist2 (Σ(xi) , Σi) + λ

∫
Ω
‖∇Σ(x)‖2

Σ(x) dx.

According to the previous sections, the gradient of this criterion is
∇C(Σ)(x) = −2

N∑
i=1

Gσ(x− xi)
−−−−→
Σ(x)Σi − 2 λ∆Σ(x).

Using our �nite di�erence approximation scheme (Eq. 4.12), the intrinsic geodesic
gradient descent scheme (Sec. 3.3.6) is �nally:
Σt+1(x) = expΣt(x)

(
ε

{
N∑

i=1

Gσ(x− xi)
−−−−→
Σ(x)Σi + λ′

∑
u∈V

−−−−−−−−−→
Σ(x)Σ(x+ u).

‖u‖2

})
(4.18)

Last but not least, we need an initialization of the tensor �eld Σ0(x) to obtain
a fully operational algorithm. This is easily done with any radial basis function
approximation like in Section 4.2.3, or a soft closest point interpolation (i.e., nearest
neighbor interpolation). Figure 4.14 displays the result of this algorithm on the
interpolation between 4 tensors. On can see that the soft closest point approximation
is well regularized into a constant �eld equal to the mean of the four tensors if data
attachment term is neglected. On the contrary, a very small value of λ is su�cient
for regularizing the �eld between known tensors (as soon as σ is much smaller than
the typical spatial distance between two measurements).

The choice of the initialization is a critical issue from a computational point of
view. For instance, starting with a constant (or any harmonic) �eld is not optimal:
there is a null Laplacian everywhere, except at the immediate neighborhood of
the sparse tensors, exactly where the data attachment term acts. Thus, we have a
potentially destructive competition between the two terms of the criterion in these
area: the data attachment term almost zeroes out the di�usion, resulting in a very
slow convergence. On the contrary, starting with a nearest neighbor interpolation
leads to a Laplacian which is non null on the boundaries of the Voronoi cells of the
measurement points, i.e. the farthest possible place from the sparse measures. In
that case, the Laplacian regularization will spread from these boundaries with no
constraints until it reaches the counterbalancing forces of the data attachment term
in the neighborhood of the sparse measurements. Thus, we may expect to reach
the maximal e�ciency in terms of convergence rate.

This last application puts an end to this chapter. We will now conclude on the
Riemannian processing of DT-MRI using the AI or LE metrics.

4.5 Conclusion
In this chapter, we showed that any vector-processing algorithm could be extended
to tensors in both a�ne-invariant and Log-Euclidean frameworks. We detailed
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Figure 4.14: Interpolation and extrapolation of tensor values from four measurements
using di�usion. Top left: The four initial tensor measurements. Top right: Initialization
of the tensor �eld using a soft closest point interpolation (mean of the four tensors with a
renormalized spatial Gaussian in�uence). Bottom left: result of the di�usion without the
data attachment term (1000 iterations, time-step ε = 1, λ = +∞). Bottom right: result
of the di�usion with an attachment term after (1000 iterations, time-step ε = 1, λ = 0.01,
σ = 1 pixel of the reconstruction grid). The algorithm did in fact converge in about 100
iterations.
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the mathematical formulation of various processing like interpolation and Gaussian
smoothing, but also PDE solving and statistical analysis. The most striking result is
that in the case of DT-MRI, the AI and LE frameworks gave almost similar results!
This is something that could be explained by the fact that tensors, in the context
of di�usion MRI, are "relatively close" to the identity matrix. And we showed that
the LE framework could be seen as the special case of the AI one when vectors were
expressed in the tangent space at the identity. The main di�erences, though, re-
side in the fact that LE formulation of the processing exposed here is much simpler
than with AI metrics, and that computations are much faster. Finally, LE metrics
appear as a better candidate to replace the �awed Euclidean calculus. However,
other frameworks with other properties are possible: the geodesic loxodromes by
Kindlmann et al. [Kindlmann 2007] have the nice property to preserve not only the
monotonic evolution of the trace and the determinant during a linear interpolation,
but also the FA (which is not the case of our frameworks). However, it is not yet
possible to use these loxodromes in a complete and simple framework as we do it
here with LE metrics.

The next chapter is the general conclusion of this part, with a summary of the
contributions and a discussion on the choice of the metric. This choice is important
since the metric is responsible for giving the desired (or un-desired) properties of
the result, and we wanted to emphasize this point.
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5.1 Conclusions
We have presented two alternatives to the Euclidean calculus on tensors. Endowed
with the a�ne-invariant metric, the space of positive de�ne symmetric matrices
takes a very regular manifold structure. In particular, tensors with null and in�nite
eigenvalues are both at an in�nite distance of any positive de�nite symmetric
matrix: the cone of tensors is replaced by a space which has an in�nite development
in each of its n(n + 1)/2 directions. Moreover, there is one and only one geodesic
joining any two tensors, and we can even de�ne globally consistent orthonormal
coordinate systems of the tangent spaces. Thus, the structure we obtain is very
close to a vector space, except that the space is curved.

The second framework, the Log-Euclidean metric, relies on a simple principle:
the vector space structure of symmetric matrices is transposed to the tensor space
by the matrix exponential. This leads to a striking simple fact: all computations on
tensors can be made on their logarithms as we are in a vector space, and mapped
back to the tensor space by the matrix exponential. The price to pay for such
straightforward principle is rather low: Log-Euclidean metrics are only similitude in-
variant, while our �rst family of metric is a�ne invariant. In fact, one can show that



90
Chapter 5. Conclusions and Discussion: Which Metric for Which

Application?

both are strongly linked: Log-Euclidean metrics correspond to expressing all ten-
sors in the vector space at the identity matrix within the a�ne-invariant framework.

A second contribution is the application of these frameworks to important
geometric data processing problems such as interpolation, �ltering, di�usion and
restoration of tensor �elds. We showed that interpolation and Gaussian �ltering can
be tackled e�ciently through a weighted mean computation. However, if weights
are easy to de�ne for regularly sampled tensors (e.g., for linear interpolation), the
problem becomes more di�cult for irregularly sampled values. The solution we
propose is to consider this type of interpolation as a statistical restoration problem
where we want to retrieve a regular tensor �eld between (possibly noisy) measured
tensor values at sparse points. This type of problem is usually solved using a PDE
evolution equation. We showed that the usual linear regularization (minimizing the
magnitude of the gradient) and some anisotropic di�usion schemes can be adapted
to our Riemannian frameworks, provided that the metric of the tensor space is taken
into account. We also provided intrinsic numerical schemes for the computation of
the gradients and Laplace-Beltrami operators. Finally, simple statistical considera-
tions led us to propose least-squares data attachment criteria for dense and sparsely
distributed tensor �elds. The di�erentiation of these criteria is particularly e�-
cient thanks to the use of the Riemannian distance inherited from the chosen metric.

We confronted both families of metrics in practice, and showed that results
were so close that it is di�cult to di�erentiate them. In fact, di�erences appear
only when the di�erence in anisotropy is high (e.g., when the largest eigenvalues
are di�erent by a factor of at least 10). This situation is hardly encountered
when working with tensors as those obtained in DTI for example. However,
the computational time can be signi�cantly di�erent. Processing tensors using
Log-Euclidean metrics requires taking the matrix logarithm and exponential only
once for each tensor (we could talk about constant time operations, i.e., operations
that do not depend on the processing itself). Using the a�ne-invariant metric
requires going back and forth between the tensor space and the tangent space
at the current processing point, thus making use at each processing step of the
matrix exponential, logarithm, inverse and square root. This computational load
reduces the performance of the a�ne-invariant tensor processing when iteratively
solving a PDE (like the anisotropic regularization of Sec. 4.3.4, or the tensor �eld
extrapolation by di�usion of Sec. 4.4.3).

Log-Euclidean metrics seems to be more suited for DT-MRI processing: they
give results similar to the a�ne-invariant family for a computational cost close to
the Euclidean calculus. One could question, however, if the invariance of the result
by a similarity transform is su�cient. For instance, Log-Euclidean smoothing of
a tensor �eld and of the same �eld warped by a shearing will not give the same
result (i.e., smoothing the warped �eld is not equivalent to warp the smoothed
�eld), while a�ne-invariant smoothing will. A solution consists in performing a
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few iterations of the a�ne-invariant smoothing after the Log-Euclidean version for
example. In that case, the result would be a�ne-invariant and the time taken to
obtain it would be close to the time of the Log-Euclidean processing.

In the next section, we discuss the choice of the metric w.r.t. the application,
and show that the Riemannian frameworks developed here may not be the right
choice in all situations where tensors are encountered.

5.2 Which Metric for Which Application?
In this discussion, we want to point out that the choice of the metric w.r.t. the
application is crucial and should be made carefully. The question is not to �gure
out whether it is preferable to use the a�ne-invariant or the Log-Euclidean metric
(we showed that both give generally similar results), but rather if these Riemannian
metrics are suitable for all applications involving tensors. To illustrate this, let us
take the example of another type of tensor: the structure tensor.
5.2.1 Case of the Structure Tensor

The structure tensor has become a useful tool for the analysis of features in im-
ages. It is used in edges and corners detection [Förstner 1987], texture analy-
sis [Bigün 1991, Rao 1991], texture and color segmentation [de Luis-Garcìa 2005,
de Luis-Garcìa 2008], �ltering [Weickert 1999], and even medical image registration
[Stefanescu 2005]. We will see in the following section how to calculate this tensor.
The estimation of the structure tensor depends on the quality of images. If images
are noisy, structure tensor �elds will be noisy as well (although a scaling parame-
ter, and consequently a smoothing, appears during estimation, at a �ne scale the
problem of the noise remains unchanged). One could try to anisotropically smooth
the estimated tensor �eld (using our Riemannian metrics) and assess whether or
not this type of smoothing is adapted to structure tensors, and can improve the
detection and localization of corners for instance. This is what we investigate in the
next sections.
5.2.2 De�nition of the Structure Tensor

Let I be an image de�ned on a domain of Rd. The structure tensor is based on
the gradient of I: ∇I = (∂1I, . . . , ∂d)

T , where each directional derivative ∂iI can be
computed with a �nite di�erence scheme or by �ltering with a �rst order derivative
of a Gaussian. The structure tensor Sσ can be de�ned as:

Sσ = Gσ ∗
(
∇I∇IT

)
with Gσ being a Gaussian of standard deviation σ. The variance σ controls the
smoothness of the resulting tensor �eld. The noisier the image is, the higher σ must
be to obtain a smooth �eld, but smaller structures may be wiped out. By contrast,
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smaller values of σ can help to extract low level features in images, but the resulting
structure tensor image may be noisy. Consequently, one would like to perform an
anisotropic �ltering of the structure tensor �eld obtained with a low σ, in order
to regularize homogeneous regions while preserving the boundaries with low-level
features. In the following, we �rst compute the Riemannian gradient of a structure
tensor image and compare it to the classical Euclidean gradient. Then, we perform
an anisotropic �ltering and discuss the results.

5.2.3 Gradient of a Structure Tensor Image

Following the numerical scheme of Sec. 4.3.2, we computed the gradient norm
of a structure tensor image obtained with a σ of 1.0 (Fig. 5.1 left is the original
image). Then, we compared it to the Euclidean gradient. We also added noise in the
original image to evaluate the robustness of both gradients. Results of comparisons
are shown in Fig. 5.1.

First, we can notice that with the a�ne-invariant metric, outliers appear in
the image background (Fig. 5.1 top right). This is intensi�ed when adding noise
(Fig. 5.1 bottom right): we see that the background is made with artefacts due
to variations of small tensors that result from noise. Indeed, small tensors have as
much importance as large ones because of the a�ne- or similitude-invariance of the
metrics. Consequently, the Riemannian gradient of a variation of small tensors or
larger ones will be identical. By contrast, the Euclidean gradient remains much less
sensitive to tensors with small coe�cients, and consequently only the main features
are revealed (Fig. 5.1 bottom right and left).

Second, details that are not present in the Euclidean norm appear in the Rieman-
nian gradient: this is the case, for example, of low-contrasted edges in the original
image. This also results from the a�ne- or similitude-invariance of the metrics.

To summarize, the Riemannian frameworks can reveal lower structural informa-
tion such as low contrasted edges but are highly sensitive to small variations in the
tensor image, and thus su�er from a lack of robustness.

Let us now investigate how the anisotropic �ltering scheme can restore the noisy
structure tensor image.

5.2.4 Anisotropic Filtering of a Structure Tensor Image

We applied the anisotropic �ltering scheme of Sec. 4.3.4 on the noisy structure
tensor image of Fig. 5.1 bottom left. We used the following parameters: κ = 0.02,
ε = 0.1 and 500 iterations (total di�usion time: 50). Results are presented in Fig.
5.2.

The Riemannian metrics cause the variations of small tensors to be highly
contrasted in the norm of the Riemannian gradient and thus to be preserved
during the �ltering process. Figures 5.2 bottom illustrate this behavior: the
top of the original noisy image (middle image) is �lled with artefacts that
are preserved during smoothing (right image). Taking the Euclidean gradient
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Figure 5.1: Euclidean gradient versus Riemannian gradient. Top row:
Original image (left), norm of the Euclidean gradient (middle) and Riemannian
gradient (right). Bottom row: Noisy image (Gaussian noise of variance 0.01 was
added) (left), norm of the Euclidean gradient (middle) and Riemannian gradient
(right).

(Fig. 5.2 top right) removes the artefacts in the image background. Homo-
geneous regions are smoother while edges are correctly conserved. However,
some artefacts in the background that were expected to disappear are still present
and the intensity of most of the relevant edges is lower than in the Riemannian case.

In conclusion, the Riemannian metrics that are well suited for DTI, or more
generally for covariance matrices, seems not to be applicable directly to structure
tensor images. In fact, the a�ne and similitude invariance give an identical role
to small tensors versus larger ones. Thus, while this allows to extract low-level
features, it also su�ers from a lack of robustness.

This example illustrates the complexity of choosing the correct metric for a given
application. The choice for the Riemannian metrics we made is obviously not the
best solution in all situations. We have just shown that they are good candidates to
replace the Euclidean calculus when working with di�usion tensors, and later in this
manuscript we will show that they can be applied to covariance matrices as well.
The most important point is that the choice of the metric is crucial and determines
the key functions (exponential and logarithmic maps to name them) of the Rieman-
nian framework. It is important to notice that this framework does not depend on
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Figure 5.2: Anisotropic �ltering of a noisy structure tensor image. Di�usion
parameters: κ = 0.02, ε = 0.1 and 500 iterations. Top row: From left to right:
Original Euclidean gradient, Euclidean gradient with noise, Euclidean gradient after
regularization. Bottom row: From left to right: Original Riemannian gradient,
Riemannian gradient with noise, Riemannian gradient after regularization.

the choice of the metric: basic operations (addition, subtraction), algorithms, etc.
remain the same, and only the exponential and logarithmic maps are changing. In
other words, the Riemannian framework is a general toolbox for working on mani-
folds, and only the exp and log functions vary depending on the metric. The metric
itself should be carefully chosen depending on the desired properties for the result
(properties of invariance for instance). One last remark is that the a�ne-invariant
and Log-Euclidean metrics described here hopefully result in simple expressions for
these two key functions, which is generally not the case.
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�Part of the inhumanity of the computer is that, once it is competently programmed
and working smoothly, it is completely honest.�

Isaac Asimov.

Di�usion tensor MRI has rapidly become popular in clinical research as it is a
unique tool to assess in vivo oriented structures within tissues. In particular, brain
DTI allows to access the white matter neuronal architecture and is by far the most
frequently encountered type of di�usion MRI in clinical applications. The goals
of using such brain imaging modality are numerous: one would like for instance
to assess whether a tumour is bending or destroying a �ber bundle, or as a pre-
liminary step to surgery, one may want to make sure that no vital �ber tract will
be injured during the surgical procedure. The scope of using DT-MRI in clinical
applications seems extraordinary promising and brings hope for improving several
aspects of brain surgery, like a shorter surgery time, a better comfort for the patient,
and an increased survival rate with less side e�ects. However, data and methods
are not fully ready yet to allow such applications. Acquisitions generally have a
limited number of encoding gradients and low signal-to-noise ratios (SNR). Indeed,
the scanning time is rather short - 15 minutes for most of the French hospitals.
The situation may be di�erent in other countries, but the rather limited number
of MRI scanners available in France implies that no more than 15 minutes should
be spent to scan a patient, and the fact that most of them are 1.5T scanners leads
to rather low SNR images. Another reason to shorten the scan time is that scan-
ning itself can be perceived or experienced as innocuous for some patients, but not
for others: the patient should not move (or the data will not be valid), the scan-
ner entrance is small (claustrophobia becomes an issue), and scanning itself can be
very noisy, which makes the overall experience rather uncomfortable. One solu-
tion to improve image quality while keeping the same scanning time would be to
switch to higher magnets (3T scanners), which is out of question in general (for
the time being) for obvious �nancial reasons. Consequently, this short scanning
time prevents acquiring and averaging the large number of images that is necessary
for enhancing SNR or using more elaborate models of the di�usion phenomenon
like CHARMED [Assaf 2005], Q-ball and orientation distribution functions (ODF)
[Tuch 2004, Tournier 2004b, Descoteaux 2006, Descoteaux 2007a], or higher order
tensors (HOT) [Barmpoutis 2007a], which could describe with more accuracy the
white matter architecture, especially in regions with crossing �bers. Typical clinical
DWI acquisitions are acquired using 6 gradient directions with 4 repeated scans, or
25 gradient directions without repetition.

To be able to work with di�usion tensor images, and by extension, reconstruct
white matter �bers in a clinical environment, one needs to adapt methods and
software to the clinical constraints and clinician needs. First of all, the estimation
of the di�usion tensor from di�usion weighted images should take into account the
fact that only a few gradients are used and that images have a rather low SNR. This
will be the topic of Chapter 6, where we propose a joint di�usion tensor estimation
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and smoothing procedure, which takes into account the real nature of the MRI
noise. Then, we switch to software issues. In order to be integrated in a clinical
environment, a method should be embedded into a stable, e�cient and user-friendly
software. Indeed, medical experts cannot spend hours learning a new software, and
any tool must be intuitive and reactive to have a chance to be used in clinics. For
this purpose, we introduce in Chapter 7 MedINRIA, a software package for DT-
MRI processing targetting explicitly the medical experts. Finally, we demonstrate
in Chapter 8 the feasibility of DTI in a clinical environment with a study on the
possible applications of di�usion tensor imaging in spinal injuries.



Chapter 6

Joint Estimation and Smoothing

of Clinical DT-MRI with

Log-Euclidean Metrics
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Di�usion tensor estimation is a necessary step prior to working with a di�usion
tensor �eld. Indeed, the MRI scanner does not produce tensor images directly, but
provides us with a di�usion weighted MRI data: It is generally composed with one
baseline image, called the S0 (or b = 0 image) (which is nothing else than a T2

weighted image), and at least six di�usion weighted images. Each of these di�usion
weighed images corresponds to a di�usion gradient, i.e., a measure of the water
di�usion phenomenon in a spatial direction. The di�usion tensor relates the signal
loss observed in the DWI compared to the baseline image via the di�usion equation
of Stejskal-Tanner [Basser 1994b]:

Si = S0 exp(−bgi
>Dgi), (6.1)

where Si is the DWI corresponding to the spatial gradient gi, S0 is the baseline
image (b0 image), D the di�usion tensor and b the b − value, a factor related to
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the acquisition parameters and di�usion time (generally b = 1000 s/mm2). The
tensor estimation consists in retrieving D from the measures (Si). As MR images
are subject to noise, the estimation of the di�usion tensor �eld from the MR mea-
surements is noise-sensitive. We give below a quick overview of the literature on
di�usion tensor estimation.

6.1 Introduction
6.1.1 How Does DTI Estimation Work?

What is generally done for tensor estimation is a linearization of Eq. 6.1 to obtain
a linear system [Basser 1994b, Westin 2002, Tschumperlé 2003, Deriche 2004]:

log (Si) = log (S0)− bg>i Dgi,∀i ∈ [1, N ]

N being the total number of acquisition (i.e., encoding gradients). Solving this
system in a least square sense leads to the minimization of a quadratic criterion
with algebraic methods and has an analytical solution:

D̃ = arg min
D

N∑
i=1

[
log
(
Si

S0

)
+ bg>i Dgi

]2

From a pure signal processing point of view, this estimation corresponds to a max-
imum likelihood (ML) estimator with a model of a Gaussian noise on the image
logarithms:

log(Ŝi) = log(S0)− bgi
>Dgi +Ni(0, σlg), (6.2)

where Ŝi is the measured DWI intensity, and Ni(0, σlg) is a centered Gaussian noise
of variance σlg. We call this noise model log-Gaussian in the following. Naturally,
one may wonder if this assumption correctly re�ects the noise appearing in real DW
images. In fact, when the SNR is high, one can show that the noise on the image
logarithms is indeed well approximated by a Gaussian distribution [Salavador 2005],
which justi�es the linearization of Eq. 6.1. In the same conditions, the noise can
also be well approximated by a Gaussian distribution within the brain on the image
directly (not their logarithm), as in [Chang 2005]:

Ŝi = Si +Ni(0, σg). (6.3)
Note that in [Chang 2005], the authors also use a strategy to automatically detect
and reject image outliers (i.e., bad di�usion weighted images) to make the estimation
more robust to a bad acquisition, which is not applicable, for instance, when working
with the minimum number or images (6).

For low SNR images typical of clinical acquisitions, one needs to go back to the
true nature of the MRI noise, which is Rician: it corresponds to a Gaussian noise on
both real and imaginary parts of the complex MR signal. The measured intensity
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is the magnitude of this signal. In other words, one can model the measured signal
as [Sijbers 1998]:

Ŝi =
√

[Si +Nre(0, σr)]2 +Nim(0, σr)2, (6.4)
where Nre and Nim are two independent Gaussian noises of the same variance.
This is equivalent to adding Gaussian noise to the k-space data before computing
the signal magnitude. Wang et al. [Wang 2004a] proposed an estimation criterion
on the complex DWI signal that is adapted to this type of noise. However, we
generally cannot access the complex signal but only its magnitude (although it
could be accessed if required), and we will show in the following that we actually
don't need it.

There is also a major drawback to using such estimation procedures: nothing
ensures the resulting tensor to be a positive de�nite symmetric matrix! By
construction, the result will be a symmetric matrix, but because of noise and
possibly uncorrected distorsions, it can eventually lead to tensors with null or nega-
tive eigenvalues, which are physically meaningless and should be avoided at any cost.

In addition to tensor estimation, and in view of �ber reconstruction, one could
think of improving the spatial regularity of the di�usion tensor �eld in order to re-
move the maximum amount of noise we can. A naive tractography algorithm, which
consists in integrating the principal direction of di�usion (PDD) �eld (major tensor
eigenvector), is highly noise-sensitive and can easily produce erroneous �ber tra-
jectories. Increasing the spatial regularity might help recover longer and smoother
�bers. One needs to be careful, however, because the di�usion tensor �eld should
be regularized without blurring the transitions between distinct �ber tracts, which
delimit anatomical and functional brain regions. We quickly summarize below the
state-of-the-art in di�usion tensor �eld smoothing.
6.1.2 Di�usion Tensor Fields Regularization

A �rst idea consists in smoothing independently each DWI, as done for instance
very recently in [Basu 2006] with a Rician noise model. This results in a smoother
tensor �eld that preserves some of the transitions. However, it also blurs the
transitions between some regions as the boundaries of the tensor �eld are not visible
in each DWI taken separately. For instance, in brain DTI, only the combination
of all the DW images reveals the complex neural structure of the white matter.
Consequently, we believe that it is better to detect the transitions on the tensor
�eld itself. Moreover, working on the DWI directly can be tricky as we don't
know what would be the consequences of our processing on the tensor �eld after
estimation. Working on tensors, and within a framework that allows us to control
the result (i.e., be sure that whatever we do we still get a tensor at the end, and
that we preserve some properties, like invariance) is a much more satisfactory
approach.
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Some earlier regularization methods have also been proposed as a post-
processing step after the estimation of the tensor �eld. For instance, [Coulon 2004]
regularizes the principal eigenvector (associated to the largest eigenvalue), while
[Chefd'hotel 2004] uses the spectral decomposition of tensors to independently reg-
ularize their eigenvectors and eigenvalues. These two methods rely on the spectral
decomposition of tensors: considering only the principal eigenvector for smoothing
induces a loss of information and an uncertainty of the spectral decomposition in
regions with �at tensors (in this case, what is the major eigenvector?). Moreover,
discontinuity problems arise when smoothing the �eld of orthogonal matrices as
the spectral decomposition is not unique. Using the Riemannian metrics described
in Chapter 3 (a�ne-invariant or Log-Euclidean) allows us to generalize anisotropic
regularization scheme like those of Perona-Malik [Perona 1990] or Gerig et al.
[Gerig 1992] directly to tensors (Sec. 4.3.4). This last approach is more satisfactory
because it acts on the tensors directly, thus preserving the discontinuities of the
tensor �eld which is a desirable feature.

Furthermore, it would be more interesting to consider the regularization as a
spatial prior on the tensor �eld during the estimation step itself. This would allow
to optimally weight the information brought by the observed images and the ex-
pected spatial regularity. Such a Maximum A Posteriori (MAP) estimation should
extract the maximal amount of meaningful information from very noisy clinical
DWI data. In that spirit, Wang et al. [Wang 2004a] proposed to parameterize
the space of tensors by the vector space of lower triangular matrices thanks to the
Cholesky decomposition. This provided them with a computational framework
that could handle a joint estimation and regularization of the tensor �eld from
the complex DWI signal. It raises the question of the framework used for solving
such non-linear estimation criteria. Indeed, one cannot generally �nd an analytical
solution when using a noise model di�erent from the log-Gaussian (i.e., solving a
linear criterion). Moreover, one needs a uni�ed framework that would allow us to
perform both tensor estimation and smoothing at the same time. Add-hoc methods
like smoothing only the PDD �eld, or processing independently eigenvectors and
eigenvalues do not allow this. By contrast, the Cholesky decomposition and the
Log-Euclidean metrics are two possible frameworks for solving this problem of joint
estimation and smoothing of DTI.

To illustrate that point, we investigate and compare in Section 6.1.3 di�erent
tools for computing with tensors: the Euclidean metric, the Cholesky factorization
and the Log-Euclidean metrics. It turns out that LE metrics are computationally
as e�cient as the Cholesky decomposition while ensuring the positive de�niteness
of tensors and canceling the swelling e�ect in regularization.

Based on the LE computational framework, we detail in Section 6.2 an original
variational method for a joint estimation and smoothing of DTI. We �rst derive the
ML estimation of tensors with the log-Gaussian (Eq. 6.2), Gaussian (6.3) and Rician
(Eq. 6.4) noise models. We show that Rician noise induces a shrinking e�ect when
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other noise models are used for tensor estimation. By adding an anisotropic spatial
prior in a second step, we turn these three ML into three MAP methods where the
estimation and the regularization of the tensor �eld are jointly performed.

A quantitative analysis of our six new methods on synthetic data shows in Sec.
6.3 that the Rician ML method correctly handles the shrinking e�ect even with a
very low SNR, while other methods under-estimate the tensor volume by as much
as 40%. Then, we switch to experiments with real clinical data on a medium quality
brain DTI dataset (tumor case with only 6 gradient directions) and a low quality
experimental acquisition of the spinal cord (same sequence). The visual inspection
of the reconstructed tensor �eld shows that the MAP method nicely preserves the
separation between di�erent regions. A careful analysis in two speci�c regions shows
that ML and MAP Rician methods exhibit a larger tensor volume and ADC than
Gaussian and log-Gaussian methods. Lastly, we illustrate that the MAP Rician
method qualitatively improves the �ber tracking.

6.1.3 Tools for Tensor Computing

This section is a brief summary of Chapter 3. Tensor computing is di�cult due
to the severe limitations of the standard Euclidean calculus: while convex opera-
tions are stable (e.g. the mean of a set of tensors is a tensor), one can quickly
reach the boundaries of the space with complex operations (e.g., gradient descent
or partial di�erential equations) and null or negative eigenvalues may appear. To
overcome this limitation, [Wang 2004a] proposed to parameterize a tensor D by
its Cholesky factors. A Cholesky decomposition of D is given by: D = LL>,
where L is a lower triangular matrix. A lower triangular matrix M is such that
∀(i, j), if i > j then M(i, j) = 0 (all terms above the diagonal are null). For any
lower triangular matrix L, the matrix LL> is positive (this is easily shown using
SVD). However, the de�niteness property is not ensured (null eigenvalues are pos-
sible). The authors argue that forbidding negative eigenvalues is su�cient because
one cannot numerically distinguish very small eigenvalues from null ones. Thus,
forbidding explicitly null eigenvalues has no practical justi�cation.

While we agree that very small eigenvalues are not distinguishable from null
ones, we believe that both are very unlikely to exist from a physical point of
view (this would mean an almost null di�usion in one direction of space, which is
physically not possible in the conditions where the measures are made), and should
be as far as possible from any reference tensor (even if they are numerically close).
In other words, a tensor with very small eigenvalues has a very low probability
to appear, as well as a tensor with very large eigenvalues. Both of them must be
numerically nearly impossible to reach.

As described in Chap. 3, the Riemannian metrics o�er a solution to this con-
straint: endowed with such metric, the tensor space is replaced by a regular manifold
where matrices with null and negative eigenvalues are at an in�nite distance from
any tensor. Among these, Log-Euclidean metrics turn out to have a computational
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cost similar to the Euclidean case (Sec. 3.4). The key idea is to take the matrix
logarithm of a tensor D: L = log(D), and to run computations on L. The new
processed value L̃ obtained is turned back into a tensor by taking the matrix ex-
ponential: D̃ = exp(L̃). We showed in 3.4.2 that it yields excellent theoretical
properties, such as the monotone interpolation of the determinants, and the preven-
tion of the swelling e�ect.

Advantages of the Log-Euclidean Framework:

To compare the LE metric, the standard Euclidean framework and the more elab-
orate Cholesky decomposition, we believe that understanding the structure of the
tensor space endowed with each metric is important. Let us illustrate this by realiz-
ing a geodesic shooting in the tensor space endowed alternately with an Euclidean,
Cholesky and Log-Euclidean structure. It consists in following the geodesic starting
at one given tensor in a given direction during a certain time. It is exactly the
same as a car race: we give a starting position, and an initial speed (initial speed
vector), and we look at the trajectory that the car takes. As the tensor space is
embedded in the space of symmetric matrices, a tangent vector is simply a sym-
metric matrix. In the Euclidean case, one computes: De(t) = D + tḊe. In Figure
6.1, we chose a diagonal tensor D = ((4, 0, 0), (0, 1, 0), (0, 0, 1)), a diagonal tangent
vector (a symmetric matrix belonging to the tangent plane at the considered ten-
sor) Ḋe = ((−8, 0, 0), (0,−2, 0), (0, 0,−2)) and t ∈ [0, 2]. A "geodesic" with the
Cholesky factors is given by a straight line in the space of lower triangular matrices:
L(t) = L + tL̇. The resulting tensor curve is simply Dc(t) = L(t)L(t)>. To start
at the same point with the same tangent vector as in the Euclidean case, L is the
Cholesky factor of D and L̇ is solution of L̇ L

>
+L L̇

>
= Ḋe. In our case, we obtain

L̇ = ((−2, 0, 0), (0,−1, 0), (0, 0,−1)). With the LE metric, the geodesic is �nally:
Dlog = exp(log(D) + tḊlog), where tangent vectors are given in the diagonal case
by Ḋlog = exp(D)−1Ḋe. Results of the geodesic shootings are displayed in Fig. 6.1.

In the Euclidean case, as expected, one quickly reaches the boundaries and
non-displayed values are actually non-positive tensors. The Cholesky case is algo-
rithmically well posed as non-positive matrices do not appear. However, we still
reach zero eigenvalues, i.e. the null matrix appears, and values beyond it are the
mirrored versions of the �rst ones. This means that the null matrix is reached on
the trajectory during a gradient descent. Moreover, one may question the physical
meaning of the mirrored values obtained beyond the null matrix. In the LE case,
the null matrix is never reached and all tensors are by nature positive de�nite.

As a second advantage, the Log-Euclidean framework completely overcomes the
swelling e�ect which can be observed in both Euclidean and Cholesky cases, and
is illustrated in Fig. 6.2 with the example of the regularization. This e�ect causes
tensors to grow after a processing. We generated a synthetic noisy tensor �eld
and applied the anisotropic regularization of Sec. 6.2.4 with 3 di�erent ways to
process tensors. First, we used the Euclidean calculus, second we computed on
the Cholesky factors and third we used a LE metric. Both Euclidean and Cholesky
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Figure 6.1: Geodesic shootings simulating a gradient descent. The x axis is
the time t travelled along the geodesic (t ∈ [0,2]). Top: The Euclidean case.
2/3 of tensors are not positive de�nite and thus are not displayed. Middle: The
Cholesky case: the null matrix is reached (exact middle value) and values beyond
are the mirrored versions of the previous ones. Bottom: The Log-Euclidean case:
all tensors are positive de�nite, and the null tensor is never reached.

regularization su�er from the swelling e�ect, i.e. the denoised tensors are larger than
the original values, the e�ect being less pronounced in the Cholesky case. With the
LE framework, the swelling e�ect vanishes and the tensors are correctly denoised.

To quantify the bene�t of the Log-Euclidean framework, we computed the root
mean square error (RMSE) between the restored and original �elds. Not to in�uence
one particular metric, we computed the RMSE for the three metrics: Euclidean,
Cholesky and LE. Results are summarized in Table 6.1. Whatever the metric, the
LE framework gives results quantitatively better than the 2 other frameworks.

Table 6.1: RMSE between the restored and original tensor �elds. For the
three given metrics, the Log-Euclidean regularization produces results the closest to
the original data.

Euc. Reg. Chol. Reg. LE Reg.
Euclidean RMSE 0.228 0.172 0.051
Cholesky RMSE 0.152 0.092 0.015

Log-Euclidean RMSE 0.532 0.313 0.111
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(a) (b)

(c) (d) (e)
Figure 6.2: Anisotropic regularization of a noisy tensor �eld. (a): Original
synthetic �eld. (b): Noisy �eld. (c): Euclidean regularization. (d): Cholesky
regularization. (e): Log-Euclidean regularization. Note the swelling e�ect in the
Euclidean and Cholesky cases.

To conclude, the Log-Euclidean framework is well adapted to the processing of
di�usion tensors: it not only overcomes the limitations of the Euclidean calculus
(negative eigenvalues), but it also removes the swelling e�ect which can be observed
in both Euclidean and Cholesky frameworks. Consequently, we choose this family
of metrics to solve our problem of joint estimation and smoothing of clinical DTI.

6.2 A Variational Formulation with Three Noise Models
The joint estimation and regularization of DTI can be tackled by a variational
formulation, i.e. one has to minimize the energy functional:

E(L) =
1
2
Sim(L) +

λ

2
Reg(L), (6.5)

with Sim(.) being the data attachment term (estimation) and Reg(.) being the
regularization term. In a statistical setting, Sim(.) is usually the log-likelihood of
the measurements knowing the parameters, while Reg(.) is the prior knowledge on
the parameters. λ is a normalization factor between the two terms. To fully make
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use of the advantages of the LE framework, we directly parameterize the di�usion
tensor by its logarithm L = log(D).
6.2.1 Log-Gaussian Noise

The linearized version of the Stejskal and Tanner di�usion equation system gives us
the following energy to minimize, in the least-squares sense:

Simlog (L) =
∫

Ω

N∑
i=1

(
log
(
S0

Ŝi

)
− bgi

> exp(L)gi

)2

, (6.6)

where N is the number of encoding gradients. Of course, if we had parametrized this
objective function with the unknown tensor D directly, we could have derived an
analytical solution directly as in [Westin 2002]. However, by using the Log-Euclidean
framework, we are adding a constraint to the estimation: the result must be positive
de�nite! Indeed, we will optimize the criterion w.r.t. the tensor logarithm, and
exponentiate the result to obtain a tensor. In order to minimize the criterion of
Eq. 6.6, we need to di�erentiate it. The di�erentiation is easy to perform in the LE
framework and gives:

∇Simlog(L) = −2
(

log
(
S0

Si

)
− bgi

> exp(L)gi

)
∂Gi

exp(L), (6.7)
with Gi = gigi

>, and ∂Gi exp(L) is the directional derivative of the matrix ex-
ponential in direction Gi (see Appendix C for a practical implementation of it).
Finally, the minimization is achieved through a simple �rst order gradient descent:
Lt+1 = Lt−dt∇Simlog(Lt). L belongs to a vector space and this evolution equation
is actually a geodesic marching. After convergence, one simply needs to exponentiate
the vector L to obtain a tensor: D = exp(L).
6.2.2 Gaussian Noise

Assuming a Gaussian noise on the original DWI intensities, the ML estimation boils
down to a least-squares estimation of the tensor �eld from the images themselves
rather than from their logarithm versions. For more clarity, we denote the predicted
DWI intensity by Si(L) = S0 exp(−bgi exp(L)gi

>). This gives the following criterion
[Chang 2005]:

Simgaussian(L) =
N∑

i=1

∫
Ω
(Si (L)− Ŝi)2. (6.8)

The di�erentiation of Eq. [6.8] gives:

∇Simgaussian(L) = −2b
N∑

i=1

(
Si (L)− Ŝi

)
Si (L) ∂Gi

exp(L). (6.9)

Similarly to Eq. [6.6], the minimization is achieved through a �rst order gradient
descent.
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6.2.3 Rician Noise

In this section, we consider that the noise in MR images is Rician, i.e. the measured
magnitude of the DWI can be modeled as:

Ŝi =
√

[Si + Nre(0, σ)]2 + Nim(0, σ)2

where Nre(0, σ) and Nim(0, σ) are independent centered Gaussian noises of variance
σ acting respectively on the real and imaginary part of the signal. The square
magnitude of the observation Ŝi is:

Ŝ2
i = (Si +Nre(0, σ))2 +Nim(0, σ)2.

Taking the mean of the last expression gives:
E
[
Ŝ2

i

]
= E

[
(Si +Nre(0, σ))2

]
+ E

[
Nim(0, σ)2

]
= E

[
S2

i

]
+ 2σ2.

Therefore, the observed square magnitude Ŝ2
i is a non-central chi-squared random

variable. In this case, the DWI signal (not the squared version) is shifted by ap-
proximatively σ2/(2Si) [Sijbers 1998]. This means that the Rician noise induces a
shrinking e�ect of tensors: The DWI signal tends to be greater than it should be,
and the resulting tensors tend to be smaller than they actually are (a higher signal
means a lower di�usion). This e�ect is even more obvious when the SNR is low. To
correct for this shrinking e�ect, we propose the ML estimator for the Rician noise.

For a Rician noise of variance σ2 on the data, the pdf of the measured signal Ŝ
knowing the expected signal S is [Sijbers 1998]:

p(Ŝ|S) =
Ŝ

σ2
exp

(
− Ŝ

2 + S2

2σ2

)
I0

(
SŜ

σ2

)
, (6.10)

where I0 is the modi�ed 0th order Bessel function of the �rst kind. The ML estimator
for the pdf of Eq. [6.10] is:

SimRician(L) = −
N∑

i=1

log
(
p
(
Ŝi|Si (L)

))
. (6.11)

The di�erentiation of Eq. [6.11] gives:

∇SimRician(L) = −1/σ2
N∑

i=1

(Si(L)− αŜi)Si (L) ∂Gi
exp(L), (6.12)

with α = I ′0/I0(ŜiSi/σ
2) (see Appendix D for a practical evaluation of α). The

formula is similar to the gradient of Eq. [6.9], except that a correcting factor α
depending on the signal and the noise variance appears. A simple estimator of the
noise variance is based on the following. Typical MRIs include regions outside of
the patient. Considering the fact that the square magnitude of such regions is null,
taking its mean gives us an estimation of 2σ2.
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6.2.4 An Anisotropic Regularization Term

Let us now look at the spatial prior on tensors: We expect the tensor �eld to
vary spatially slowly within homogeneous regions (where the spatial gradient is
small), while it can drastically change at the boundaries of these regions. The log-
probability of such a prior can be e�ciently represented by the φ-functionals usually
used for anisotropic regularization: Reg(L) =

∫
Ω φ (‖∇L‖) . The φ-function gives an

anisotropic behavior to the regularization, i.e., it will preserve the edges of the tensor
�eld while smoothing homogeneous regions. We recall here the implementation
details of such a regularization procedure using a �nite di�erences strategy (as shown
in Sec. 4.3.4).

As we are working on a vector space, the gradient of the regularization criterion
can be expressed as follows, using ψ(s) = φ′(s)/s:

∇Reg(L) = −2div (ψ (‖∇L‖)∇L)

= −2ψ (‖∇L‖) ∆L− 2
3∑

i=1

∂i (ψ (‖∇L‖)) ∂iL. (6.13)

For the experiments, we used φ(s) = 2(1 + s2/κ2)1/2 − 2 and ψ(s) = (1 +
s2/κ2)−1/2 as in [Chefd'hotel 2002]. κ can be seen as a normalization factor for
the gradient. The key for the numerical implementation is the computation of the
matrix and scalar �elds ∂iL, ∆L and ‖∇L‖ of R3. Using a �nite di�erence scheme,
these are simply:

∂iL(x) =
L(x + xi)− L(x− xi)

2‖xi‖
,

∆L(x) =
3∑

i=1

L(x + xi)− 2L(x) + L(x− xi)
‖xi‖2

,

‖∇L(x)‖2 =
3∑

i=1

‖∂iL(x)‖2
LE ,

‖.‖LE being the Log-Euclidean metric of Sec. 3.4.1. Finally, by combining the
gradient of one of the criteria (Eq. [6.6], [6.8] or [6.11]) with the gradient of Eq.
[6.13], we obtain the gradient of the full criterion of Eq. [6.5]. Consequently the
evolution equation of the joint estimation and smoothing of DTI is:

Lt+1 = Lt − dt∇E(Lt)

= Lt − dt/2 (∇Sim(Lt) + λ∇Reg(Lt)) .

Of course, one has to take the exponential of the solution to obtain a tensor.
We call the full criterion a Maximum A Posteriori estimator, because a spatial

prior (the regularization term) is taken into account. We derive now three new
potential estimators: the MAP log-Gaussian (ML log-Gaussian estimator + reg-
ularization), the MAP Gaussian (ML Gaussian + regularization) and �nally the
MAP Rician (ML Rician + regularization). We now investigate the e�ects of these
estimators on synthetic and real datasets.



110 Chapter 6. DT-MRI Estimation and Smoothing with LE Metrics

6.3 Quantitative and Qualitative Evaluation
To quantify the bene�ts of this methodology, we �rst perform 7 types of estimation
on synthetic data: a classic estimation with an algebraic resolution (Classic), the
ML log-Gaussian (Eq. [6.6]), the ML Gaussian (Eq. [6.8]) and the ML Rician (Eq.
[6.11]). Then, the regularization term is added to turn each ML estimator into MAP
estimations (MAP log-Gaussian, MAP Gaussian, MAP Rician), which gives a total
of 7 di�erent estimations. Second, we apply the same methodology on 2 clinical
datasets, of medium and low quality. Results are presented and discussed in the
sequel.

6.3.1 Synthetic Data

We generated a synthetic 16 × 16 × 16 tensor �eld containing two homogeneous
regions with anisotropic tensors (Fig. 6.3 left) as in [Wang 2004a]: the �rst region
(R1) contains tensors whose coe�cients are: (0.970, 0.0, 1.751, 0.0, 0.0, 0.842) stored
this way: (dxx, dxy, dyy, dxz, dyz, dzz). The second region (R2) contains tensors de-
�ned as: (1.556, 0.338, 1.165, 0.0, 0.0, 0.842). A corresponding S0 image is created
with a constant value of 10. The DWI are synthetically produced using the Stejskal
& Tanner equation with 6 di�usion gradients simulating the real data of Sec. 6.4.
Finally, a Rician noise is added to each simulated DWI, including the S0, with three
standard deviations: 0.5 (SNR' 10dB), 1.0 (SNR' 8dB) and 1.5 (SNR' 6dB).
Fig. 6.3 b, c and d show a slice of a DWI for the three levels of noise. Parameter
κ for smoothing was set to 0.05. We found that this value gives good smoothing
results while keeping most of the transitions. Going up to 0.1∼0.5 will smooth a
little more the data, but will not preserve much the interfaces in the tensor �eld,
while going down to 0.01 will preserve almost everything and thus result in less
smoothing. Moreover, as LE metric are similitude-invariant, κ does not depend on
the scale of the tensors, and the given values can be used with any type of dataset.
We set λ = 1.0 and dt = 100 iterations, which gives correct results in terms of speed
of convergence, stability of the gradient descent, and in�uence of the regularization
for the MAP estimators. A good range for λ is [0.25, 1]. Results of the Classic, ML
log-Gaussian, ML Gaussian and ML Rician estimations are shown respectively in
Fig. 6.4 b, c, d and e. Results of the MAP log-Gaussian, MAP Gaussian and MAP
Rician estimations are presented respectively in Fig. 6.4 f, g, h.

To quantitatively compare the methods, we compute the mean error, the vari-
ance, the minimum and maximum errors between each estimation and the original
data with the LE metric. Results are summarized in Table 6.2. Since non-positive
tensors appear using a classical estimation, the LE metric gives an in�nite error.
With the ML log-Gaussian estimation, all tensors are by nature positive de�nite.
However, negative tensors in a classical estimation are turned into tensors whose
eigenvalues are as close as possible to zero. Indeed, the energy is minimum when
these tensor eigenvalues are negative. This results in a slow convergence and high
errors. On the contrary, the ML Gaussian estimator prevents the tensors to degener-
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(a) (b) (c) (d)
Figure 6.3: A slice of a generated DWI with σn = 0.5 (b), σn = 1.0 (c),
σn = 1.5 (d). The encoding gradient is g = (−1, 1, 0)>.

init classic

(a) (b)
log-Gaussian Gaussian Rician

ML
(c) (d) (e)

MAP
(f) (g) (h)

Figure 6.4: 2D slices of 7 di�erent estimations of a noisy synthetic DTI
dataset (σn = 1.0). (a): The 3D synthetic �eld. (b): The classic estimation (non-
displayed ellipsoids correspond to non-positive tensors). (c): The ML log-Gaussian,
(d): The ML Gaussian, (e): The ML Rician, (f): The MAP log-Gaussian, (g):
The MAP Gaussian, (h): The MAP Rician.
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ate. Finally, the ML Rician estimator allows us to correct for the bias induced by the
noise in each DWI and the shrinking e�ect vanishes, resulting in better quantitative
results. The MAP estimators present the nice feature to preserve discontinuities
between tensors, even when the tensors shapes are similar. This is an interesting
feature when one would like, for instance, to smooth brain DTI: regions delimiting
di�erent �ber tracts have tensors about the same size but with di�erent orientations.
With our MAP estimators, these limits will be preserved.
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E�ects of these estimators on FA and ADC are detailed in Tab. 6.2 (last two
columns). One notices that FA increases with noise, as reported in [Anderson 2001,
Skare 2000]. ML Gaussian and Rician estimators are slightly less sensitive to noise
w.r.t. FA than a Classic or ML Log-Gaussian estimator (the growth in FA is lower).
The main advantage comes with the regularization (MAP estimators) which lower
the FA compared to ML estimators. Conversely, ADC is underestimated when noise
increases, which is a consequence of the shrinking e�ect. The ML and MAP Rician
estimators su�er less from this shrinking, managing to recover almost the loss in
tensor size.

To further illustrate the shrinking e�ect, we evaluated the percentage of tensor
volume lost during the estimation (the tensor volume is its determinant) for the
three levels of noise. Results are presented in Table 6.3. The shrinking e�ect is
obvious when the SNR is low. As depicted in Table 6.3, the ML Rician estimator
corrects for this e�ect, even when the noise variance is high.

These experiments show that using the ML estimator for the correct noise model
helps to correct for the shrinking e�ect one can observe with a Rician noise and a
low SNR. Moreover, the anisotropic regularization enforces the spatial correlation
while preserving discontinuities of the di�usion tensor �eld, making our estimators
suitable for clinical datasets with low SNRs.

Table 6.3: Illustration of the shrinking e�ect. Mean volumes are mean tensor
determinants of each estimation. The percentage of volume loss increases with the
noise variance. Note that the ML Rician estimator is correcting for this e�ect.

σn = 0.5
Original Data ML log-Gaussian ML Gaussian ML Rician

Mean volume 1.43 1.41 1.39 1.43
Volume loss NA 1.4% 2.9% 0.0%

σn = 1.0
Original Data ML log-Gaussian ML Gaussian ML Rician

Mean volume 1.43 1.25 1.15 1.42
Volume loss NA 12% 19.2% 0.7%

σn = 1.5
Original Data ML log-Gaussian ML Gaussian ML Rician

Mean volume 1.43 1.11 0.81 1.40
Volume loss NA 22% 43% 2%
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6.4 Clinical Data

We tested the methods on 2 clinical datasets of medium and low quality. First, we
used a brain dataset (Fig. 6.5) acquired on a 1.5T scanner with 7 encoding gradients
(Basser sequence [Basser 1994a], b-value of 1000 s.mm−2). The image dimensions
are 128× 128× 30 and the spatial resolution is 1.875× 1.875× 4mm3. Second, we
used an experimental acquisition of the spinal cord on a 1.5T scanner1 (Fig. 6.6 and
6.10) obtained with the same 7 encoding gradients and b-value as previously. The
dimensions are 128 × 128 × 24 (acquisition is coronal) with a spatial resolution of
1.4× 1.4× 1.4 mm3. This new type of acquisition is currently actively investigated
in clinical research (e.g., see [Facon 2005]) and is di�cult to perform. Indeed, the
patient often cannot stay long enough in the scanner due to pathology. Moreover, the
small entrance of the scanner forces the patient to have an uncomfortable position,
and the scanning time must be shortened. Finally, the coil cannot be perfectly
adapted to the body as it is for the head. The images are consequently much
noisier than for the brain MRI. Note that these datasets were actually collected in a
clinical environment: the brain dataset corresponds to a patient with a tumor, and
the spinal cord one was acquired to check for possible compressions [Facon 2005].
Estimation of the SNR in the brain dataset gives σ = 12 (SNR' 8dB). Estimation
of the SNR of the spinal cord dataset gives σ = 14 (SNR' 6dB). Parameters used
for the estimation are: κ = 0.05, λ = 0.25, dt = 1.0 and 100 iterations. Each of
the ML and MAP log-Gaussian, Gaussian and Rician estimations took about 12
minutes to run on a PC with a Pentium M at 2GHz with 1 Gb of memory.

Figures 6.5 show a closeup of the splenium region and nearby. We clearly see
that the missing tensors in a Classic estimation (�g. 6.5 c) that are not positive-
de�nite are not completely replaced with a ML log-Gaussian estimation (�g. 6.5 d)
due to degenerate tensors. Using a ML Gaussian estimation (�g. 6.5 e) and the ML
Rician (�g. 6.5 f) results in a �eld where all tensors are positive-de�nite. Below, we
investigate quantitatively the e�ects of these estimators on the tensor �eld.

1The authors would like to thank Denis Ducreux, MD, for providing the brain and spinal cord
DTI dataset.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 6.5: Tensor �eld estimation of a brain DTI dataset. (a): The
b0 image. The other �gures are a closeup on the region delimited by the white
square. (b): The DWI corresponding to the encoding gradient g = (1, 0, 1). (c):
Classic estimation. (d): ML log-Gaussian. Some tensors are still missing because
their eigenvalues are very close to zero. (e): ML Gaussian. All tensors remain
positive de�nite. (f): ML Rician. All tensors are positive de�nite and are slightly
bigger. (g): MAP log-Gaussian. The regularization term prevents the appearance
of non-positive tensors. Note that the boundary between the ventricles and the
splenium was preserved. (h): MAP Gaussian and (i): MAP Rician. The three
MAP estimators give very close results.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 6.6: Tensor �eld estimation of a spinal cord dataset. (a): The b0
image. The other �gures are a closeup of the region delimited by the white square.
(b): The DWI corresponding to the encoding gradient g = (1, 0, 1). (c): Classic
estimation. Many tensors are missing in and around the spinal cord. (d): ML
log-Gaussian. Same tensors than with the Classic estimation are missing. (e):
ML Gaussian. All tensors are positive de�nite and regions outside the spinal cord
are coherent and show no arti�cial anisotropy. (f): ML Rician. (g): MAP log-
Gaussian, (h): MAP Gaussian and (i): MAP Rician. The spinal tract is smoothed
and boundaries with nearby isotropic regions are preserved.

To evaluate the quality of the tensor �elds estimated, we computed the mean
apparent di�usion coe�cient (ADC), the mean fractional anisotropy (FA) and the
mean volume (VOL) in 2 distinct regions with di�erent di�usion properties. First,
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we chose the ventricles, where the di�usion is high but isotropic, and second, we
chose the corpus callosum (including the splenium and genu), where the di�usion
is known to be restricted by neural �bers, thus exhibiting high FA values. Regions
were segmented manually on axial slices. Results for the 7 estimations are presented
in Table 6.4. As expected, the ML/Map Rician estimations produce the greatest
volumes (we found an increase of about 14%), and the highest ADC values. A good
property is that in anisotropic regions like the corpus callosum, the gain of volume
does not induce a loss of anisotropy (see Table 6.4 right, last column).

Finally, adding the regularization term (�g. 6.5 g, h and i) not only smooths
isotropic regions like the ventricles without blurring the nearby splenium tract, but
also replaces non-positive tensors of the ML log-Gaussian estimation by positive
ones. Other experiments showed that the same comments apply for the interface
between grey and white matter. FA maps are shown in Fig. 6.7 �rst row. However,
the e�ect on the tensor volume, ADC and FA is more di�cult to analyze. In isotropic
regions like the ventricles, the nearby anisotropic regions have a small in�uence

Table 6.4: Quantitative comparison of 7 di�usion tensor estimations of a
brain DTI dataset. For each estimation, the mean volume, ADC and FA were
evaluated in the ventricles, and the corpus callosum. In isotropic regions like the
ventricles, one notices that the tensor volume is on average 14% (ML Rician) or
10% (MAP Rician) larger than with a Classic estimation. The ADC shows slightly
higher values with the ML Rician estimation (4% growth) and MAP Rician (2%
growth) than with the Classic estimation. The same remarks apply in the corpus
callosum but is less marked.

Ventricles
Volume ADC (10−3mm2s−1) FA

Classic 14.43 6.63 0.26
ML log-Gaussian 14.31 6.62 0.25
MAP log-Gaussian 13.82 6.49 0.18

ML Gaussian 14.39 6.63 0.25
MAP Gaussian 14.18 6.58 0.22
ML Rician 16.47 6.87 0.27
MAP Rician 15.94 6.78 0.23

Corpus Callosum
Volume ADC (10−3mm2s−1) FA

Classic 0.63 2.66 0.64
ML log-Gaussian 0.63 2.66 0.64
MAP log-Gaussian 0.61 2.61 0.57

ML Gaussian 0.63 2.66 0.64
MAP Gaussian 0.65 2.65 0.61
ML Rician 0.65 2.68 0.64
MAP Rician 0.67 2.68 0.62
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during the regularization process. Thus, tensors on the boundaries are corrupted by
small anisotropic ones. Consequently, mean tensor volumes in the ventricles with
MAP estimators are lower than those without regularization. The same remark
applies to the ADC (see Table 6.4 left, second column). Conversely, in regions with
anisotropic tensors, large isotropic neighbors may in�uence the results, leading to
higher volume and ADC (Tab. 6.4 right, �rst and second columns). E�ects on FA
maps are shown in Fig. 6.7 last row.

Figure 6.6 shows the results of the estimations of the spinal cord dataset. A
closeup is made on the top of the spinal cord. The same remarks as for the brain
dataset apply: the Classic estimation (Fig. 6.6 c) and the ML log-Gaussian (Fig.
6.6 d) lead to approximately the same results. Working with ML Gaussian and
Rician estimators (Fig. 6.6 e and f) ensures that all tensors remain positive, with
the advantage that the ML Rician estimator corrects for the shrinking e�ect: tensor
volumes inside the spinal cord have grown by about 30% compared to the Classic
estimation (the spinal cord was manually segmented from the baseline image). We
found a greater growth of tensor volumes in the spinal cord than in the brain (within
the brain, tensors have grown on average by 10%). This di�erence can be explained
by the noise level: the SNR of the spinal cord dataset is the lowest. E�ects on FA
maps are presented in Fig. 6.8 top row. The regularization term (Fig. 6.6 g, h and
i) smooths the �eld while preserving the boundaries with the spinal tract.

With the MAP log-Gaussian estimation, some arti�cial anisotropic tensors ap-
pear: The FA map (Fig. 6.8 d) presents high values outside the spinal cord, and is
thus noisier than those obtained with MAP Gaussian and Rician estimators (Fig.
6.8 e and f).

This exempli�es the importance of the choice of the noise model: For low quality
data, considering a log-Gaussian noise may not be the right choice, even with a MAP
estimation. Switching to Gaussian or Rician noise models can largely improve the
quality of the tensor estimation.
We now study how the MAP Rician estimator impacts the quality of �ber tracking
on these two datasets.

6.4.1 Improvement of Tractography

Tractography, or �ber tracking, is a process which runs at the end of the DTI pro-
cessing pipeline. Among the numerous available methods for tracking �bers, we
chose a relatively fast and easy to implement one [Fillard 2003] and show how the
tracking can be improved by our variational estimation combined with regulariza-
tion. Criteria for stopping the tracking are: a threshold on FA (if FA is too low, the
tracking is stopped) and on the curvature (to forbid unlikely �bers having a high
curvature). Prior to the tracking, tensor �elds are resampled to obtain isotropic
voxels: in general, the out-plane resolution is very low (e.g., the brain dataset here)
and interpolating the tensors improves the regularity of the �bers. Resampling is
interpreted as a weighted mean with trilinear coe�cients. Such a mean is com-
puted in the logarithmic domain and then mapped back to the tensor space with
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(a) (b) (c)

(d) (e) (f)
Figure 6.7: Fractional Anisotropy (FA) of the tensor �elds obtained in Fig.
6.5. (a): ML log-Gaussian estimation. Outliers (black dots) in the splenium are
caused by degenerate tensors. (b): ML Gaussian. One notices no outliers. (c):
ML Rician. Same as previously. (d): Map log-Gaussian, (e): Map Gaussian and
(f): Map Rician. With the three MAP estimators, the FA contrast between the
ventricles and the splenium is well enhanced.

the matrix exponential: D = exp(
∑N

i=1 ωi log(Di)), where ωi are classical trilinear
weights. We showed in [Arsigny 2006c] that such an interpolation has good practical
properties in the context of DT-MRI, compared to a Euclidean interpolation. We
tracked the �bers from the tensor �elds obtained after the Classic estimation plus
resampling and the MAP Rician estimator plus resampling. The parameters used
for the tracking are: FA threshold: 0.3 (which is high but allows to extract only a
subset of �bers in very anisotropic regions to facilitate the comparison), maximum
angle of deviation: 90◦. Results of tracking in the brain and the spinal cord are
shown in Fig. 6.9, and 6.10. With the MAP Rician estimator, the tracking is qual-
itatively much smoother in both cases and shows less dispersion. The smoothness
of the tensor �eld leads to more regular and longer �bers: tracts that were stopped
due to the noise are now fully reconstructed. The FA threshold used ensures that
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(a) (b) (c)

(d) (e) (f)
Figure 6.8: Fractional Anisotropy (FA) of the tensor �elds obtained in Fig.
6.6. (a): ML log-Gaussian estimation. Outliers (black dots) in the spinal cord are
caused by degenerate tensors. (b): ML Gaussian. One notices no outliers. (c):
ML Rician. Same as previously. (d): Map log-Gaussian, (e): Map Gaussian and
(f): Map Rician. With the three MAP estimators, the FA contrast between the
spinal cord and around is well enhanced.

all �bers belong to white matter, and do not result from a tracking in CSF or grey
matter.

6.5 Discussion
We introduced a new methodology to process DTIs of medium and low quality
(typical of clinical applications) through a joint estimation and regularization of the
di�usion tensor �eld. In particular, the estimation, which assumes that the data
are corrupted by a Rician noise, is achieved through a maximum likelihood strategy
adapted to the nature of this noise. This approach has the advantage to correct for
the bias induced by the Rician noise in the DWI, and consequently not to underesti-
mate the true volume of tensors (shrinking e�ect). Other estimation criteria which
make the assumption of a Gaussian noise on the logarithm of the signal and on the
signal itself are compared. These estimators are combined with an anisotropic reg-
ularization of the tensor �eld, so that transitions between homogeneous �ber tracts
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Figure 6.9: Improvement of �ber reconstruction. A seed region was placed
inside the corpus callosum. Results of the �ber reconstruction after a classical esti-
mation (Left), and after the MAP Rician estimation (Right). Fibers are overlapped
with a volume rendering of the T1 image.

are preserved. To optimize these criteria, we use a Log-Euclidean metric that pro-
vides a fast and easy to use framework to process tensors. This tensor computing
framework completely overcomes the limitations of the standard Euclidean calculus,
and is well adapted to the processing of di�usion tensors.

Results on synthetic data show that considering a ML estimation adapted to
a Rician noise model corrects for the shrinking e�ect, while assuming other noise
models results in a loss of tensor volume after estimation. Results on real clinical

Figure 6.10: Spinal cord �ber tract reconstruction. A region containing the
spinal cord was used for the tracking. Left: The spinal cord reconstructed after
the Classic estimation. Right: The same tract after our proposed variational
framework. Fibers are overlapped with a slice of the FA map.
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datasets show that the use of ML estimators can be valuable in clinical studies: The
MAP estimations nicely smooths homogeneous regions without blurring transitions
between di�erent tract in the case of brain DTI. Moreover, with a dataset of low
quality, we showed that the choice of the noise model is important, as outliers
may persist even with the regularization. The ML Rician estimator turns out
to be the best choice in that case. Finally, the promising improvement of the
�ber reconstruction of these data shows that even clinical DTIs can be used for
tractography.

In the next chapter, we focus on the second aspect of our optimal work�ow for
DTI: the integration of DTI processing and visualization methods into a software
usable by anyone.
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The increase and diversity of sources of information in medical imaging has
raised the need for adapted tools for visualization and analysis of these data. For
instance, the progress made in magnetic resonance imaging (MRI) for the past two
decades has prodigiously improved the quality and resolution of 3D images. More-
over, these images can take various forms: anatomical MRI, functional MRI (fMRI)
and di�usion tensor MRI are only a few examples. The analysis of these data is
challenging too. For instance, computing neural �bers in DTI or segmenting lesions
in multiple sclerosis (MS) require adapted and sophisticated methods. Moreover,
at the Asclepios team, we are very often collaborating with medical experts and we
are frequently facing the problem of how to e�ciently transfer new techniques from
the �methodological world� towards clinical research.

Most of state-of-the-art algorithms are not easily accessible to clinicians.
These methods are in general available in relatively complex software, like Slicer
[Pieper 2004], BrainVisa [Cointepas 2001] or Camino [Cook 2006]. Although these
software suites are extremely powerful, they can be quite hard to fully master. Clin-
ician's needs are simple yet very di�cult to satisfy in a computer science point of
view: they want ergonomic, reactive and intuitive softwares that o�er real-time in-
teractions with data. We started the MedINRIA project to o�er medical experts
a user-friendly interface to algorithms developed by the Asclepios project and all
the potential collaborators. We thought that too many nice piece of methodolo-
gies would never be used because they do not have a proper user interface so that
end-users can really test and use them. It was time to propose a solution to this
problem.
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MedINRIA can be seen as a collection of softwares targeting the clinicians. From
a programmer point of view, MedINRIA o�ers a set of libraries for data manipulation
and visualization so that programmers only need to focus on the integration of a new
method, and not on the data visualization part nor on the user interface creation. We
released these libraries as open-source and call them vtkINRIA3D [Toussaint 2007a].
From the user point of view, MedINRIA has the native look-and-feel of any system
(Windows, MacOSX and Linux), and is a user-friendly graphical interface with a
set of comprehensive buttons and online help.

Up to now, MedINRIA contains software for image visualization, DT-MRI analy-
sis, tensor visualization, image registration and semi-automatic segmentation of MS
lesions. In the following of this chapter, we will only focus on the applications useful
for DT-MRI analysis (everything except the multiple sclerosis related applications).
This chapter is organized as follows: In Sec. 7.1, some basics and key concepts of the
MedINRIA's architecture are introduced. Then, a description of each application is
given, from their general purpose to the analysis and interactions with medical data
they introduce. We conclude in Sec. 7.6 with a discussion on the future work.

7.1 Software Description
Schematically, MedINRIA is composed of three main blocks, as shown in Fig. 7.1.
First, the processing block is build upon the Insight ToolKit (ITK [Ibanez 2003]). It
has all ITK features: �exibility (it can process any type of data), a multi-threaded
implementation and a pipelined architecture. Second, the visualization block is
made with the Visualization ToolKit (VTK [VTK 2007]), itself based on OpenGL,
and o�ers the same pipelined structure as ITK. Finally comes the user interface block
written in wxWidgets [wxWidgets 2007]. This block is responsible for transmitting
user-de�ned parameters and user interactions to the two �rst blocks. Unlike the
processing and visualization blocks, this one can only transmit data in one direction,
and consequently cannot receive any information from the other blocks. The main
reason is to keep the user-interface detached from the processing and visualization
part. Thus, one could easily re-write the user-interface with another library, or even
write command line tools instead of graphical applications.

When started, all MedINRIA's tools can be launched from a single menu. Several
applications are available, each of them being dedicated to a speci�c task or type of
data. We give below a description of four of them:

• Image Viewer, a simple yet powerful 3D medical image viewer;
• DTI Track, DT-MRI processing and visualization with Log-Euclidean metrics;
• Tensor Viewer, a di�usion tensor �eld visualization software;
• and Image Fusion, a software for manual rigid to fully automatic non-linear
alignment of any type of 3D images.



7.2. ImageViewer: A Simple yet Powerful Image Viewer 127

Figure 7.1: The MedINRIA architecture. MedINRIA is composed of three main
blocks: 1. The processing block based upon ITK, 2. The visualization block using
VTK and 3. The user interface block made in wxWidgets. The blue arrows indicate
the data �ow, from the processing block to the user interface. The user-interface can
only send controls to the processing and visualization blocks (the opposite is for-
bidden). Thus, the interface can be re-written using another library with minimum
e�ort.
We start by brie�y introducing the general purpose of each application as well as
their utility in DT-MRI processing, and continue by describing the processing and
interactions technique they propose, to give to medical experts a fast and e�cient
insight into their data.

7.2 ImageViewer: A Simple yet Powerful Image Viewer
This �rst application aims at displaying 3D images and interacting with them. It is
also used to convert clinical data (DICOM) into volumetric images. ImageViewer
introduces interesting original features like: image tabbed browsing, a preview screen
(Fig. 7.3 left) where a set of images can be compared (interactions are synchronized:
slice or contrast change of one window a�ects all the other windows as well), which
gives an ergonomic navigation through images.

The most important part of this �rst application w.r.t. DT-MRI analysis in
clinics is the possibility to import di�usion weighted sequences from raw DICOMs.
We describe this feature in the next section. Then, we focus on the user interactions
with 3D images as this is the most innovative part for an intuitive manipulation of
data.
DICOM Conversion to Volumes: In medical imaging, DICOM is the �le for-
mat outputted by any scanning device. Consequently, a DICOM importation tool
is mandatory for integrating software in a medical environment. In Image Viewer,
a wizard simply asks the user to specify the DICOM folder (where all individual
DICOM images are stored by the scanner), and �les are automatically arranged to
construct the 3D volumes of the patient. Manual interaction is possible for di�cult
cases (interlaced �les for instance). Special care should be made when importing a
DWI sequence. Indeed, DWI are composed of several images, often with interlaced
slices due to the sequence acquisition (every �rst slice of all DWI are acquired �rst,
then every second slices, etc.). In this case, volumes must be correctly reconstructed.
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Figure 7.2: Importing DICOM �les with MedINRIA. Left: The importer
wizard simply asks the user for the DICOM folder and automatically reconstructs
the 3D images. Right: After reconstruction, the preview screen of ImageViewer
is loaded.

MedINRIA uses speci�c tags present in the DICOM �les to di�erentiate between dis-
tinct DW images and successfully reconstructs interlaced volumes. As shown in Fig.
7.2 left, once the importation process has ended, the user can browse into the list
of DICOM �les composing a volume, and consequently visually inspect the result.
After reconstruction, all volumes are imported into Image Viewer and the preview
screen is loaded: all images can be compared and interaction are synchronized (Fig.
7.2 right).

2D Image Visualization: Classical 2D visualization of 3D volumes is per-
formed by extracting slices in three orthogonal directions (axial, sagittal and coro-
nal). Slice navigation is simply done by clicking on a view, and then moving the
mouse upward or downward. The positioning is synchronized, i.e., each of the three
orthogonal views show the same position at the same time. Contrast adjustment
is also synchronized, and can be set with the mouse by changing the interaction
mode via the menu bar (icons are comprehensive). Zoom and pan functions are also
provided.

3D Image Visualization: Images are displayed in 3D either using multiplanar
reconstruction (MPR) (Fig. 7.3 left) or volume rendering (VR) (Fig. 7.3 middle).
MPR consists in displaying a slice in every orthogonal direction, while VR uses 3D
textures with an opacity transfer function and is hardware-accelerated. The opacity
transfer function for the VR is controlled by the contrast of the 2D views. The
transfer function that controls opacity in VR is given by two parameters, window
and level: any voxel whose scalar value is less than level−window/2 will be trans-
parent, and any value above level+window/2 will be opaque. The ramp in-between
is linear.

Volume Of Interest (VOI) extraction: Manual extraction of a VOI in VR is
a desirable feature. Clinicians may want to have an insight into the patient's brain
and remove only one block from his head by visually clicking on the screen. This
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Figure 7.3: Image visualization with MedINRIA. Left: The preview screen.
Right: Image rendering in 3D. Top: Multiplanar reconstruction (MPR) of a T1
image. An axial, sagittal and coronal slices is displayed. Middle: Volume rendering
(VR) of the same image. Bottom: The cropping box was used to extract a VOI.
By clicking on the handles, it can be resized (face handles) and translated (center
handle).

is done in MedINRIA using a cropping box: it consists of a white box that can be
scaled and translated by clicking on white handles present on each face (Fig. 7.3
right). The volume inside the box is automatically removed and cropping is done in
real-time (hardware-accelerated).

7.3 DTI Track: Log-Euclidean DT-MRI Processing
The DTI Track application is dedicated to DT-MRI processing and visualization
using Log-Euclidean metrics. DTI Track guides the user through the whole pro-
cess, from importing the measures (i.e., the DWI) to the reconstruction of potential
nervous �bers. The processing pipeline consists of three steps. First, the di�u-
sion tensor �eld is estimated from the DWI. We use the standard approach which
consists in using a linear version of the di�usion equation (Sec. 6). We have not
integrated the non-linear estimation with a Rician noise model of Sec. 6 yet mainly
for performance reasons: we need to optimize its implementation a little more be-
fore being practically usable. Second, as the standard estimation does not ensure
the result to be positive de�nite, we replace any non-positive tensor by the Log-
Euclidean mean of its positive neighbors. This step is fast and satisfactory removes
non-positives matrices. An optional step consists in anisotropically smoothing the
di�usion tensor �eld using Log-Euclidean metrics as described in Sec. 4.3.4. Spe-
cial attention was taken to make these two steps as fast as possible, not to lower
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Figure 7.4: Example of �ber bundling with MedINRIA. Top left: The com-
plete set of reconstructed �bers. The white box displayed is the cropping box. Only
�bers that go through that box are shown. Top right: The box was shrunk by
clicking on the face handles. The red arrows show the direction of the shrinking.
The user can choose to navigate only in this sub-sample of �bers. Bottom right:
The box was moved to another position, thus de�ning a second VOI. The bundle of
interest (BOI) is ready to be tagged (i.e. labeled and saved). Bottom left: The
BOI is now tagged and colored in red. It can be saved for further analysis.

the overall e�ciency of the software. This includes a multithreaded implementation
with optimized numerical libraries.

In third comes the tractography (Sec. 6.4.1). Our strategy in DTI Track is
to start a new �ber at every voxel of the brain whose FA is greater than a user-
de�ned threshold (default is 0.2). Consequently, we extract all possible brain �bers
at once and store them in memory for further analysis. This also results in a gain
of reactivity when de�ning ROIs: the user does not have to wait until completion
of the tractography seeded by the ROIs, the result is immediate (�bers are already
in memory). This last step generates thousands of nervous �bers that requires
speci�c visualization and interaction techniques. In the following, we focus on the
manipulation and analysis of �bers.

Fiber Manipulation: Depending on the image resolution, tractography can
generate up to 100 000 �bers with an average of 100 points each. The task is
not easy: one should display a maximum of information while keeping a real-time
rendering. We chose to: 1. display �bers using only lines and not more complex
geometric primitive like tubes, and 2. introduce a cropping box that intrinsically
de�nes a VOI and only �bers that go through it will be displayed (Fig. 7.4). The
cropping box can be scaled and translated with handles on each of its sides. Moving
and scaling the box are real-time actions (�bers are pre-computed), giving clinicians
a good insight of the brain connectivity. Moreover, the color-coding of �bers plays
an important role: we color each �ber coordinate by the tangent at that point, i.e.,
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Figure 7.5: Tensor visualization with MedINRIA. Top: An axial (left),
coronal (middle) and sagittal (right) slice of a 3D tensor �eld. Bottom The sphere
indicates the color scheme of tensors (left). L: left, R: Right, I: Inferior, S: Superior,
A: Anterior, P: Posterior. The tensor �eld (middle) looks �ipped left-right. We
applied a �ipping (right) to correct this defect.
the normalized tangent is mapped into a RGB value (if a coordinate is negative, we
take the absolute value). Then, if a �ber is left-to-right oriented, it is red, if it is
infero-superior, it is blue, and if it is antero-posterior, it is green (see e.g., Fig. 7.4
top left).

Interactive Fiber Bundling: Random navigation into the reconstructed neu-
ral �bers may not be satisfactory. Experts might be willing to identify and label
a speci�c �ber bundle of interest (BOI). For this purpose, we o�er two solutions.
The �rst one is to manually de�ne a region of interest (ROI) slice by slice on a 3D
image. When this image is the patient anatomy (T1), critical structures can be
easily spotted and segmented. Accessing the exact bundle that goes through these
structures can be of interest. The second method relies on the cropping box. It can
be used recursively, i.e., multiple VOIs can be de�ned by positioning it at various
locations. Thus, one can easily isolate a single �ber using this method. Note that
both methods can be used alternatively. Once the user is satis�ed with the BOI,
he can label it, color it and save it for further analysis. Quantitative values of the
bundle can be computed: apparent di�usion coe�cient, fractional anisotropy, etc.

7.4 TensorViewer: Tensor Fields Visualization
Visualizing di�usion tensor �elds produced by DTI Track is important for quality-
control. In DTI, it is frequent that tensor �elds are �ipped in the X, Y or Z
direction. This is caused by a misalignment of the di�usion gradient coordinate
system with the patient acquisition frame. TensorViewer allows to visually control
and correct for �ipped tensors (Fig. 7.5 bottom). In TensorViewer, tensor �elds
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are considered as 3D images, i.e. three slices in three orthogonal directions (namely
axial, coronal and sagittal) are displayed (see Fig. 7.5 top). However, one may
question whether using ellipsoids for representing tensors is the best choice in terms
of speed of refresh rate.
Which tensor representation to choose? The choice of the geometric primitive
to represent a tensor is an active area of research (see e.g. [Kindlmann 2004]). As
we said earlier, a tensor is fully represented by an ellipsoid: it can be divided into
three eigenvectors (axis of the ellipsoid) and eigenvalues (axis magnitude). However,
ellipsoids require lots of polygons to be rendered nicely (about 64 polygons). For
instance, a dense �eld of 128 × 128 × 60 voxels (typical resolution of DTI) gives a
total of 2 millions polygons to display three orthogonal slices, by far too many for a
real-time rendering on a regular computer (P4 2GHz, 1Gb of system memory and
256 Mb of graphic memory). To hasten the rendering, we give the possibility to
downsample the �eld and lower the number of polygons. Moreover, we propose to
represent a tensor not only by an ellipsoid, but by any other geometric primitives
that can correctly represent the shape (from a sphere to a cigar-shaped ellipsoid)
with fewer polygons. For instance, a cube, which has only 6 faces, gives a good
approximation of the true tensor shape (the cube is rotated and scaled w.r.t. the
eigenvectors/eigenvalues). To go one step further, if we get rid of the smallest
eigenvalue (which is meaningless most of the time in DTI), planar shapes are
possible too: a disk or a square are potential primitives.

Eventually, one can simply represent the principal eigenvector of a tensor instead
of the full tensor itself: in DTI, it is admitted that the main eigenvector is aligned
with the underlying oriented structure under speci�c conditions. These conditions
are when the fractional anisotropy is high. In that case, a simple line is an acceptable
shape for displaying tensors. MedINRIA proposes a listbox where all geometric
shapes discussed above can be selected.

In addition to the shape chosen, we color code a tensor by its main eigenvector
(absolute values of the coordinates are considered as RGB) as shown in Fig. 7.5
bottom left: red is for a left-right oriented tensor, green is for antero-posterior and
blue is for infero-superior. The color magnitude is controlled by the FA: a dark
tensor means absence of �bers. Conversely, a bright tensor means presence of �bers,
and the color indicates the principal direction of the structure, according to the color
code above. This provides a fast and accurate insight of the locations and directions
of brain �bers.

7.5 Image Fusion: Fast and Simple Image Registration
Toolkit

Image Fusion is dedicated to image registration. Among all image processing algo-
rithms, registration remains a mandatory pre-processing step before doing statistical
analysis, group comparisons or atlas formation. Moreover, it can be used in the con-
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(a 1). (a 2). (a 3). (b)
Figure 7.6: (a): Manual registration of a T2 and T1 image of the same patient.
(a) Top: A point plus a direction were drawn on the moving T2 image (a 1),
and �xed T1 image (a 2), (yellow cross plus blue line). The right image (a 3) is a
blending of the previous images, showing that they are misaligned. (a) Bottom:
The moving T2 image (a 1) after manual registration. The blending (a 3) shows
that images are better aligned. (b): The deformation �eld is the output of the
non-linear registration algorithm. It is displayed as a regular grid wrapped by the
deformation �eld in a axial view (top) and in VR mode (bottom).

text of DT-MRI analysis to align the DWI onto the structural (namely T1) image.
Indeed, medical experts prefer to have the T1 image overlapped with the �bers, be-
cause structural images generally have a better resolution and reveal �ner structure
compared to the b0 image for example. Practically, we do not warp the DWI onto
the T1 image (in that case we should also take care of tensor reorientation issue, see
[Alexander 2001b] for a detailed description), but one computes a transformation
matrix (a�ne matrix) that matches the geometry of the DWI and the geometry of
the T1 image. Then, this matrix can be eventually loaded in DTI Track during the
DWI importation process. Doing so, extracted �bers will be automatically warped
w.r.t. the a�ne matrix and be aligned with the T1 image.

This application provides a simple interface for several types of registration. It
takes two images as input, the ��xed image� and the �moving image�, and o�ers up
to now three ways of registering them:

• Manual Rigid Registration: In a few clicks, one can perform a manual rigid
registration of two images. Rigid registration consists in a translation and a
rotation. This is done intuitively by asking the user to place in both �xed and
moving images a point plus a direction. The two points are used to compute
the translation, and the directions are used to calculate the angle of rotation
(Fig. 7.6).
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• Automatic A�ne Registration: We interface the a�ne registration framework
of ITK [Ibanez 2003] to achieve this automatic matching of images. It consists
in maximizing the mutual information of the two images, and is embedded in
a multi-resolution framework. No user input is required. This method gives
optimal results when registering two multi-modal images of the same patient
acquired at di�erent times. For matching images of di�erent subjects, one
should rely on the last method.

• Automatic Di�eomorphic Demons Registration: This non-linear registration
method was very recently introduced by Vercauteren et al. [Vercauteren 2007].
It is based on variants of the Thirion's demons algorithm [Thirion 1998] for
non-linear mono-modal image registration. It is fast, and insures the invertibil-
ity of the transform, which is a very desirable feature in non-linear registration.

Once images are registered, RegistrationTool o�ers two ways of visually evaluat-
ing the result: either using a blending technique (Fig. 7.6 (a 3)), or a checkerboard,
which consits in creating an image with cubes, one cube out of two containing the
moving and the �xed image, alternatively.

7.6 Conclusion on MedINRIA
The software MedINRIA is a collection of applications dedicated to medical image
processing and visualization. The goal is to provide to clinicians an intuitive, reac-
tive and powerful processing and visualization system. Along with classical features
that any medical imaging software has, MedINRIA introduces quite a few new user-
interactions that aims at easing the exploration of medical data by clinicians, who
often need a simple, yet powerful, visualization system. For instance, MedINRIA
proposes to extract a 3D volume of interest of an image interactively in real-time
using a 3D box and volume rendering techniques. In addition, it introduces an inter-
active method to extract a neural �ber bundle of interest among thousands of �bers,
using the same type of 3D box. MedINRIA does not only o�er user-interactions for
manipulating 3D data, but it also provides state-of-the-art algorithms that are most
of the time not accessible to clinicians, as these algorithms are generally available
in more research-oriented software. Here, we propose to process DT-MRI using
Log-Euclidean metrics, and to visualize tensors using a panel of geometric shapes.

Future work includes the development of new applications: people (graduate
students and engineers) from the Asclepios project are currently working on a
system to automatically segment lesions in Multiple Sclerosis, a tumor growth
simulation software, and a cardiac image processing toolkit. MedINRIA is growing
fast, and will remain free. A Windows, Linux and MacOSX version can be
downloaded at: http://www-sop.inria.fr/asclepios/software/MedINRIA.

In the next chapter, we illustrate how some of the DT-MRI processing methods
developed in Chap. 6, as well as the software MedINRIA, could contribute to
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the feasibility of DT-MRI in a clinical environment with a study on the possible
indications in spinal cord lesions.
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This chapter describes a clinical study realized and is highly medically oriented.
It was written in collaboration with Denis Ducreux, MD, a radiologist at the
Bicêtre hospital in Paris, and mainly follows reference [Ducreux 2007].

Magnetic resonance (MR) imaging plays a major role in the diagnosis and follow-
up of spinal cord lesions. The main objectives of spinal cord imaging are to detect
and characterize lesions, to assess the feasibility of surgical resection, and to di-
agnose recurrences and complications of therapy. Conventional MR imaging using
T1- and T2-weighted sequences (in spin or gradient echo) lacks sensitivity in detect-
ing and characterizing cord lesions, such as multiple sclerosis or acute spinal cord
infarction. In addition, in patients who have cord tumors, conventional sequences
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may not be able to clearly identify the transition between the tumor and the sur-
rounding edema. In the brain, di�usion-weighted (DW) imaging is an established
and reliable method that helps to detect and characterize such lesions, and di�usion
tensor (DT) imaging is becoming an important technique to identify white matter
tracts and the e�ects of di�erent lesions on them. DW imaging and DT imaging
are usually performed using echo planar sequences, which are sensitive to noise,
motion, and susceptibility artifacts. These two caveats make it di�cult to detect
and characterize spinal cord lesions, particularly with DW imaging. In addition, the
resolution of most currently clinically used DW imaging sequences is not optimal to
image structures as small as the spinal cord and its internal features. Better charac-
terization of white matter lesions (and therefore many cord lesions) may be achieved
using DT imaging and �ber tracking (FT) algorithms [LeBihan 1991, Basser 1994a,
Basser 1996, Wheeler-Kingshott 2002, Facon 2005]. Recently, several investiga-
tors have assessed the feasibility of performing spinal cord DT imaging studies
[Facon 2005, Holder 2000, Ries 2000, Clark 2000, Bammer 2000, Cercignani 2003].
DT imaging sequences with computation of fractional anisotropy (FA) are more
sensitive than spin echo T2-weighted images in detecting intrinsic abnormalities
in acute or chronic spinal cord compression [Facon 2005, Demir 2003]. In lesions
that produce involvement of white matter �bers, it has also been reported that DT
imaging with FT may help to de�ne abnormal areas that are undetected on routine
T2-weighted imaging [Facon 2005]. In our experience, FA and FT maps derived
from DT imaging computations may help neurosurgeons to better delineate spinal
cord tumors and may contribute important information before tumor resection. In
the following, we review the di�erent methods available to obtain DT imaging and
FT in the spinal cord and their clinical applications. We discuss novel and dedicated
spine FT programs and speculate about the future of DT imaging and FT in spinal
cord imaging.

8.1 Di�usion Tensor Imaging and Fiber Tracking Meth-
ods

8.1.1 Image Acquisition

DT imaging may be reliably performed on 1.5 T MR imaging systems with actively
shielded magnetic �eld gradients, but strong gradients are needed (≥30 mT/m) for
optimal imaging. To decrease magnetic susceptibility artifacts intrinsic to echo pla-
nar DT imaging sequences, parallel imaging with the shortest echo time is desirable.
The spinal cord is a small organ with less extracellular water than the brain. Con-
sequently, small b values are required to prevent signal attenuation on DW imaging.
SENSE or GRAPPA echo planar imaging or multishot fast spin echo sequences ob-
tained with a b value of approximately 500 s/mm2 are most advantageous because
they reduce magnetic susceptibility artifacts and result in shorter acquisition times
[Renoux 2006]. Several DT imaging gradient directions are needed, and theoret-
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Figure 8.1: Color-coded di�usion tensor �eld of the spinal cord centered on the
cranio-cervical area. Large ellipsoids are seen in the CSF areas because its motion
at a microscopical level is not clearly directional, resulting in a mixture of colors,
shapes, and sizes. Conversely, the cord shows small longitudinal ellipsoids (mostly
green and uniform in shape and size).

ically more directions result in a better signal-to-noise ratio and better di�usion
tensors. Investigators have tested 6, 12, 25, and 55 directions and have concluded
that the best compromise between acquisition time and image quality is achieved
with 25 directions. Data are then resampled in the sagittal plane (resulting in a
more complete visualization of the spinal cord than in the axial plane) using a sim-
ple matrix rotation. Sagittal DT imaging sequences are most sensitive to water
di�usivity along the main spinal cord axis. To decrease cerebrospinal �uid partial
�ow motion, cardiac gating may be used, especially for thoracic cord imaging, but it
is not mandatory if saturation pulses are placed in the region of the heart. Based on
these observations, we performed our studies using sagittal, single-shot, spin echo,
echo-planar parallel GRAPPA DT imaging with an acceleration factor of 2 and 25
noncollinear gradient directions with two b values (b=0 and 500 s/mm2) (�eld of
view: 180×80 mm; image matrix: 128×128; 12 slices with a thickness of 3 mm,
nominal voxel size: 1.4×1.4×3 mm, and TR/TE=4600/83 ms). Acquisition time is
slightly over 3 minutes per study, during which time the patients are asked to hold
still and to try to avoid swallowing. Other acquisition schemes exist (�eld of view:
200 mm; axial 2 mm slice thickness, and b value 800 s/mm2), but our experience
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showed that they fail to generate adequate FT images needed to visualize the white
matter tracts in the spinal cord.
8.1.2 Image Analysis

Image analysis is performed on a voxel-by-voxel basis using dedicated softwares
(DPTools http://www.fmritools.org, and MedINRIA http://www-sop.inria.

fr/asclepios/software/MedINRIA). Before performing the tensor estimation, an
unwrapping algorithm is applied to the DT imaging dataset to correct for distor-
tions related to eddy currents induced by the large di�usion sensitizing gradients.
This algorithm relies on a three-parameter distortion model including scale, shear,
and linear translation in the phase-encoding direction [Haselgrove 1996]. Optimal
parameters are assessed independently for each slice relative to the corresponding
T2-weighted image by maximization of an entropy-related similarity measure called
�mutual information� [Poupon 2000]. This algorithm has proven to be fast and re-
liable and is used in many brain applications. We adapted it to the spinal cord to
decrease the distortions induced by the echo planar sequence. DT imaging acquisi-
tions can be further processed without distortion corrections, but FA and FT maps
may show artifacts at the edges of the �eld of view. After distortion correction,
the di�usion tensor and subsequently the eigen decomposition (with eigenvalues λ1,
λ2, λ3) is calculated on a voxel-by-voxel basis. Thus, the di�usion tensor �eld (Fig.
8.1), the apparent di�usion coe�cient ADC = (λ1 + λ2 + λ3)/3 = λ, and the FA:

FA =

√
3
2
.

√
(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2√

(λ2
1 + λ2

2 + λ2
3

are calculated. An FA value around 1 indicates a very anisotropic tensor, while an
FA value close to 0 means that the tensor is isotropic.
8.1.3 Fiber Tracking Method

In addition to the two-dimensional parametric color maps (also called direction-
ality maps) obtained using the previously mentioned method, three-dimensional
white matter �ber tracts maps can be generated. Many FT algorithms are
available in the literature, and can be divided into two categories: �ber trac-
tography and connectivity mapping. The former approach basically consists in
integrating the �eld of principal direction of di�usion (main tensor eigenvec-
tor) and attempts to reconstruct the �bers that pass through a given point
[Basser 2000, Xu 2002, Westin 2002, Mangin 2002]. The latter approach attempts
to estimate a connectivity map by simulating the di�usion process based on
the data, and look for the most likely pathways between a seed and a target
[Hagmann 2000, O'Donnell 2002, Lenglet 2004, Zhang 2007a]. Both approaches
have pros and cons, but we will not discuss them as this is not the topic of this work.
The algorithm we use (included in MedINRIA) is based on the advection-di�usion
scheme proposed by [Weinstein 1999] (streamline �ber tracking), which performs

http:// www.fmritools.org
http://www-sop.inria.fr/asclepios/software/MedINRIA
http://www-sop.inria.fr/asclepios/software/MedINRIA
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well in regions with two crossing �bers, and is combined with a Log-Euclidean
anisotropic smoothing and interpolation to improve the reliability of �ber tracking
in relatively low SNR images typical of our spinal acquisitions. MedINRIA estimates
the tensor �eld of the DT imaging acquisition and then processes the entire study
to �nd all detectable �bers. The user selects a region-of-interest that maps in three
dimensions all �bers that pass through it. The process takes less than 30 seconds
on a PC workstation. Three-dimensional reconstructions of white matter tracts are
color coded. Green denotes cranio-caudal �bers, blue denotes the left-to-right �bers,
and red denotes the anterior-posterior �bers. FT reconstructions may falsely depict
aberrant �bers that are due to susceptibility artifacts, especially in the edges of the
�eld-of-view. These artifacts do not a�ect the intrinsic cord �bers and are easy to
recognize.

8.1.4 Fractional Anisotropy Measurements

Spinal DT imaging can be used to generate three types of maps (similar to those
used in brain DT imaging). In the directionality map, the �bers traveling in di�erent
directions (left to right, bottom to top, and anterior to posterior) are assigned di�er-
ent colors that permit their identi�cation. These maps result in a two-dimensional
display and contain important information regarding anatomy and anisotropy of
white matter tracts. Unfortunately, their resolution is limited. Directionality and
FT maps provide anatomic information but cannot provide objective values on FA.
FA maps thus result in numeric information that may be useful in many disease
processes. As with many other new techniques, we recommend that each center
obtain a set of normal FA measurements that can be used for comparison in cases
of lesions. Special attention should be paid to avoiding cerebrospinal �uid partial
volume e�ects and magnetic susceptibility and motion artifacts in the selection of
each region-of-interest (ROI). For example, we initially performed cord FA measure-
ments in healthy volunteers at three di�erent levels (cervical [C2-C5], high thoracic
[T1-T6], and low thoracic [T7-T12]) using ROIs of 20 mm2 (10 voxels), which in-
cluded gray and white matter. FA values are nearly identical at the di�erent spinal
cord levels, implying that anisotropy of white matter �bers is remarkably uniform
throughout the cord. For spinal cord lesions, FA measurements should be performed
at the site of abnormality using an ROI that is located completely within the lesion.
To set the ROI, the b0 images are used because they permit clear visualization of the
lesions. From them, these ROIs are copied to the FA maps to avoid partial volume
e�ects and magnetic susceptibility and motion artifacts.

8.2 Clinical Applications
8.2.1 Normal Anatomy

FT of the spinal cord shows the main white matter tracts: posterior-lateral cortico-
spinal, posterior lemniscal, and spinal-thalamic (Fig. 2). On the �ber tracking
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three-dimensional reconstructions, it is also possible to visualize the �bers of the
nerve roots (Fig. 8.2).
8.2.2 Spinal Cord Tumors

DT imaging and FT may help to characterize some tumors and to delineate their
margins [Xu 2002]. FA values are similar for astrocytomas (0.48±0.02), ependymo-
mas (0.5±0.04), and metastases (0.46±0.04) but are di�erent for hemangioblastomas
(0.59). The lowest FA values are seen in metastases, and the highest are seen in
hemangioblastomas. Because most tumors of the cord are gliomas, DT imaging
may not play an important role in the histologic characterization of these tumors
but may play a role in distinguishing hemangioblastomas from metastases (an ob-
servation that may be important in patients who have Von Hippel Lindau disease).
The margins of tumors as seen on DT imaging match those seen on T2-weighted se-
quences. Using FA maps, the surrounding edema may be separated from the tumor
due to lower values in the former. FT may show �bers that are warped or frankly
destroyed by tumor (Figs. 8.3 and 8.4). This may be important when assessing
highly in�ltrative tumors and delineating their margins before resection. In addi-
tion, tumors such as metastases and hemangioblastomas are localized and tend not
to in�ltrate the surrounding areas (Fig. 8.5). Rotation of the three-dimensional FT
maps is needed in some patients to localize the tumors (Figs. 8.4 and 8.5).

Figure 8.2: Fiber tracking performed on a volunteer's cervical spinal cord. (A)
Sagittal view (left) shows green color coded posterior lemniscal tracts. A slightly
oblique projection (center) shows the same tracts superimposed on an axial b=0
image. Magni�ed view (right) shows the decussating �bers (arrow) of these tracts.
(B) Magni�ed view shows decussation of the spino-thalamic tracts (arrow). (C)
Frontal view of the cervical spine shows �bers in nerve roots (arrows).
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Figure 8.3: Cervical spinal cord astrocytoma. (A) Midsagittal T2-weighted image
shows an expansile and mildly hyperintense tumor at the C2-C4 levels. (B) Direc-
tionality sagittal map shows loss of anisotropy in the mass (blue color, arrow) that
is focal and compatible with diagnosis of WHO grade II astrocytoma. Anisotropy is
immediately reestablished along tumor margins due to the lack of edema. (C) FT
map shows splaying of �bers by a tumor normalized at the tumor margin (arrow).
(D) Magni�ed FT map shows �ber splaying by a tumor. Most �bers are intact due
to the nondestructive nature of tumor.

Figure 8.4: Cervico-thoracic spinal cord hemangioblastoma. Midsagittal T2 (A)
and postcontrast T1 images (B) show focal enhancing lesion on the posterior aspect
of the cord at the T1 level with surrounding edema. (C) Directionality map shows
focal loss of anisotropy (blue color) in this noninvasive tumor. Anisotropy recovers
immediately outside of the tumor margins. (D) Oblique FT map shows the focal
�hole� where the tumor is located. Note splaying of �bers but no signi�cant thinning
or invasion.
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Figure 8.5: Breast metastasis to the conus medullaris. (A) Midsagittal (upper)
and axial (lower) T2 image shows no signi�cant abnormality. (B) Corresponding
directionality map shows localized loss of anisotropy in this tumor. Metastases are
well marginated tumors that generally do not invade the surrounding tissues. (C)
Frontal FT map fails to show the lesion as a small �hole� (arrow) amid �bers. Note
the nerve roots of the cauda equina inferiorly. (D) Oblique FT map shows to a better
extent the focal hole corresponding to the site of the tumor in the inferior and left
lateral aspect of the cord. Neighboring �bers are preserved. This case illustrates
the signi�cant sensitivity of DT imaging to localized lesions even when T2 images
are normal.
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Figure 8.6: Time-course curve from
Day 1 to Day 30 of the averaged FA
estimated from sites of spinal cord com-
pression. FA values decrease from Day
1 through Day 21 and then slightly in-
crease. This phenomenon is related to
extracellular water di�usivity. There is
restricted di�usivity in the acute stage
and increased di�usivity in the chronic
stage. Preservation of di�usivity in
the acute stage may imply a better
prognosis.

8.2.3 Spinal cord compression

Conventional T2-weighted images may underestimate the e�ects of compressive le-
sions on the spinal cord, particularly when no hyperintense signal accompanies cord
compression in the hyperacute period (which is the critical time to treat these le-
sions). DT imaging can detect abnormal areas within a normal-appearing spinal cord
on T2-weighted imaging. FA has a better sensitivity (73%) and speci�city (100%)
in the detection of acute spinal cord abnormalities compared with conventional T2-
weighted imaging [Facon 2005]. FA measurements versus the time of injury may
also help to predict the patients' outcome (good outcome for FA values >0.6 and
worse outcome for FA values <0.6 in the acute period) (Fig. 8.6). FT identi�es the
sites of compression and aids by depicting mass e�ect and discontinuity of white
matter �bers, which also have a prognostic implication because patients who have
the latter generally show little or no improvement (Fig. 8.7).

Figure 8.7: Spinal
cord compression
due to vertebral and
epidural metastasis
of a breast cancer.
(A) Midsagittal b 5 0
image is shown on the
left. (B) Color-coded
FA map (red) shows
a mass-e�ect on �ber
tracts (arrow) but pre-
served anisotropy in
this patient, who had
pain but no neurologic
symptoms.
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Figure 8.8: Diagram
illustrating FA varia-
tions seen in in�am-
matory myelitis. The
centers of these le-
sions show decreased
FA values, and their
boundaries show in-
creased FA. This pat-
tern may be speci�c
to myelitis.

8.2.4 Myelitis

DT imaging is more sensitive than regular T2-weighted imaging in detecting spinal
cord in�ammatory lesions. FA maps and FT performed on patients who have sus-
pected myelitis show lesions that are not seen on conventional T2 imaging. In one
series, patients who had idiopathic myelitis had one (100%) or multiple (80%) areas
of decreased FA regardless of the appearance of the cord at those levels on T2-
weighted imaging [Renoux 2006]. Increased FA may be seen in the periphery of the
zone of myelitis and in normal-appearing T2-weighted areas. The latter zones tend
to be asymptomatic; the signi�cance of this �nding is uncertain. Thus, an in�amma-
tory myelitis is characterized by decreased FA values in the region of the T2-weighted

Figure 8.9: Idiopathic in�amma-
tory cervical myelopathy (pre-
sumed diagnosis). (A) Midsagittal
T2 image shows faint hyperinten-
sity and expansion of the cord at
the C5-C6 levels. (B) Correspond-
ing directionality map shows loss
of anisotropy greater than the size
of the lesion seen on the T2 im-
age. (C) FT map shows splaying
and loss of �bers greater than that
seen in localized tumors and due to
the ill-de�ned nature of this in�am-
matory process, which resolves with
antiin�ammatory drugs.
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lesion and increased FA values in the lesion's boundaries (Fig. 8.8). This pattern is
di�erent from that seen in invasive tumors, in which FA is low in peripheral regions
of edema. Additionally, FT shows that in�ammatory lesions spread the �bers of the
spinal cord in areas that have an abnormal T2 signal; this pattern may be related
to a decrease in extracellular water due to cytotoxic edema, axonal cluster regen-
eration, or cellular in�ltration by in�ammatory cells [Cassol 2004, Ciccarelli 2003].
This pattern is not seen in invasive tumors and may be an important marker of
in�ammatory lesions. Occasionally, �ber thinning is seen in in�ammatory lesions
and may be due to early axonal involvement (Fig. 8.9).
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8.2.5 Arteriovenous Malformations

In spinal cord arteriovenous malformations, DT imaging with FA measurements
may help to better understand their pathophysiology [Ozanne 2007, Stein 1992].
Additionally, FA values may improve after embolization and correlate with a better
patient outcome. FT shows that at the level of the arteriovenous malformation
nidus, the tracts are spread, shifted without spreading, interrupted, or normal.
FT shows no �bers running through the nidus, an observation that may become
important if surgical resection is contemplated. Distant to the nidus, congestive
edema or a �cavitation� pattern may be found. In congestive edema, FT shows
spreading of fascicles with global enlargement of the beam of tracts. There can also
be a slight rarefaction of tracts, with decreased FA but normal ADC values. In
cavitation, FT shows a loss of tracts with global thinning of their beam. Damage
due to cavitation may be irreversible. In segments of the cord distant to the nidus
without T2-weighted hyperintensity but where draining veins are present, FA values
are slightly decreased when compared with segments where no draining veins are
present, implying abnormal congestion at a microscopic level and perhaps explaining
patients' symptoms when the level of edema seen on T2-weighted images does not
match clinical de�cits (Fig. 8.10).

Figure 8.10: Cervical spinal cord arteriovenous malformations in a 23 y.o. man who
had sensory symptoms in the right arm of 4 years duration. (A) Coronal T2 image
shows an intramedullary lesion at C3-C4 with an associated enlarged blood vessel
laterally (arrow). (B) FT map shows segmental interruption of the right posterior
fascicle (arrowhead) at the level of the inferior part of the arteriovenous malforma-
tion nidus, which also splays the �bers. Lateral �bers are interrupted, and nerve
root �bers are thin (arrow). Frontal views of catheter angiogram (C) and three-
dimensional reformation (D) from the catheter angiogram show the malformation.
The arrow points to an inferior feeding artery that presumably resulted in alteration
of nerve root �bers shown on the FT map. DT imaging �ndings suggest that the
symptoms are associated with tract damage and that recovery of neurologic func-
tion may not occur after treatment. The zone of �ber disruption may be used for
surgical approach to avoid further damage of intact �bers elsewhere.
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8.2.6 Metabolic Disorders

MELAS (mitochondrial encephalopathy, lactic acidosis, and stroke-like events) is
a disorder that a�ects the brain and spinal cord. Patients who have spinal cord
involvement have a worse prognosis. On the T2-weighted and FLAIR images, mul-
tiple, abnormal, high-intensity signal lesions may be seen in the mesencephalon,
medulla oblongata, cerebellum, and cervical spinal cord. FA values are decreased
within the spinal cord of these patients even when T2 abnormalities are not obvious
[Ducreux 2005]. FT in the cervical spinal cord is not sensitive enough to detect ab-
normalities in MELAS patients. In MELAS, the extracellular water may not alter
the shape of the tracts because the edema is not severe enough to warp them (Fig.
8.11) [Ducreux 2005].

Figure 8.11: A patient who has
MELAS and spinal cord in-
volvement. (A) Midsagittal T2
image shows the central area
of high signal in the cord from
C2-C4. (B) FT map coreg-
istered and projected on T2-
weighted image shows an unal-
tered shape of the white mat-
ter tracts. In this disease, accu-
mulation of extracellular water
does not warp the �ber.
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8.2.7 Syringomyelia

DT imaging may be useful to investigate syringomyelia. A syrinx may involve
the spinothalamic tracts and result in temperature and sensory de�cits and pain
not directly related to the site and size of the lesion. Preliminary work seems to
indicate that detailed anatomic evaluations in these patients are possible using FT.
FT is useful in identifying the spinothalamic tracts in patients who have syrinx. We
hypothesize that if the tracts are present but displaced by the lesion, the patients
will have a better prognosis than when FT shows thinning or destruction of these
tracts (Fig. 8.11). Identi�cation of these tracts may be useful to the surgeon before
placement of electrodes to control pain (Fig. 8.12).

Figure 8.12: Fluid-�lled cavity in the thoracic spinal cord. (A) Midsagittal T2 image
shows syrinx in the lower thoracic cord. (B) FT map shows that the syrinx alters
the shape of white matter �bers especially the spinothalamic tracts (arrow), which
may explain symptoms in some patients. (C) Magni�ed FT map demonstrates the
decussating tracts warped by the cavitation (arrow). Objective warping or tracts
may lead to decompression even in patients who have small syrinxes.
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8.2.8 Spinal Cord Injuries

Patients who have had prior spinal cord injuries may bene�t from DT imaging and
FT. Preliminary results after peripheral nerve grafting seem promising (Tadie, per-
sonal communication, 2002). Patients treated this way experienced a 40% motor
recovery. Our early experience shows that FT may be used to assure the anatomic
presence of intact �bers, a factor needed for successful grafting (Fig. 8.13). Fibers
destroyed by the initial injury or secondarily to Wallerian degeneration do not re-
spond to grafting.

Figure 8.13: A patient who
has paraplegia after a spinal
cord injury. Frontal view of
the FT map shows a rela-
tive absence of right sided-
�bers (yellow bracket) when
compared with the opposite
side due to Wallerian degen-
eration. Note the normal
nerve roots (arrows), which
are not identi�ed in the area
of Wallerian degeneration.
The nerve roots on the oppo-
site side could be used for a
nerve bypass to the remain-
ing functional spinal cord.

8.3 Conclusions
DT imaging and FA may be more sensitive than other conventional MR imaging
techniques to detect, characterize and map the extent of spinal cord lesions.
Moreover, Fiber tracking o�ers the possibility of visualizing integrity of white
matter tracts surrounding some lesions, and this indirect information may help
in formulating a di�erential diagnosis and in planning biopsies or resection. FA
measurements may also play a role in predicting the outcome of patients who have
spinal cord lesions.

We have shown through this study that the di�usion tensor can e�ectively be
used in clinical applications, and is still promised to a great future. The availability
of free methods and softwares (like MedINRIA) helps clinicians analyze their own
data. Conversely, methodological research is often driven by clinical applications.
This symbiosis between these two worlds is the key for a fertile development of each
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of them, and softwares appear as one of the possibility to help them communicate.
In the next chapter, we conclude the part with a summary of the contributions

and a discussion on the future directions.



Chapter 9

Discussion

In this part, we have developed, implemented and applied in real conditions a
set of methods for the processing of DT-MRI typical of clinical applications. In
particular, the speci�c constraints of the clinical world (short scanning time, 1.5T
scanners) lead us to develop a joint di�usion tensor estimation and smoothing
procedure that is robust enough to handle a low number of encoding gradients
(i.e., a low number of di�usion weighted images) and rather low signal-to-noise
ratios. In order to be used by medical experts who are not necessarily strong
computer scientists, we believe that such method should be embedded in easy-
to-use softwares. For this purpose, we have developed MedINRIA, a collection
of medical image processing software packages dedicated for use by clinicians. It
includes applications for 3D image visualization, a complete processing pipeline
for DT-MRI analysis, a tensor visualizer for quality control of di�usion tensor
�elds, and an image registration toolkit for image alignment. Finally, we have
demonstrated the use of MedINRIA with a survey of possible applications of spinal
cord DT-MRI. We have shown that DTI could play a role in characterizing tumors,
detecting compressions and in�ammatory lesions, or as a follow up in nerve grafting.

In the future, the questions of validation and reproducibility of our joint
di�usion tensor estimation and smoothing procedure have to be answered. For
this purpose, we could think of repeating scans of the same patient in various
orientations in the scanner, and in various scanners. One also could think of using
phantoms or histological data as in [Perrin 2005, Savadjiev 2006]. Furthermore,
the observed qualitative impact on the tracking could be quanti�ed, using for
instance a dispersion measure of the �bers. In addition, this estimation method
should be integrated into MedINRIA. Several steps have to be done prior to its
integration: �rst, one needs to optimize its implementation to make its execution
as quick as possible. Second, parameters (like noise variance, amount of smoothing)
should be set automatically, and this task is far from being straightforward (some
groups are speci�cally working on it, in particular for the estimation of the noise
variance [Aja-Fernández 2007]). Finally, the practical input of DT-MRI in clinical
applications should be further investigated with other clinical studies. We showed
how DT-MRI could be used in spinal cord imaging, but most applications are
studying the brain: DTI could be used to characterize tumors, to follow evolving
pathologies like multiple sclerosis, or better understand neurological pathologies like
autism, schizophrenia or depression. Further applications using DTI include the
modeling of tumor growth: there are some evidence that tumors grow principally
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in the directions of the neural �bers and disseminate cancer cells in these directions
[Clatz 2005, Konukoglu 2007]. This would be extremely useful in radiotherapy to
more precisely delineate a tumor along with the regions where potential cancer
cells are located, even if they cannot be seen with MRI.

One last application apart from the clinical world is the modeling of the white
matter �ber architecture. Modeling white matter �bers is important 1) to better
understand brain and brain maturation (which implies a modeling at di�erent ages)
and 2) to be able to perform group studies and consequently understand e�ect of
pathologies on these �bers. This is a computational anatomy problem which aims
at evaluating what a normal �ber architecture is in terms of average representation
and variability around this average within a given population. One would need
�rst to put di�usion weighted images of di�erent patients in correspondences,
which raises the question of non-linear registration of DTI. This �eld is very
active, and promising work include [Goodlett 2006, Ziyan 2007, Zhang 2007b].
Moreover, we believe that DT-MRI could be used to improve registration of
white matter in T1 images for instance, as shown in [Studholme 2007]: white
matter in T1 images appears uniformly white, while DT-MRI reveals structures
(�bers) which could drive the registration. Second, we need to be able to reli-
ably extract corresponding �ber bundles among patients. Fiber bundling is an
active area of research, and several groups are heading towards that direction
[O'Donnell 2006]. Finally, one should fuse all these �ber maps into a single average
representation, and then determine its variability. Interesting work on this include
[Corouge 2006, Maddah 2007, O'Donnel 2007].

The �nal part of this thesis is dedicated to the computational anatomy of the
brain. Unlike the present part, we are not dealing with di�usion MRI and �ber
tracts anymore, but we focus on building a second order model of the cortex. The
cortex is the principal locus of neural activity (while �bers can be seen as the �links�
between neurons), and is a very complex structure and variable among individuals.
Thus, measuring and modeling its variability within a population is one step towards
a more complete model of the brain, which is the main goal of this thesis.



Part III

Statistical Analysis of the Human

Brain Cortex

Anatomy





Chapter 10

Introduction

Contents

10.1 De�nition of Brain Variability . . . . . . . . . . . . . . . . . . 157
10.2 What Type of Data do we Need? . . . . . . . . . . . . . . . . 159

�Aristotle was famous for knowing everything. He taught that the brain exists
merely to cool the blood and is not involved in the process of thinking.

This is true only of certain persons.�
Will Cuppy.

Brain structures di�er greatly in shape and size even among normal subjects (see
e.g., Fig. 10.1), and these variations make it di�cult to identify abnormal di�erences
due to disease. Understanding the degree and quality of brain variations is vital for
distinguishing early signs of disease from normal variations. Neuroscientists are also
interested in identifying the causes of brain variability at a genetic or environmental
level. An e�cient, parsimonious model of the complex patterns of brain variation
would help in identifying factors that contribute to it. Furthermore, measuring brain
asymmetry (i.e., di�erences between hemispheres) is of special interest as it sheds
light on how the functions of the two hemispheres become specialized [Toga 2003].
Improved modeling of the range of variations in brain structure could make it easier
to isolate speci�c e�ects of genetic polymorphisms on these normal variations and
asymmetries [Cannon 2005, Geschwind 2002, Thompson 2001a]. Finally, geometric
variability of anatomy also makes the automated segmentation and labeling of brain
structures di�cult. Statistical information on brain variability would make this task
easier [Pitiot 2004, Fischl 2002], and could be used in Bayesian approaches for inter-
subject nonlinear registration ([Mangin 2004a, Gee 1998, Ashburner 2005]) in order
to adjust for anatomical variations across subjects prior to group analysis of brain
function or metabolism.

10.1 De�nition of Brain Variability
A major class of anatomical variations can be thought of as arising from the
smooth deformation of a reference anatomy, where the deformation is represented
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Figure 10.1: The cortical surfaces of four di�erent subjects. It is hard to
detect common patterns, and consequently to detect abnormalities, when looking at
cortical surfaces. Computational anatomy is a �eld whose goal is to model organs
like the brain to be able to distinguish automatically between normal controls and
pathological subjects.

as a 3D displacement �eld, after a�ne di�erences are factored out [Roche 2000].
These variations can be measured via some statistical tools, and in particular the
covariance matrix. This matrix tells not only how much an anatomical position
varies (i.e., a quantitative value in centimeters), but also in which direction it
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varies the most (there is some evidence that structural variation is greatest along
certain preferred directions [Thompson 2001b]). Having this information at every
anatomical position is what we call a second order model of brain variability (by
analogy, a �rst-order model would be the atlas, or the �mean anatomy�).

To go further in the modeling of brain variability, we could look at the possible
joint variability of all pairs of points to see how the displacement of one point (in a
population) with respect to the reference anatomy covaries with the displacement
of neighboring or distant points in the brain (e.g., symmetric ones in the opposite
hemisphere). In other words, measuring the variability of each individual point
might not be su�cient since it does not reveal a potential correlation between
two positions. These correlations may, however, reveal crucial information on the
relationships between brain structures. This information is complementary to the
variability, and could be seen as a new measure of brain connectivity.

Before going into the main material of this part, there is something important
that we have not discussed: the data. The choice of the type of data (and their
dimensionality) for this study is not straightforward and data can take various forms,
like images, surfaces or lines. In the next section, we discuss what type of data can
be considered for this work, and we motivate our choice.

10.2 What Type of Data do we Need?
One initial idea for measuring inter-subject brain variability might be to gather
statistics on 3D displacement �elds computed between a reference anatomy and
many individuals. Such data could be obtained using an inter-subject registra-
tion algorithm. However, we would need to estimate the in�uence of the chosen
registration method, as well as the in�uence of the target chosen for registration.
Furthermore, the image intensity only constrains the registration in the direction of
the image gradient. In other words, matching is generally uncertain in directions
parallel to edges. Only by adding some constraints of regularity on the displace-
ment �eld, one can obtain a smooth deformation �eld and hope to recover part of
the missing displacement components. To provide information that is completely
independent of volumetric image registration algorithms, we chose in this work to
rely on lower dimensional structures, such as cortical landmarks identi�ed by expert
neuroscientists following a formalized protocol, with known inter- and intra-rater re-
liability. We could have taken surfaces, e.g., the hippocampus, corpus callosum, or
even the whole cortex as in [Thompson 2000]. However, even for surface-based de-
formations, we would still face the problem of �nding appropriate correspondences
between surfaces (this is currently an active area of research, especially for the
brain [Pitiot 2003, Tosun 2005, Wang 2005, Vaillant 2005, Vaillant 2006]). More-
over, these surfaces may be di�cult to extract accurately. Thus, we chose to focus
on anatomically well de�ned 3D curves that could be manually delineated by neu-



160 Chapter 10. Introduction

roanatomists and considered as ground truth data. This choice naturally led us to
the primary anatomical landmarks on the cortex: the sulci. A large number of of
sulcal landmarks consistently appear in all normal individuals and allow a consistent
subdivision of the cortex into major lobes and gyri [Mangin 2004b]. In the absence
of individual functional imaging data, sulci also provide an approximate guide to
the functional subdivisions of the cortex, for all of the lobes. They are also used to
guide intersubject functional activations registration [Corouge 2003].

The LONI Sulcal Lines: We use a dataset of sulcal lines manually delineated in
98 subject images by expert neuroanatomists according to a precise protocol1 (an
example of tracing is shown in Fig. 10.2). The dataset consists of 47 men and 53
women (age: 51.8 +/- 6.2 years), all normal controls. The lines are traced in 3D on
the cortical surface, using an interface that allows curves to be traced interactively on
surfaces. In Fig. 10.2, the sulcal lines appear to be traced out as curved lines in the
intrasulcal CSF, near the exterior of the cortex. This is because the cortical surfaces
we use are regularized and they clip across the sulcal CSF. The cortical surfaces are
extracted with an active surface algorithm [MacDonald 1998] that creates a surface
whose geometry is well adapted to a single intensity isovalue in the image while at
the same time minimizing a curvature penalty that prevents complete penetration of
the surface into the sulci. As such the sulcal lines are more like the gyral divisions on
the exterior cortical hull as seen in the classical cytoarchitectonic maps of Brodmann
[Brodmann 1905]. Using these as landmarks in prior studies for the normalization of
fMRI and other cortical signals [Thompson 2004, Sowell 2004] was shown to improve
the registration of gyral crests although it has to be admitted that the surface does
not represent the full depths of the cortical sulci. In the following, we abusively call
these sulcal lines sulci to simplify the description.

Figure 10.2: Example of sulcal lines drawn on the cortical surface.

1http://www.loni.ucla.edu/∼khayashi/Public/medial_surface/
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Figure 10.3: The Sylvian Fissure. Lines of 98 subjects are displayed in
two colors.

We included the maximal subset of all sulcal curves that consistently appear in
all normal subjects, 72 in total. Image analysts blind to subject sex and age traced
the sulci on the lateral brain surface (including the Sylvian �ssure, and central,
pre-central, post-central, superior temporal sulcus (STS) main body, STS ascending
branch, STS posterior branch, primary intermediate sulcus, secondary intermediate
sulcus, inferior temporal, superior frontal, inferior frontal, intraparietal, transverse
occipital, olfactory, occipito-temporal, and collateral sulci) in each hemisphere on
the surface of each subject's brain. An additional set of sulci were outlined on
interhemispheric surfaces (including the callosal sulcus, inferior callosal outline,
superior rostral sulcus, inferior rostral sulcus, paracentral sulcus, anterior and
posterior segments of the cingulate sulcus, outer segment double parallel cingulate
sulcus when present, parieto-occipital sulcus, anterior and posterior segments of
the calcarine sulcus, and the subparietal sulcus). In addition to contouring the
major sulci, a set of 6 midline landmark curves bordering the longitudinal �ssure
were outlined in each hemisphere to establish hemispheric gyral limits. Spatially
registered gray-scale image volumes in coronal, axial, and sagittal planes were
available simultaneously to help disambiguate brain anatomy. Detailed criteria
have been developed for delineating the cortical lines, and for starting and stopping
points for each sulcus using brain surface atlases as references. By repeated
training on test sets of brain images, the maximum observed inter- and intra-rater
error (reliability) was ensured to be better than 2mm everywhere, in terms of
r.m.s. distance, and in most regions less than 1mm, far less than the intersubject
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anatomical variance. MR images used for delineations were linearly aligned to
the ICBM stereotactic space [Collins 1995], thus providing a common coordinate
system for all traced curves.

The rest of the part is organized as follows. In Chapter 11, we show how to
create a second-order model of brain variability from the LONI sulcal lines. We
also perform statistical tests, including leave-one-(sulcus)-out test, to evaluate the
predictive power of such model. In Chapter 12, we no longer focus on measuring the
variability of each individual brain position, but we look for the joint variability of
(i.e., correlations between) any pair of points. In particular, we study the correla-
tions between two major sulcal lines and the rest of the brain. This �rst study leads
us to explicitly target the correlations between symmetric positions of the brain,.
We �nally conclude in Chapter 13.
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The second-order model of cortical variability as we de�ne it consists in repre-
senting the variability of each individual point of the cortex via its covariance matrix,
or variability tensor. We call this matrix a tensor by analogy to the di�usion ten-
sor, which is nothing other than the covariance matrix of the Brownian motion of
water molecules. Both matrices have exactly the same properties (real, symmetric
and positive de�nite). This is the reason why we call such model a �second-order�
model. Our strategy consists of three steps. First, the modeling of the sulcal lines,
and the extraction of variability tensors (Sec. 11.1). Here, we de�ne what an av-
erage sulcal line is, as well as the correspondences between the average line and
each subject's instance. Then, we can compute covariance matrices along the mean
curves. Second, the model simpli�cation using tensor interpolation (Sec. 11.2). In
this second step, a subset of meaningful (we will de�ne what meaningful is) tensors
are extracted to e�ectively create the 2nd order model of variability: a sparse �eld
of variability tensors. We show also how to extrapolate this sparse �eld to obtain
a dense representation. Third, the evaluation of the model (Sec. 11.3). In this last
section, we judge the predictive power of the model through several statistical tests,
including a leave-one-(sulcus)-out test.
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11.1 Learning Local Variability from Sulcal Lines
In this �rst section, we detail the methodology to model the sulcal curve, i.e., how
we de�ne the mean curves and the correspondences between the means and each
instance, and how we extract variability tensors along them.
11.1.1 Sulcal Curve Modeling

Statistical models have frequently been constructed for objects such as open or closed
curves and surfaces [Bookstein 1991, Cootes 1995, Trouve 2000, Paulsen 2003] to
cite only a few examples. In each of these, the aperture problem occurs: as we do
not have point landmarks, the point-to-point correspondences between instances of
a surface or a curve cannot be recovered exactly. For instance, correspondences of
two sulcal lines are intrinsically subject to error, with a greater uncertainty in the
tangential direction than in the direction orthogonal to the sulci. In this work, we
propose a one-to-one correspondence mapping that explicitly minimizes the amount
of tangential variability. By doing this, we clearly underestimate the true variability
(we only recover the normal component of the variability), but we don't introduce
arti�cial variability due to erroneous correspondences.

Figure 11.1: Illustration of the aperture problem. Matching the red curve
onto the black one results in uncertainty in the tangential direction, when no extra
information is available. Three possible matchings are highlighted with question
marks, though an in�nity is possible. In our sulcal matching procedure, we chose
to minimize the impact of uncertain matchings by reducing the most possible the
tangential component, which lead us to choose in this case the closest point (green
circle).

First, we denoise the sample lines by approximating them with B-splines (Fig.
11.2): the manual sampling of 3-dimensional curves is only precise up to the voxel
size (about 1mm3), which is lower than the inter-rater variability of 2mm. In this
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continuous setting, the number of degrees of freedom can be adjusted to increase
robustness to noise while avoiding resampling problems [Baumberg 1994]. Typically,
we reduce the number of control points to one third of the original sampling points,
with a mean distance of 0.25mm and a maximum error of 2.7mm.

Figure 11.2: Sulcal lines before and after B-Spline parameterization. Left:
Original lines from the LONI. The �stair� e�ect is due to sampling noise. Right:
The same set of lines after our B-Splines parameterization. The high frequency
noise is removed while keeping a very good approximation to the data. Moreover,
the lines have now a continuous formulation thanks to the splines.

Many criteria have been proposed in the literature to evaluate the mean curve
for a set of curves and to assess the appropriateness of one-to-one correspondences
between geometric objects. They usually invoke local di�erential characteristics
such as the tangent space, curvature, the local Frenet frame for a curve on a surface
[Guéziec 1994, Bakircioglu 1998], regional shape information [Pitiot 2003]. In our
case, the variability is so large (see e.g. Fig. 10.3), that using such re�ned measures
is di�cult. In general, sulcal curves do not have internal geometric features, along
their length, that occur consistently from subject to subject. Therefore, we simply
use the total variance of curve models as a criterion:

C(z) =
1

N − 1

N∑
k=1

∫ 1

0
‖yk(φk(s))− z(s)‖2‖z′(s)‖ds, (11.1)

where yk is the given sulcus of subject k, N the number of subjects, z the mean
sulcus and φk the correspondence function between the subject's curve and the mean
curve and s the curve length.

Minimizing this variance greatly reduces the variability due to inadequate
correspondences. Practically, we alternately improve the correspondences between
the mean curve and each sample by dynamic programming and optimize the
average curve position by a �rst-order gradient descent with an adaptive step.
This optimization strategy converges toward the mean curve after a few iterations



166 Chapter 11. A Second-Order Model of Cortical Variability

(dashed curve in Fig. 11.4).
For each of the 72 sulci, we end up with the mean curve z(s), and one-to-one

mappings φk(s) that give the corresponding position yk(φk(s)) in each subject k.
The variability tensor Σ(s) is then given by:

Σ (s) =
1

N − 1

N∑
k=1

[
yk
(
φk(s)

)
− z(s)

] [
yk
(
φk(s)

)
− z(s)

]>
. (11.2)

Results of covariance tensors estimated along the 72 sulci are shown in Fig. 11.3. A
�rst and immediate remark is that the variability tensors looks much bigger at the
extremities of the curves than in-between. This can be explained in two ways. A �rst
hypothesis is that these points are actual landmarks identi�ed by neuroanatomists
(they know exactly where a sulcus starts and where it ends). During our sulcal
matching procedure, we force the very �rst and end points of all sulci to corre-
spond in order to initialize the dynamic programming procedure. Consequently,
these points are the only locations where the aperture problem does not take place.
Thus, they can carry an extra-information not available elsewhere: the variability
tangential to the mean sulci. A second hypothesis, which is the one we are more
con�dent with, is that the extreme points are very hard to identify: a sulcus may
end because a gyrus is cutting it into two pieces, or there is a large uncertainty due
to partial voluming, a wrong surface extraction at these location, etc. Consequently,
these points exhibits a large variability due to a relatively poor accuracy of their
localization. Although the truth is surely a trade-o� between these two hypothesis,
we chose in this work to remove the variability information at the extremities of the
sulci from our model, and focus only on the inner parts of the sulci.

11.1.2 Estimation of the A�ne Transformation from Correspon-
dences

Initially, images were a�nely registered onto a common reference image (in our
case the ICBM305 space). To remove the in�uence of the chosen target and
build unbiased atlases, one often needs to use more elaborate strategies, like in
[Guimond 2000], or [Kochunov 2002]. With our curves, one can simply rely for each
subject on the established correspondences between its sulci and the mean curves
to re�ne the a�ne transformation. This will also further reduce the overall sulcal
variability.

Let (Ak, tk) be the a�ne transformation of subject k (Ak being the linear part,
and tk being the translation. Let us assume that the mean curves and the mappings
between each subject's curve and the mean are known. We are looking for the
optimal a�ne transformation (Ak

(opt), t
k
(opt)) in the least-squares sense, i.e., the ones

that minimizes the sum of the squared di�erences between the transformed sulci and
the mean curves (as transformations are independent between di�erent subjects, one
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Figure 11.3: Sulcal variability. Top: The sulcal lines alone. Mean curves are
shown in red, and traces from 98 healthy normal individuals are displayed in green
and yellow. Bottom: Covariance matrices (ellipsoids at one standard deviation)
are overlapped at regularly sampled spatial positions along the mean sulci. The
color codes for the trace: Note that tensors close to the sulci extremities are larger.
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can deal with each system at a time):

C(Ak, tk) =
N∑

i=1

∫ 1

0
‖Akyk

i

(
φk

i (s)
)

+ tk − zi(s)‖2ds (11.3)

To optimize this energy, we �rst �x Ak and look for the optimal translation. We
�nd that the minimum value is reached for:

tk(opt) = z̄ −Akȳk, (11.4)
where z̄ = 1/N

∑N
i=1

∫ 1
0 zi(s)ds and ȳk = 1/N

∑N
i=1

∫ 1
0 y

k
i (φk

i (s))ds. Second, one
introduces tk(opt) back into Eq. 11.3. Calling ỹk

i = yk
i − ȳk and z̃i = zi − z̄, one can

rewrite Eq. 11.3 as:

C(Ak) =
N∑

i=1

∫ 1

0
‖Akỹk

i (s)− z̃i(s)‖2ds.

In Appendix B, we show that the solution is given by:

Ak
(opt) =

(
N∑

i=1

∫ 1

0
z̃i(s)ỹk

i (s)>ds

)(
N∑

i=1

∫ 1

0
ỹk

i (s)ỹk
i (s)>ds

)−1

. (11.5)

The overall framework now consists in alternating the positioning of the mean curve,
the computation of the correspondence functions, and the evaluation of the optimal
a�ne transformation for each subject using Eq. 11.4 and 11.5. Curves in Fig. 11.4
represent the energy of Eq. 11.1 averaged over the 72 sulci and for each iteration.
The optimization of mean curves and correspondences reduces the amount of vari-
ability to 70% of the initial value. Reestimating the a�ne transformation further
reduces the amount of variability to 60% of its initial value.

Figure 11.5 shows the resulting variability tensors computed using Eq. 11.2 and
overlapped along the mean sulcus. One notices that the correspondence optimization
greatly reduces the tangential components of the variability. The a�ne correction
reduces the variability more globally.

11.2 Model Simpli�cation and Extrapolation
We are now able to compute variability tensors at any continuous position along
the 72 mean sulci of our datasets, thanks to the B-Spline parameterization and
the correspondence mappings obtained in the previous section. The goal of this
second step is to optimally choose a certain number of covariance matrices and
their positions to simplify the sparse �eld of variability tensors. Then, we will show
how to extrapolate this sparse �eld to obtain a dense representation, which will be
considered as the actual second order model of brain variability. This will be used
for visualization purposes and further analysis in a third step.
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Figure 11.4: Mean curves calculation: Energy vs. iterations. Dashed
curve: Without a�ne re�nement. Solid curve: With a�ne re�nement every 10
iterations. Note that the process has converged after 40 iterations.

11.2.1 Model Simpli�cation using Tensor Interpolation

In the interior part of the sulci, tensors are highly regular in size and shape (see Fig.
11.3). Some of this information is therefore redundant and could be simpli�ed by
selecting only a few tensors at speci�c points along the mean sulcus, and interpolat-
ing in between them. Moreover, to avoid corrections for multiple testing problem,
we had to downsample the representation of the continuous curves to a point where
each tensor is independent of its neighbors. A second computational reason is that
the tensor extrapolation process is very time consuming, and reducing the num-
ber of seed tensors decreases the computational time drastically. We use geodesic
interpolation (see Sec. 4.2.1) to interpolate between successive tensors, because it
preserves the monotone (i.e., consistently increasing or decreasing) evolution of the
determinant. This is crucial when interpolating two probability densities and is not
possible in general with standard Euclidean interpolation. For e�ciency reasons,
we also selected the tensor values among the observed data rather than optimizing
them as free parameters. This operation has been automated in an algorithm called
tensor picking.
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Figure 11.5: Variability tensors for the Sylvian Fissure. Top: Without
correspondence optimization. Middle: After correspondence optimization. Bot-
tom: After correspondence optimization and a�ne transformation optimization.
Note that the curves get slightly more concentrated around the mean, showing less
variability. This is re�ected by the reduction of covariance matrices in the direction
orthogonal to the mean curve. The reduction of variation in the tangential direction
is mainly due to the optimization of correspondences between curves.

Tensor Picking: Let (Σi)1≤i≤N be a set of N variability tensors de�ned at
abscissa si along a mean sulcus. The geodesic interpolation between 2 successive
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tensors is given by: Σ̃(s) = expΣi
[(s− si)/(si+1− si) logΣi

(Σi+1)] for si ≤ s < si+1.
The mappings expΣi

and logΣi
are the exponential and logarithmic maps, using

either the a�ne-invariant (Sec. 3.3.4) or Log-Euclidean (Sec. 3.4) metrics. As we
are working only on the interior of the sulcus, s takes its values between s2 and
sN−1 (we remove the extremities), so that the interpolated variability Σ̃(s) is always
de�ned. The tensor picking operation consists in �nding the optimal set of N (Σi)
such that the geodesic distance between the measured (initial) and interpolated
variability tensors is minimized: C (Σ1, . . . ,ΣN ) =

∫ sN−1

s2
dist2(Σ(s), Σ̃(s)

)
ds. The

geodesic distance dist() can be either the a�ne-invariant or Log-Euclidean distance
between tensors, but should be consistent with the choice of the metric for the
geodesic interpolation. To minimize this energy, we �rst set N equal to 2. Then, an
exhaustive search for the optimal set of N tensors is done. If the energy obtained is
below a threshold t (set empirically to 0.2 in our experiments, see section 11.3.1 for
an in-depth analysis of this parameter in�uence), the tensors are picked. Otherwise
the number N is increased and the search is reiterated.

Results of this operation are presented in Fig. 11.6 (middle panel): by choosing
tensors at adequate positions, one can qualitatively reconstruct the full variability
of each sulcus using 4 to 10 covariance matrices, depending on its length and shape.
The variability of all the major sulci can be adequately represented by 366 variability
tensors only out of 2000 initially.

11.2.2 Extrapolating the Variability to the Full Brain

The next step consists in extrapolating these selected tensors to the full brain.
Extrapolation produces a dense �eld of covariance matrices and is useful for two
reasons. First, one can access the variability tensor at any continuous position of the
brain. Obviously, modeling brain variability just by looking at a limited set of sulcal
lines is not enough to infer the variability of deeper structure. If a greater number
of structures were chosen (including subcortical structures such as the ventricles),
we could better model the variability of the full brain. Second, it facilitates the
exploration of the results by visually identifying large areas that vary similarly. To
extrapolate the sparse �eld of tensors, we use the framework detailed in Sec. 4.2.3,
which combines a radial basis function (RBF) interpolation and a di�usion PDE
with a data attachment term. The RBF interpolation is used as initialization of the
di�usion PDE, which converges in a very few iterations.

Fig. 11.6 presents the result extrapolating our 366 tensors on a discrete grid
of size 91 × 109 × 91 and with a spacing of 2×2×2mm3 (ICBM 305 space). We
used the parameter values α = 20 and γ = 0.95 for the RBF interpolation and
σ = 2 for the discretization of the data attachment term in the extrapolation (Eq.
(4.18)). We derived 2 scalar measures from the extrapolation. The �rst one (Fig.
11.7 left column) is a variability map given by the 3D root mean square (r.m.s.)
of the trace of each covariance matrix: rms =

√trace(Σ(x)). One can see highly
variable regions (such as the parietal cortex and Broca's area) with hot colors, and
more stable areas (such as the primary sensorimotor cortex) with cold colors. Note
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that the maximum allowed inter- and intra-rater error for the manual tracings of
the curves was ensured to be less than 2mm everywhere, less than the inter-patient
variability that is observed (the smallest value is about 3mm). The second map
shows the principal direction of each tensor (i.e., the eigenvector associated to the
largest eigenvalue), whose coordinates are mapped on the RGB sphere, as presented
in Fig. 11.7 right column (same color as in DTI - Part II). This map con�rms the
anatomical intuition that there are sets of sulci in certain cortical areas that tend to
vary in a consistent way in the top view, the principal direction of variation is lateral-
to-medial for the superior frontal and parietal sulci, but the central and precentral
sulci tend to vary more along an anterior-posterior direction. The temporal lobe
sulci also tend to be consistent in varying with the same principal direction.

The spatial pattern of variability agrees with established neuroanatomical data.
For instance, [Thompson 2000] computed the variability of the cortex surface in an
independent normal sample (15 controls) using a non-linear surface registration al-
gorithm. Fig. 11.8 compares his variability map with ours. Our model of variability
presents the same high values in the temporo-parietal cortex (red and purple area,
marked �A� in Fig. 11.8) and low values in the superior frontal gyrus (marked �B�
in Fig. 11.8), Broca's area, and the lower limits of the primary sensorimotor cortices
in the central and precentral gyri. Phylogenetically older areas (e.g., orbitofrontal
cortex), and primary cortices that myelinate earliest during development (e.g., pri-
mary somatosensory and auditory cortex) exhibit the least variability. The planum
parietale (marked �A� in Fig. 11.8) consistently shows the highest variance of any
cortical area, consistent with the complex pattern of secondary �ssures surrounding
the supramarginal and angular gyri (the perisylvian language cortex). It is also
reasonable that the temporo-parietal areas around the Sylvian �ssures are the most
variable: they specialize and develop in di�erent ways in each hemisphere, and are
also the most asymmetric in terms of gyral patterning and volumes [Toga 2003].

11.3 Model Evaluation
Evaluating our extrapolated variability model is a di�cult. Obviously, using the
information given by the sulci is not enough to infer the variability of the full brain,
particularly in the depth the brain (e.g., in the white matter, ventricles and deep
gray matter nuclei). Moreover, we have no ground truth in these areas to validate
the predicted variability. Thus, we restrict the evaluation of the predictive power
of our model to the places where we have enough data: on the cortex. The �rst
idea is to see how well our interpolation and extrapolation models �t the observed
variability along each sulcus. This yields a root mean square error (RMSE) assessing
the �delity of the approximation. Then, we can perform a �leave one sulcus out� test
to see if a group of sulci can correctly predict the variability of another sulcus in their
neighborhood. This would mean that the model could e�ectively �nd missing data
(i.e., the measures are dependent) and somehow predict the variability of missing
structures in our datasets.
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Figure 11.6: Accessing the full map of cortical surface variability step by
step. Top: Covariance matrices calculated along mean sulci. Middle: Matrices
selected by the tensor picking operation. Bottom: Result of the extrapolation.
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Figure 11.7: Left column: Variability map derived from the dense variabil-
ity tensor �eld obtained by extrapolation. The color codes for the 3D rms
variability (mm). Hot colors mean high variations among subjects. Right column:
Maps showing the main direction of variability. The color codes for the main
direction of the variability tensor at each point. Red: left-right oriented tensor,
Green: posterior-anterior oriented, Blue: inferior-superior oriented.
11.3.1 Intra-Sulcus Variability Recovery

At each sampling point x of the sulcal curves, we computed the �di�erence� vector
Z(x) between the observed variability tensor (the reference Σ(x)) and the tensor in-
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Figure 11.8: Comparison of two independent models of brain variability.
The scalar value mapped on the mean cortex is the Trace of the tensors (the vari-
ance). Left: Cortical variability map from [Thompson 2000]. Right: Extrapola-
tion of our simpli�ed sulci variability model to the full brain. Note the similarity in
the temporo-parietal cortex [shown in red colors (A)] and the superior frontal gyrus
(B).

ferred by our model (Σ̃(x)), either using our interpolation (interpolation in-between
two consecutive tensors) or our extrapolation method:

Z(x) = log
(
Σ̃(x)

)
− log (Σ(x)) .

Z(x) is expressed in the Log-Euclidean framework. For completeness, we also give
the a�ne-invariant expression, though we won't use it in the following due to its
higher complexity (and our experience shows that result are almost identical with
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the LE formulation):
Z(x) = log

(
Σ̃(x)−1/2Σ(x)Σ̃(x)−1/2

)
.

For all mean sulcal positions xi, we obtain two di�erence vectors Zi = Z(xi): one
obtained by interpolation and one by extrapolation. Then, we tested if the set of
vectors Zi had a null mean by using Hotelling's T2 test. This test is the multi-
variate extension of the Student's t-test. Its aim is to test the signi�cance of the
mean estimation under the normal assumption. For both strategies, we found that
the mean error was not signi�cantly di�erent from zero (p-value of 0.25), which
means that using either interpolation or extrapolation does not induce a bias in the
reconstruction.

Second, we found a standard deviation: σref =
√

1/N
∑N

i=1 ‖Zi‖2
2 of 0.15 for

the interpolation error. This value gives us a lower bound on the range of the
reconstruction error, and this is why we call it the reference error: an error of recon-
struction (i.e., norm of the di�erence vector) lower than 3σref we will be considered
as not signi�cant. The extrapolation gives a slightly higher standard deviation of
0.21. It is mainly attributable to the aperture problem: in regions with orthogonal
sulci, the normal component of one tensor in�uences the tangential part of its
perpendicular neighbors and vice versa, and the reconstruction error will be greater.

To further illustrate the prediction power of our extrapolation method, we com-
pared the results of the extrapolation using 2000, 1000, 366 and 144 tensors, re-
spectively. The �rst value corresponds to retaining all tensors. The second value is
obtained by taking one tensor out of two. The third value is the number of tensors
retained by the tensor picking operation. The last value is the minimum number of
tensors that the tensor picking operation can produce (2 measures for each of the
72 sulci, i.e. 144 tensors). Indeed, at least two tensor values per sulcus are required
to be able to perform a linear interpolation between them. Figure 11.9 summarizes
the experience results. One notices that even with very few tensors (366 compared
to 2000 initially), the model is able to recover a correct estimation of the variability
in almost all areas. Local errors arise when the correlation of variability between
neighboring sulci is too low (see regions with hot colors in Fig. 11.9, right column).

11.3.2 Leave One Sulcus Out

To evaluate further our model, we now perform the "leave one sulcus out" test. This
test removes one sulcus and its variability tensors from the model and extrapolates
the rest of the data to the full brain. Then, the prediction error made on this speci�c
sulcus is compared to the interpolation and extrapolation errors. As the measures
are independent, an error below 3 σref will be considered as not signi�cant and
shows that our extrapolation model recovers the missing variability information up
to the intrinsic reconstruction uncertainty. By contrast, a RMSE larger than 3σref

means that we do not recover a comparable variability in at least one direction. We



11.3. Model Evaluation 177

2000 Tensors

1000 Tensors

366 Tensors - retained model

144 Tensors

Figure 11.9: Decreasing the number of picked tensors. Left: Tensors retained
for the model. Middle: Results of the extrapolation. Right: Error (LE distance)
between the extrapolated and initial covariance matrices �eld.

know that an uncertainty in the tangent of the mean sulcus could be induced by
the aperture problem. To remove this e�ect, we �project� the error vector onto the
plane perpendicular to the tangent of the mean sulcus. Thus, the error component
in this direction is zeroed out. We will call this error the �partial error�.

This test is performed on 3 sulci: the Sylvian Fissure, the Superior Temporal
Sulcus and the Inferior Temporal Sulcus. Fig. 11.10 displays the variability of
the reconstructed sulci after extrapolation with and without their tensors, while
Table 11.1 summarizes the global RMSE statistics. The prediction error with
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Figure 11.10: Results of the �leave one sulcus out� test. Top: Positions of the
3 tested sulci in the ICBM305 space. Bottom left: variability of each sulcus after
extrapolation of the complete model (from top to bottom: the Sylvian Fissure, the
Superior Temporal Sulcus, the Inferior Temporal Sulcus). The color bar is the same
as in Fig. 11.8. Bottom right: extrapolated variability from the neighboring sulci
only.

missing sulci is globally 2 to 3 times larger than that incurred by interpolating
or extrapolating the full model, but the di�erence is not high enough to be
signi�cant. However, errors are locally signi�cant. In some places, like for the
Sylvian Fissure, the prediction errors occur primarily in the tangential direction
to the mean sulcus. Indeed, three main sulci (the Pre-Central, Central and
Post-Central Sulcus), are orthogonally adjacent to the Sylvian Fissure (Fig. 11.11),
even though they do not actually merge with it, they in�uence the estimates of
the tangential component of the variability as discussed in Sec. 11.3.1. Such
behavior is con�rmed by the �partial� error that is much lower than the standard
one (Table 11.1). By contrast, the variability of some sulci like the Central Sulcus
(Fig. 11.11) cannot be correctly recovered from neighboring sulci: the error is
not only due to the aperture problem but spatial correlations between adjacent
sulci may be lower in some brain regions, making variations more di�cult to predict.
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Figure 11.11: Illustration of orthogonal sulci. The Central, Pre-Central and
Post-Central sulci have an orientation that is somewhat orthogonal to the Sylvian
Fissure. This causes a di�culty in predicting the variability of the Sylvian Fissure
from the other 3 somewhat orthogonal sulci. Another di�culty (less critical) is
the prediction of the Central Sulcus from Post- and Pre-central sulci, because the
Central Sulcus has a rather low variability compared to its immediate neighbors.
Thus, the prediction will be di�cult due to the lack of correlation in this region.

In conclusion, our model is able to recover intra-sulcus variability from the
selected tensors, and to predict the variability in regions that are locally cor-
related. Nevertheless, our evaluation method is limited for two reasons. First,
the aperture problem will cause an underestimation of the variability along the
direction of the mean curve, and this feature is in fact observed in regions with
orthogonal sulci. However, there are not so many such regions in our database,
so this e�ect remains largely unnoticed. Second, the variability of some sulci
is not correlated with that of their neighbors (this is the case for the Central
Sulcus). These sulci carry some independent variability information, and should
de�nitely be part of any brain variability model. One could consider including
features as constraints for nonlinear registration of brain data when they con-
tribute the greatest information on anatomical variation, i.e., information that
cannot readily be predicted or interpolated from information on adjacent structures.

In the next Section, we investigate another problem: the asymmetry in cortical
variability. In other words, we are interested in measuring whether a position on
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Sulcus Sylvian Fiss. Sup. Temporal Inf. Temporal.
Interpolation 0.17 - 0.15∗ 0.17 - 0.15∗ 0.17 - 0.14∗

Extrapolation 0.19 - 0.16∗ 0.21 - 0.19∗ 0.20 - 0.17∗

Extrapolation w/o sulcus 0.56 - 0.34∗ 0.42 - 0.32∗ 0.38 - 0.32∗

Table 11.1: RMSE of reconstruction of 3 sulci with the interpolation, extrapolation
and leave one-sulcus out extrapolation methods. * indicates the �partial error� (Sec.
11.3.2).

one hemisphere has a di�erent variability than its symmetric positions in the other
hemisphere.

11.4 Hemispheric Di�erences in Variability
The study of asymmetry of brain variability is of great interest for neuroscience
[Toga 2003], and measures of structural and functional lateralization are of inter-
est in mapping brain development, and disorders such as dyslexia, epilepsy, and
schizophrenia. The two brain hemispheres develop according to slightly di�erent
genetic programs, and the right hemisphere is torqued forward relative to the left,
with greatest volume asymmetries in the planum temporale and language cortex
surrounding the Sylvian �ssures (typically larger in the left hemisphere). If the
types of variation in the two hemispheres could be di�erentiated, their genetic ba-
sis would be easier to investigate. It could also help understanding whether there
is an asymmetry in the power to detect consistent task-related or group-speci�c
activation patterns in functional brain imaging studies, due to structural variance
asymmetries.

We measured the asymmetry of brain variability using our extrapolation model.
The principle is to compute the (Riemannian) distance between the variability tensor
at one point and the (symmetrized) tensor at the symmetric point in the brain.
To de�ne the symmetric point, a �rst geometric method is to simply use the 3D
position that is symmetric with respect to the mid-sagittal plane in the stereotaxic
space (mid-sagittal symmetry). In that case, we compute a dense asymmetry map
from the extrapolated tensor values at each 3D point of a hemisphere (Fig. 11.12,
left).

Another anatomical possibility is to measure brain asymmetry on sulcal lines,
and extrapolate those measures to the whole brain (sulcal symmetry). First, all
curves are mapped into a common hemisphere (e.g. the left hemisphere). Then,
for each sulcus, a global mean is computed, as well as the left and right means
(obtained by taking only the left (or respectively, the right) instances). Second,
we compute the correspondences between this global mean and the left and right
means. Thus, we de�ne a common reference curve, the global mean, to compare
left and right variability tensors. This prevents us from introducing a bias in the
results, such as what might happen if we had chosen either the left or right mean
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as the reference curve. Finally, di�erence vectors (Eq. 3.8) between left and right
tensors are measured along the reference curve and extrapolated to the full brain
using our framework. Note that as tangent vectors are elements of a vector space,
we could use the vectorial and not the Riemannian (either AI or LE) version of
our extrapolation. We end up with another dense asymmetry map, whose color is
proportional to the distance between left-right tensors (Fig. 11.12 right).

A very interesting feature is that the regions with greatest asymmetries in vari-
ability include the one of main language areas, Broca's speech area (labeled A in Fig.
11.12) as well as the parietal cortex, which exhibits the greatest gross anatomical
variation of any cortical area (labeled B in Fig. 11.12). As expected, these areas
are more structurally variable in the left hemisphere which is typically dominant
for language in normal right-handers. One surprise is that the tips of the Sylvian
�ssures do not show the greatest di�erence in variability between the hemispheres,
as these are regions with highly variably branching patterns that have been studied
extensively in the language and dyslexia literature. Also as expected, the primary
sensorimotor areas (central and pre-central gyri) are relatively symmetric in their
variance, as the absolute variability is lower, as is their degree of hemispheric spe-
cialization (i.e. they perform analogous functions in each hemisphere, but innervate
opposite sides of the body).

11.5 Discussion
We presented an original methodology to model the pro�le of structural variability
in cortical landmarks. We began with a dataset of 72 expertly delineated sulcal
lines in 98 subjects, and proposed an original mean sulcal landmark computation
strategy. The approach consists in alternately optimizing the position of the mean
curve, computing the correspondences by dynamic programming and re�ning each
subject's a�ne transformation based on the obtained matching. Then, variability
tensors are measured along sulcal lines. Second, we applied our strategy for sparse
tensor �elds extrapolation detailed in Sec. 4.4.3 to obtain a dense representation
of variability tensors on the cortex. The variability maps obtained agree with
the notion that there is a natural hierarchy of variability in the brain, with the
variations of structures within a lobe or set of gyri being predictable from their
immediate neighbors with relatively high accuracy. The resulting framework is very
�exible in the sense that other sources of information can be easily incorporated to
improve the accuracy of the variability model.

The results are also interesting neuroscienti�cally. The amplitude and asym-
metry of variability are greatest in the most phylogenetically recent areas in
the cortex: the frontal lobe, the dorsolateral prefrontal cortex, and in the more
dorsal areas of the parietal association cortices. The language areas, in particular,
have fundamentally di�erent developmental programs in each brain hemisphere,
leading to volumetric and functional asymmetries (e.g. left hemisphere language
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Figure 11.12: Maps of brain variability asymmetry obtained using the
methodology described in Sec. 11.4. Left: The mid-sagittal symmetry.
Right: The sulcal symmetry.

dominance). This variance asymmetry is seen in Broca's area, which is specialized
in the left hemisphere for producing speech, but is less commonly associated with
structural asymmetries. Lower variance was seen in cortical regions subserving
primary brain functions (e.g., touch, motor function, hearing) and these areas are
the earliest to mature in utero. It would be interesting to hypothesize that the
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areas of the brain that emerged most recently in human evolution are the same
ones that have greatest variation between hemispheres, re�ecting the drive towards
hemispheric specialization of function in higher primates and man. The modeling
of variance is practically valuable for understanding and discovering genetic and
disease related factors that a�ect brain structure, which are currently hard to
identify given the extremely complex patterns of variation in normal anatomy. For
example, many neurodevelopmental disorders are associated with subtle variations
in the patterning of the cortex, and new computational anatomy techniques are
making these features easier to identify (e.g., increased cortical complexity in
Williams syndrome [Thompson 2005]).

This concludes our �rst contribution on the statistical analysis of the brain. The
second chapter is dedicated to the analysis of the potential correlations between
anatomical positions: we are now considering the relationships between any pair of
positions via a statistical tool called the total covariance matrix.
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Understanding structural correlations between brain structures is a challenging
problem in neuroscience. Most computational anatomic studies of development and
disease study de�cits or changes by modeling individual brain structures indepen-
dently, or create voxel-based maps of group anatomical di�erences. This reveals
factors (e.g., age or disease) that in�uence each brain structure individually, but
may miss important supra-regional correlations, such as brain regions that develop
or fail to develop together, or correlations between structures in opposite brain hemi-
spheres. Mechelli et al. [Mechelli 2005] studied gray matter density, examining 12
brain subregions in 172 normal subjects. They discovered (1) spatial correlations
between corresponding regions in opposite brain hemispheres, except in the visual
cortex, and (2) some negative correlations between functionally distinct regions in
the same hemisphere. Neuroscientists are interested in identifying the reasons of
such long-range brain correlations, and what causes them at a genetic and environ-
mental level. Normally coordinated systems may be disrupted in neuropsychiatric
disorders such as schizophrenia, autism, and Williams syndrome, and systems with
known �ber or functional connectivity are thought to exert mutual in�uences on each
other's growth, via activation-dependent plasticity. Structures in di�erent lobes also
in�uence each other's degeneration, for instance when loss of neuronal input from
one brain region induces degeneration in another. Despite many hypotheses, few
tools allow such long-range correlations to be measured, and thus studied empiri-
cally.
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An e�cient, parsimonious model of the complex patterns of brain correlations
should help to identify factors that in�uence them. Inter-hemispheric correlations
(i.e., correlations between point in anatomically homologous structures in both hemi-
spheres) are of interest as they shed light on how their functions become specialized
or depend on each other. Improved modeling of correlations of brain structures could
make it easier to isolate speci�c e�ects of genetic polymorphisms on these normal
correlations. Furthermore, information on statistical correlations could reduce the
di�culty of automated segmentation and labeling of brain structures. Accessing
anatomical correlations also opens up a broad range of studies and group compar-
isons (e.g., disease versus normal) and a new path to generate hypotheses regarding
patterns of brain growth.

First-order models (mean anatomical templates), and second-order models (vari-
ability models - see Sec. 11) of the brain have been previously built to capture the
3D variations of each anatomical point independently around a mean anatomy, af-
ter registration of multi-subject anatomical images to a common reference space.
These variations are often represented by covariance matrices, or variability tensors,
as variations may not be the same in all directions. Here, we go one step further
and model the joint variability of all pairs of anatomical points, to see how the
displacement of any point in a speci�c subject w.r.t. a reference anatomy covaries
with the displacement of neighboring or distant points.

In Section 12.1, we introduce the main tool of our analysis: the total covariance
matrix (TCM) between two vector variates, and we recall how to extract from it some
matrix and scalar measures to test if these two variables are correlated. In Section
12.2, we experiment this framework on TCMs de�ned from anatomical landmarks
(sulcal curves). We start by studying the TCMs of 6 sulcal positions to the rest of
the brain, which eventually lead us to analyze the TCMs of all sulcal positions of
one hemisphere with their homologous positions in the opposite hemisphere.

12.1 Methodology

12.1.1 The Total Covariance Matrix

Let X = {Xi}i=1..N and Y = {Yi}i=1..N be the sets of N measures of two random
vectors whose dimensionality is d. Computing the correlation between X and Y

requires to know not only the variability of each vector (i.e., its covariance matrix),
but also their cross-covariance. We therefore de�ne the total covariance matrix of
X and Y that contains this information as Λ(X,Y ):

Λ(X,Y ) =
1

N − 1

N∑
i=1

(
Xi − X̄

Yi − Ȳ

)(
Xi − X̄

Yi − Ȳ

)>
, (12.1)
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where X̄ = (
∑N

1 Xi)/N and Ȳ = (
∑N

1 Yi)/N . After term by term multiplication,
one obtains:

Λ(X,Y ) =
1

N − 1

N∑
i=1

[ (
Xi − X̄

) (
Xi − X̄

)> (
Xi − X̄

) (
Yi − Ȳ

)>(
Yi − Ȳ

) (
Xi − X̄

)> (
Yi − Ȳ

) (
Yi − Ȳ

)>
]
. (12.2)

The diagonal terms are in fact the covariance matrices of X and Y . We denote
by ΣXX (resp. ΣY Y ) the covariance matrix of X (resp. Y ): ΣXX = E[(X −
X̄)(X − X̄)>]. The o�-diagonal elements are the cross-covariances of X and Y :
ΣXY = E[(X − X̄)(Y − Ȳ )>]. We have the property that ΣY X = Σ>

XY . By further
analyzing Eq. 12.1, one can write Λ(X,Y ) in a simpler way:

Λ(X,Y ) =
(

ΣXX ΣXY

ΣY X ΣY Y

)
. (12.3)

Λ is a 2d × 2d matrix. It has the same properties as a classical covariance matrix:
it is symmetric and positive de�nite. Then, we may also call Λ a tensor. In the 3D
case, Λ is a 6× 6 tensor.
12.1.2 Analysis of Total Covariance Matrices

In its current form, it is di�cult to appreciate the meaning of the TCM and it
cannot be easily represented (it is an ellipsoid in 6D). However, several matrix,
vector and scalar measures may be derived from it. Here, we will focus on
quantifying the correlation of X and Y through the Canonical Correlation Analysis.
Canonical Correlation Analysis (CCA): CCA [Rao 2006] refers to the
method of �nding vector bases that maximize the correlation between two vector
variates, and is the generalization of the correlation coe�cient to multivariate
data. In the scalar case, we de�ne the correlation coe�cient between x and y as:
ρ = σxy/

√
σxx.σyy, where σxx (resp. σyy) is the variance of x (resp. y), and σxy is

the cross-variance of x and y. Similarly, the correlation matrix Γ in the multivariate
case is de�ned as:

Γ(X,Y ) = Σ−1/2
XX ΣXY Σ−1/2

Y Y . (12.4)
We have the property that Γ(Y,X) = Γ(X,Y )>. Taking the mean trace of the Γ
gives us an average correlation coe�cient ρ̄.

ρ̄ =
1
d
trace (CCA(X,Y )) .

The range of ρ̄ lies between 0 (absence of correlation - X and Y are independent)
and 1 (correlation: X and Y vary in a linear relationship). In multivariate statistics,
however, a low average correlation coe�cient may hide a potentially high correlation.
This is the case, for instance, when only one component of X is correlated with one
component of Y . Taking the average correlation coe�cient may hide this relation-
ship. To distinguish between correlations along potentially di�erent axes, one needs
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to run a canonical correlation analysis, which is nothing else than decomposing Γ
in singular values:

Γ = U.S.V > =

 | |
−→u 1 . . . −→u d

| |


 ρ1 . . . 0... . . . ...

0 . . . ρd


 − −→v >1 −...
− −→v >d −

 .
where U and V are orthogonal matrices of correlation vectors, and S is a diagonal
matrix of correlation coe�cients ρi (ρi is the correlation coe�cient between vectors
−→u i and −→v i).
Signi�cance Testing: To test the statistical signi�cance of correlations,
[Fujikoshi 1979] proposed testing the dimensionality of the correlation matrix. If its
rank is zero, then there is no correlation (ρi = 0,∀i). If we reject this hypothesis,
then the rank is at least one, which means that at least two directions in space
are correlated. We use the Bartlett-Lawley test [Fujikoshi 1979] with the null
hypothesis: H0 : rank(Γ) = 0: L(Γ) = −

(
N − d+ 1

2

)∑d
j=1 log

(
1− ρ2

j

)
. L's

distribution is chi-squared under the Gaussian assumption on X and Y with d2

degrees of freedom. We can consequently derive a p-value for testing the signi�cance
of correlations.

12.2 Sulcal Correlations
We used the same dataset of sulcal landmark curves as in section 11. It is com-
posed of 72 sulcal curves manually delineated in 98 subjects by expert anatomists,
according to a precise protocol with established reliability within and across raters.
The dataset consists of 47 men and 51 women (age: 51.8 +/- 6.2 years), all normal
controls. MR images used for delineations were �rst linearly aligned to the ICBM
stereotactic space [Collins 1995].

We used the methodology outlined in Sec. 11.1 to determine the mean curve
for each sulcal line by modeling samples as deformations of a single average curve.
Mean curve computation involves �ltering each sample by B-spline parameterization,
minimization of total variance, and sulcal matching by dynamic programming. For
each of the 72 sulci, we obtain a mean curve, z(s), and a set of instances yk(s) along
with correspondence functions φk(s), where k is the subject's number, so that z(s)
corresponds to yk ◦φk(s) (each curve is parameterized by the normalized arc-length
s ∈ [0, 1], provided by the B-spline representation).

In the following, we investigate the potential correlations between locations on
di�erent sulci. First, we study the correlation between particular sulcal lines and
other cortical points not belonging to the same structure: we call this study sulcal
correlation. Second, we assess inter-hemispheric correlations between corresponding
anatomical points in the two hemispheres.
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12.2.1 Sulcal Correlation for 6 Speci�c Positions

Methodology: Obviously, the study of correlations is a combinatorial challenge.
We sampled the 72 mean sulci with approximately 500 points (average of 7 points
per sulcus), which gives a total of about 250000 pairs of points to process. To limit
the number of pairs investigated, we focused on two major sulcal lines: the Central
Sulcus (CS) and the Superior Temporal Sulcus (STS). The CS is a relatively stable
landmark, dividing the frontal and parietal lobes, and separates primary sensory
and motor cortices. The STS is an important landmark in studies of facial imagery
processing, as it separates the fusiform gyrus from the Sylvian �ssure. These sulci
lie in di�erent lobes, develop at di�erent times during gyrogenesis (CS developing
earlier) and are distant in terms of �ber and functional connectivity, so they are
good candidates for assessing inter-structure correlation, as little correlation is ex-
pected a priori. For each of these lines, three reference positions are picked: the
beginning, middle, and end point. First, for each of the three reference positions, we
extract the set of corresponding sulcal positions in each of the 98 subjects. Second,
we compute the TCM of Eq. 12.3 with each of the remaining 999 average sulcal
positions. We end up with a sparse �eld of TCMs. However, we would be more
comfortable with a dense �eld of TCMs, as we could map those onto an average
cortex to facilitate the visual interpretation of the results. We use Log-Euclidean
(LE) metrics and the methodology exposed in Sec. 4.4.3 (combination of a radial
basis function interpolation with an harmonic partial di�erential equation) for ex-
trapolating TCMs on a mean cortical surface. This type of interpolation was shown
to preserve all the features of a covariance matrix, and has desirable properties like
absence of swelling e�ect, and a smooth interpolation of the eigenvectors. Moreover,
leave-one-out tests showed that this type of interpolation is able to predict missing
data in regions locally correlated. This interpolation is consequently well adapted
for TCMs. The correlation matrix and the p-value derived from the CCA can be
computed at any point of this mean cortex. Notice that even if we only focused on
the p-value de�ned in Sec. 12.1.2, other measures are potentially interesting, such
as the principal vectors of correlation which are currently under investigation. This
is why we need to extrapolate the full TCMs and not just the p-value.
The main problem for the curve matching procedure is the aperture problem: cor-
respondences in the direction tangent to the curve are almost impossible to retrieve
without additional expert knowledge. To keep our results independent from this, we
need to cancel the contribution in this tangential direction. The method proposed in
this paper is the following. We de�ne at each position of the mean sulci the Frenet
frame, which gives us the plane orthogonal to the curve. Then, we project the sulcal
positions onto this plane, which zeroes out the tangential component. Note that we
lose one degree of freedom in the dimensionality of the data: vectors no longer have
three degrees of freedom but two. This must be accounted for in the statistical tests
of Sec. 12.1.2.
Results: p-value derived from the CCA are shown in Fig. 12.2 (the signi�cance
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level was set to 0.0001 to correct for multiple comparisons 1). A large area around
the reference points shows high p-values: as expected, points that are anatomically
close to the reference do have a correlated distribution among individuals. More
interestingly, regions with high p-values most often include the structures' opposite
hemisphere counterparts, but not always: the �rst (upper) and middle CS positions
are highly correlated in the other hemisphere (Fig. 12.2 top panel, 1st and 2nd row),
while the most inferior position is not, most likely because its variability across sub-
jects is extremely low (Fig. 12.2 top panel, 3rd row). In right-handed subjects,
we know that some measures of motor skill (maximum �nger tapping rate) corre-
late with gray matter volume positively in the left CS, but negatively in the right
CS [Herve 2005]. Logically, such functional specializations may promote correla-
tions between the two hemispheres in these regions of the CS, where tissue volumes
directly correlate with skill levels. The posterior part of the STS shows lowest cor-
relation with its opposite hemisphere counterpart. Unlike the bottom of the CS, the
posterior tip of the STS is highly variable and asymmetric in structure and function
- it is specialized for understanding the semantics of language in the left hemisphere,
but for understanding prosodic aspects of language in the right hemisphere. This
may suggest partially independent developmental programs for these functionally
specialized structures. The long-range correlation between the back of the STS and
the left and right intra-parietal sulci is of interest, as the planum temporale and
planum parietale are the two distinct areas most widely studied in neuroscience for
their very high hemispheric asymmetry.
Nevertheless, it is intriguing that 5 of the 6 sulcal positions studied re�ect a correla-
tion with their symmetric counterpart in the opposite hemisphere. In the following,
we test if this observation can be generalized to all sulcal positions.
12.2.2 Special Case of Hemispheric Correlations

In this study, we speci�cally target the correlation between all points of one hemi-
sphere and their homologous region in the other hemisphere. To do so, we use a
strategy similar to Sec. 11. We �rst map all sulci of the right hemisphere onto the
left. Then, we de�ne a global mean, i.e. an average sulcal curve computed from
the 98 left and right samples. Global means provide a common reference curve to
compare left and right positions. Correspondences between global means and left
and right average curves are computed using the same framework as for the sam-
ples. For any given position on the global mean, we obtain corresponding points on
left and right average curves, giving in turn correspondences between left and right
sulcal positions in the 98 subjects (the choice of the left hemisphere is arbitrary, and
we obtained the same results when using the right hemisphere instead). Finally, we
compute the TCM of Eq. 12.3 between left and right positions. As for the sulcal
correlation study, we extrapolate this sparse �eld of TCMs to an average left hemi-
sphere surface, and cancel the tangential component which is uncertain. Then, we
extract p-values with the CCA and map those on the surface (Fig. 12.5).

1This corresponds to a standard p-value of 0.05 as there are around 500 free variables.
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As observed previously on a few speci�c sulcal positions, most points are corre-
lated with their symmetric counterparts. Regions with lowest correlations include
Broca's and Wernicke's areas, which were already shown to exhibit the greatest
asymmetries in variability (Sec. 11.4). These cortical regions are specialized for
language production and comprehension respectively, but most right-handers show
a greater reliance on the left hemisphere for language processing, and the volumes
of these regions are highly asymmetric between hemispheres.

Figure 12.1: Canceling the tangential component. Top: Covariance matrices
extracted along the mean Sylvian Fissure as in section 11. Bottom: The same
tensors after canceling the tangential component. A small tangential value is kept
for visualization purposes (tensors should be �at).



192 Chapter 12. Accessing Correlations with the TCM

Figure 12.2: Correlation Maps between Speci�c Reference Points and
Other Brain Regions: the Central Sulcus. A white arrow in each row indi-
cates a reference landmark; correlations with the reference landmark are plotted.
Correlations for 3 reference landmarks on the CS are shown: the �rst (top row), the
middle (second row), and the last, i.e. most inferior, position (third row) on the
sulcal trace. Corresponding regions in the opposite hemisphere are highly correlated
for the top and middle points (marked A and B). The lower end of the sulcus, how-
ever, exhibits low correlation with its symmetric contralateral counterpart. Towards
the bottom of the central sulcus, intersubject variation is as low as 4mm (3D r.m.s.
after linear registration) which is not much higher than the inter-rater reliability of
the tracing protocol, so low correlations with other landmarks are expected here.

12.3 Conclusions
In this section, we represent the cross-covariance between one point and any other
point of the brain by a total covariance matrix describing not only the variability of
the two points, but also their cross-covariance. Canonical correlation analysis allows
us to test for the signi�cance of these correlations. As TCMs have the same proper-
ties as classical covariance matrices (symmetric and positive-de�nite), we used the
Log-Euclidean extrapolation to obtain a dense representation of initially sparsely-
de�ned measures. This extrapolation was indeed previously shown to have good
properties, contrary to the Euclidean extrapolation of the matrix coe�cients.

We apply this method to study sulcal and hemispheric correlations. We showed
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Figure 12.3: Correlation Maps between Speci�c Reference Points and
Other Brain Regions: The Superior Temporal Sulcus. The same 3 positions
as for the CS are analyzed. The �rst (top row) and middle (second row) positions are
symmetrically correlated (marks A and B). The last position (third row) correlates
less with its opposite hemisphere counterpart, than with the intra-parietal sulci
(marked B and C), probably because it lies in a region of extremely low anatomical
variability.

that the central sulcus was highly correlated with its symmetric counterpart, except
in its inferior part which is not highly variable. For the central sulcus, where motor
skill is correlated with volume and is also lateralized, a strong hand preference
for motor skills is likely to promote negative correlations between hemispheres for
volumes in opposite regions. The Superior Temporal Sulcus shows similar intriguing
correlations, and its low correlation with its opposite counterpart may re�ect their
di�erent developmental programs and functions.

Corresponding brain regions in each hemisphere are highly correlated, except
for regions including Wernicke's and Broca's areas, which are known to be func-
tionally specialized in one hemisphere. Any longer-range correlation - such as that
found between the intra-parietal sulci and superior temporal sulci - is in itself an
interesting neuroscience �nding. The planum parietale and temporale are distinct
highly asymmetric systems in each of these regions, and the long-range correla-
tions may re�ect common factors driving programmed asymmetries for both regions.
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Figure 12.4: Finding hemispheric correspondences. Left: Positions of left and
right Sylvian �ssures (SF), in an oblique view, with a transparent cortical surface
overlaid (in blue colors). Top Right: All right hemisphere sulci are mapped to
the Bottom Right: Same set of sulci, whose global mean was computed (in red).
This is now used as a reference to compare left and right sulcal positions.

This concludes our second contribution on the statistical analysis of the brain.
In the next (and �nal) chapter of this part, we summarize the contributions and
discuss about the future work and the possible applications of such brain models.
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Figure 12.5: Hemispheric correlations. Hot colors (red) correspond to p-
value≤0.0001. Most of the cortex shows anatomical variations that are correlated
with their counterparts in the opposite hemisphere. Uncorrelated regions include
Wernicke's (marked A) and Broca's areas (marked B), which, in most subjects, are
known to be more heavily specialized for language processing in the left hemisphere.





Chapter 13

Discussion

In this part, we have explored the statistical analysis of the human cortex. We
have proposed to: 1) work on sulcal lines as they are precise anatomical landmarks
identi�ed by experts and of great interest in neuroscience, 2) model independently
the variability of each sulcal positions by their covariance matrices (so called
variability tensors) and extrapolate this sparse information to obtain a dense map
of variability, and 3) evaluate close and long range anatomical correlation via the
total covariance matrix.

As expected, the amplitude and asymmetry of variability are greatest in the
most phylogenetically recent areas in the cortex (the frontal lobe, the dorsolateral
prefrontal cortex, and in the more dorsal areas of the parietal association cortices).
Greatest asymmetry of variability were also found in the language areas, and in
particular the Broca's area, which have di�erent developmental programs in each
brain hemisphere. Lower variability were found in cortical regions supporting pri-
mary brain functions. As these areas are the ones that mature the earliest in utero,
we could hypothesize that the areas of the brain that emerged the latest in hu-
man evolution are the ones that have greatest variations between hemispheres, and
conversely, regions that develop �rst are very likely to be stable (i.e., less variable)
among individuals.

The second analysis showed that anatomical correlations are highly present
among individuals, and not only locally, which tends to prove that brain regions
do not develop independently, but are connected. The most striking result is the
inter-hemispheric correlation which was shown to be dominant. Other longer-range
correlation, as that found between the intra-parietal sulci and superior temporal
sulci, is in itself a neuroscience �nding: the long-range correlations may re�ect
common factors driving programmed asymmetries for both regions.

The major drawback of working only on sulcal lines is that we only get vari-
ability information at speci�c locations on the cortical surface. A more complete
model of brain variations should contain information on deeper structures like the
ventricles, grey nuclei or even the white matter. However, this framework is very
�exible in a sense that other source of information could (and should) be included
to re�ne the variability model. One could think of including variability tensors
calculated from matchings of surfaces of interest like the hypocampi, amygdala,
putamen or caudate. Moreover, for a more in-depth analysis of the white matter,
statistical analysis of white matter �ber tracts as those obtained in di�usion tensor
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MRI (see Chap. II) is of great importance. If we could model some of the major
�ber tracts, i.e., de�ne what is the average �ber bundle of a given population, one
could also extract meaningful variability tensors from them and feed our model.

The study of anatomical correlations as we have done it, while being very promis-
ing, is exploratory and much work still needs to be done. First, one would need to
simplify the representation of these correlations. We could store, for each point
of the brain, a minimal set of correlated positions, such as the local neighborhood
and the set of most correlated distant points. This information could be used as
a prior to guide inter-subject non-linear registration algorithms: if one position is
moving towards another, then its set of correlated positions should move as well,
in a direction given by their correlation vector. Furthermore, a detailed study of
all possible correlations between cortical landmarks could help understanding the
e�ects of genes on brain maturation. Validations of long-range correlations could be
made using other information, such as functional MRI: Are jointly activated regions,
or causal models (achieved through structural equation modeling or dynamic causal
modeling) for a given task related to anatomical correlations as well as connectivity
(�ber bundle)? In other words, does a physical link, via neural �ber bundles that
can be traced with di�usion tensor MRI, exists between functionally correlated ar-
eas? All this information, if it converges to the same outcome, could contribute to
understand the functional organization of the brain. Finally, these results should
be compared with those of other methods, such as surface-based versus volumet-
ric registration algorithms; this comparison is is currently underway for generating
second-order models of brain variability [Durrlemann 2007].
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14.1 Summary of Contributions
The central topic of this thesis is the processing of symmetric, positive de�nite ma-
trices, so-called tensors. We were interesting in three classes of problems. First, we
investigated the theoretical aspect of tensor processing, and proposed two frame-
works (the a�ne-invariant and Log-Euclidean metrics) which replace the standard
Euclidean calculus that su�ers from several major drawbacks. Second, we focused
on several issues that come with di�usion tensor MRI. In particular, the theoretical
framework proposed here is applied to address a clinical problem: how can we opti-
mally exploit di�usion tensor images typical of clinical acquisitions? These data are
indeed of a lower quality compared to data coming from a research environment, and
experts still want the same quality of results. Thanks to the use of Log-Euclidean
metrics, we were able to rigorously model the problem mathematically. We were
also interested in another aspect of this problem, which is the transfer of methods
to the clinical world. For this purpose, we developed a software called MedINRIA
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targeting explicitly the medical experts. Finally, we explored an emerging �eld:
computational anatomy of the brain. Computational anatomy aims at modeling
organs in terms of average shape and variations. In the case of the brain, we pro-
posed to model the cortical variations via variability tensors computed at speci�c
locations and to extrapolate this sparse information to obtain a dense �eld. Once
again, the framework for tensor processing is intensively used. In a second step,
we modeled the anatomical correlations between two cortical positions thanks to
the total covariance matrix, another �type� of tensor that �ts within our theoretical
frameworks. This more exploratory research lead to interesting new neuroscience
�ndings, and opens the door to a large panels of applications. These classes of prob-
lems share one common goal of great importance: the modeling and comprehension
of the human brain. In the following, we give a more detailed description of our
contributions.

14.1.1 Two alternatives to Euclidean Calculus on Tensors

We developed two theoretical frameworks that overcome the limitations of Euclidean
calculus on tensors. In Euclidean calculus, non-convex operations are not stable
and eventually lead out of the tensor space, i.e., matrices with null or negative
eigenvalues appear. As the tensor space is a manifold, we decided to use the tools
from di�erential geometry to overcome these limitations. First, we endowed the
tensor space with an a�ne-invariant Riemannian metric. Thanks to this metric, we
could derive two di�eomorphisms, the exponential and logarithmic maps, that are
the keys to the generalization of any vector-processing algorithm of tensors. The
logarithmic map has the role of ��attening� the tensor space (i.e., it turns it into
a vector space where calculation can easily be done), while the exponential map
�folds back� this �at space to form the tensor space. As a result, the tensor space is
replaced by a smooth manifold where matrices with null and negative eigenvalues are
at an in�nite distance from any tensor. Although this Riemannian metric has very
nice theoretical and practical properties, it can be a burden in practice since it makes
an intensive use of the matrix exponential, logarithm, square root and inverse. We
�nally came up with a second family of metrics, called Log-Euclidean, which have
almost the same properties as the a�ne-invariant metric but with a computational
cost close to Euclidean calculus. Their principle is straightforward: one simply needs
to take the logarithm of tensors once, process them, and take the matrix exponential
to obtain the �nal result. We show that it is almost impossible to detect di�erences
between these two frameworks with many examples of image processing algorithms
(�ltering, interpolation, etc.), making the Log-Euclidean metrics a better candidate
to replace the Euclidean calculus.

14.1.2 Optimal Processing of Clinical DT-MRI

In this second part, we built a processing pipeline adapted to di�usion tensor data
acquired with clinical constraints. We �rst revisited the estimation step. Di�u-
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sion tensor estimation is generally done by linearizing the Stejskal&Tanner di�usion
equation, which implicitly assumes additive noise on the logarithm of measured sig-
nals (we call this noise log-Gaussian). Although this is reasonable for high SNRs,
in our case we chose to rely on the true nature of MR noise which is Rician (in-
dependent centered Gaussian noise on the real and imaginary part of the complex
MR signal). We showed that estimating tensors with the wrong noise prior leads
to a shrinking e�ect: tensor volume tends to be underestimated due to the positive
bias induced by the Rician noise. Thanks to Log-Euclidean metrics, we were able to
de�ne and minimize an objective function with a Rician prior for the data �delity
term, and an anisotropic regularization term for enforcing the spatial regularity of
the tensor �eld. Finally, we showed quantitative and qualitative improvements of
the tensor estimation on both synthetic and real datasets, and a major positive
impact on the overall quality of �ber reconstruction of a brain and spinal cord DTI
dataset. For a valuable use of these methods in clinics, we started the MedINRIA
project. MedINRIA is a general-purpose medical imaging software, which contains
some of the advances in di�usion tensor MRI proposed in this thesis. We imple-
mented a full pipeline for DT-MRI processing with Log-Euclidean metrics, from
estimation to �ber reconstruction: this includes an anisotropic tensor smoothing al-
gorithm, a tractography method using LE tri-linear interpolation, and intuitive 3D
manipulation and exploration of the results. We are willing to make this software as
user-friendly and as intuitive as possible. Indeed, medical experts cannot in general
spend hours training on new software. Moreover, it should also �t the clinical envi-
ronment, which in particular means being compatible with the DICOM �le format.
To demonstrate the practical use of MedINRIA, we achieved in collaboration with
Denis Ducreux, MD., at the Bicêtre Hospital in Paris, a study on the current and fu-
ture indications of DT-MRI and tractography in spinal cord lesions. Very promising
results showed that tractography is able to detect certain pathologies earlier than
T2 images, which is currently done. It also proved that DT-MRI can e�ectively be
used in clinics to detect and in the follow-up of pathologies.

14.1.3 New Tools for Statistical Shape Analysis of the Brain

This last application takes place in the context of computational anatomy of the
brain. In this work, we relied on anatomical well-de�ned landmarks: the sulcal
lines. We used a dataset of 72 sulcal lines manually delineated in 98 subjects by ex-
perts neuroanatomists following a precise protocol. We motivate the choice of these
lines by the fact that �nding correspondences among individuals of low dimensional
structures is less hazardous than for higher dimensional objects like surfaces or vol-
umes. However, the aperture problem is still present: without additional knowledge,
we are not able to recover correspondences in the direction tangent to the curves.
Knowing this, we developed an original sulcal matching procedure which minimizes
the in�uence of this aperture problem. The average representation for each of the
72 sulci is done by alternately optimizing the position of the current estimate of the
mean curve so that it minimizes the total variance, and computing optimal corre-
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spondences by dynamic programming. We ended up with 72 mean sulci, and a set
of point-to-point correspondences between each sulcal instance and the mean line.
From this, we extracted along the mean shapes a set of variability tensors which
are nothing other than the covariance matrix of each of the mean positions. Then,
we showed how to select only a subset of meaningful tensors and extrapolate this
sparse �eld to obtain a dense representation. Statistical tests were done to evaluate
the predictive power of such model. We �rst evaluated the intra-sulcus recovery
rate: are we able to predict the variability of a full sulcal line just with a few ten-
sors? Second, we performed leave-one-out tests to determine if the variability of
one sulcal line could be predicted with surrounding neighbors. Results showed that
missing information was nicely retrieved in regions where the correlations between
sulci were high, while failing in uncorrelated regions. This lead us to speci�cally
study the anatomical correlations between any pairs of sulcal positions. Thanks to
a tool called the total covariance matrix, a 6× 6 tensor, we were able to build maps
of correlations between a point of reference and the rest of the brain. This is obvi-
ously a combinatorial study (one 3D map per reference point), so we restricted our
analysis to 6 positions taken on two major sulcal lines. Results showed that most of
the sulcal positions are strongly correlated locally, as well as with the correspond-
ing position in the opposite hemisphere. By more precisely studying correlations
between one hemisphere and the other, we demonstrated that most of the brain is
indeed symmetrically correlated. Regions not correlated include the parietal cortex
and the language area, which are known to have lateralized functions.

14.2 Future Work

Many aspects of the work presented in this thesis can be further extended and
applied to several other studies. In this section, we depict the perspectives that are
opened by the di�erent contributions of our research. We will focus only on the
aspects that are of special interest to us. There are four main future directions.
First, the question of validation of the variability models of the brain needs to be
addressed. Validation of such models is a tough issue, although we believe that data
fusion holds the key to such validation. Second, we have the tools to perform an
in-depth statistical analysis of DT-MRI. In particular, di�usion tensor atlases need
to be built: these are already done by some groups but DT-MRI atlases are not
widespread in the community, and even less so in the clinical world, where they are
actually needed (to compare populations for instance). Third, variability models can
be considered as a prior in inter-subject non-linear registration and could greatly
improve the results by guiding algorithms. Finally, we believe that more e�ort should
be made to have a systematic transfer of new methodologies towards end-users. In
the following, we detail each of the points raised above.
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14.2.1 Validation of Variability Models with Data Fusion

The main problem of validation of our variability models is the lack of ground
truth. To overcome this severe limitation, we could think of fusing all sources
of brain variability we can collect: not only anatomical MRI (our case) can give
information on brain variability, but also di�usion tensor MRI and functional MRI
have some secrets to reveal. We could think for instance of learning variability from
�ber tracts: this implies to be able to reliably reconstruct and identify (label) the
�ber bundles of one subject (like this is done with the sulcal lines in the BrainVisa
software). Then, we would need to model �ber bundles in order to learn their inter-
subject variability. Fiber bundles are more complex than sulcal lines: some of them
can be modeled with a center line (e.g., the splenium and genu tracts), others as
2D surfaces (e.g., corona radiata). We need to �nd an optimal representation for
these entities. Functional MRI is a bit di�erent. Variations in the localization of
functions of the brain is not equivalent to anatomical variability. However, it would
be very interesting to identify regions where functions and anatomical variability
are linked: this could show that function plays a role in determining the shape of
brain structures.

14.2.2 Statistical Analysis of DT-MRI

This second perspective is strongly linked to the previous one. The statistical analy-
sis of DT-MRI encompasses DT-MRI atlas construction, study of group di�erences,
and modeling white matter �ber tracts.

14.2.2.1 DT-MRI Atlases

Building di�usion tensor atlases of the brain is a major step towards statistical
analysis of DT-MRI. Thanks to the Riemannian frameworks proposed in this thesis,
we are now able to compute the average and covariance matrix of a set of tensors.
Furthermore, the information from the covariance matrix allows to extend some
tools for statistical comparisons such as the Mahalanobis distance (the z-score).
The Riemannian metrics could be used to compute a similarity measure between two
tensor �elds and to optimize this objective function. In particular, the simplicity of
Log-Euclidean metrics makes them a good candidate for tensor-tensor registration.
We started investigating this with Thye Yeo Boon, a graduate student from MIT.

14.2.2.2 Modeling of White Matter Fiber Bundles

As we said previously, modeling white matter �ber bundles is a big challenge. It
is so a necessary step before accessing their variability. Our intuition is that �ber
bundles should not be modeled as a collection of single �bers. A single �ber is
almost meaningless since there is a lot of uncertainty, for instance on the trajectory
of the �ber: due to partial voluming, low spatial resolutions, etc. we are not able
to reconstruct meaningful physical �bers. Instead, all �bers composing a bundle
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should be considered as a region (volume), which can be modeled for instance with
a medial representation, a surface, or a current. In other words, we believe that we
should consider �ber bundles as regular structures of the brain (like the amygdala
or the hipocampi). Once we are able to reliability extract the same �ber bundle of
interest in individuals, we could model its variability.

This raises a second question: how can we extract the same bundles across
individuals? The DTI atlases that we discussed previously would greatly help us in
doing this. Indeed, if we could build an atlas, we could extract the �ber bundles and
represent them as a label map. Then, by projecting this map onto each individual
DT image, we could automatically segment a brain with bundles.

14.2.3 Inter-Subject Non-Linear Registration with a Prior on
Brain Variability

This perspective aims at incorporating variability models that we have discussed
previously back into the registration. The idea is that variability models could act
as a prior on the registration: it could tell �how much this speci�c position is vari-
able among individuals, and in which direction should we look for a corresponding
point�. This type of prior would �guide� non-linear registration algorithms and could
help recovering correspondences. A second idea it to incorporate the results of the
correlation analysis presented in Chapter 12 back into the registration as well. The
main idea would be to tell the registration algorithm that if a position is moved in
a direction, these other positions, spotted as �highly correlated�, should be moved
as well. This implies to model the correlations to use them in practice. We could
think of keeping for each sulcal positions the kernel of locally correlated points, plus
the set of mostly-correlated distant points.

14.2.4 More Technological Transfer towards Clinics

Finally, we would like to add a few words about the transfer of technologies
developed at INRIA (and in any other research institutes) towards end-users, and
in particular to the clinicians. This is a critical aspect of science since both worlds,
methodological and clinical, need each others. Clinicians are experts in image
acquisition and interpretation. This is a very di�cult task and one of the role of
methodological research, from our point of view, is to automatize some complicated
tasks. Thus, much research aims at addressing speci�c clinical problems, like
segmentation of vital structures for radiotherapy planning, pre- and post-operative
registration of images for augmented reality, etc. While our research is fed by
clinical challenges, few results are actually transfered back to the clinics (meaning
every hospital and not only the one we collaborate with) in a convenient and
ready-to-use software package. By developing MedINRIA, we are hoping that
more fruits of our research will become available to anyone. We are continuing the
development of this software by adding new features: new registration algorithms
are underway, a full set of applications for multiple sclerosis segmentation and



14.2. Future Work 205

tracking over time is being developed. The �DTI Track� module could be extended
with automatic �ber bundling algorithms, DT-MRI registration and statistical
analysis.

All these research directions will be explored in a near future, hopefully leading
to new �ndings in neuroscience, to a better comprehension of the brain, and �nally
to new clinical indications.

�The world is round and the place which may
seem like the end may also be the beginning.�

Ivy Baker Priest.

To be continued...
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Appendix A

Tensor regularization: the

Laplace-Beltrami operator

A.1 Gradient of the L2 regularization of a tensor �eld
Let Σ(x) ∈ Sym+

n be a tensor �eld over Rd, and (x1, . . . xd) be an orthonormal
coordinate system. To simplify the notations, we use in this section ∂i for the
spatial derivative ∂/(∂xi) and we do not specify the (spatial) integration variable
x. The L2 regularization criterion is:

Reg(Σ) =
∫

Ω
‖∇Σ(x)‖2

Σ(x) dx =
d∑

i=1

∫
Ω
‖∂iΣ‖2

Σ =
d∑

i=1

∫
Ω
Tr((∂iΣ) Σ(-1) (∂iΣ) Σ(-1)

)
.

Using the Taylor expansion (Σ + εW )(-1) = Σ(-1) − εΣ(-1) W Σ(-1) +O(ε2) in the the
Taylor expansion of our regularization criterion and identifying the �rst order term
to Reg(Σ + εW ) = Reg(Σ) + ε ∂WReg +O(ε2), we get the directional derivative:

∂WReg = 2
d∑

i=1

∫
Ω
Tr((∂iW ) Σ(-1) (∂iΣ) Σ(-1) − (∂iΣ) Σ(-1) (∂iΣ) Σ(-1) WΣ(-1)

)
The main goal is to �nd out the �eld of tangent vectors ∇Reg(x) ∈ TΣ(x)Sym+

nsuch that, by de�nition of the gradient, we have the equality: ∂WReg =∫
Ω 〈W | ∇Reg 〉Σ dx for every �eld of tangent vectors W (x) ∈ TΣ(x)Sym+

n . As
the above expression of ∂WReg is in the standard Euclidean chart (matrix co-
e�cients), we shall safely use the computations of the previous sections. Notice
that we are using the matrix coe�cients only as a chart and not as a metric. Let
Λi = Σ(-1) (∂iΣ) Σ(-1). We get:

∂WReg = 2
d∑

i=1

∫
Ω

(Tr((∂iW ) Λi)−
〈
W
∣∣ (∂iΣ) Σ(-1) (∂iΣ)

〉
Σ

)
Now, assuming the proper Neumann boundary conditions, we can apply the previous
integration by part formula ∫Ω Tr((∂iW ) Λi) = −

∫
Ω Tr(W (∂iΛi)) to the �rst term:

∂WReg = −2
d∑

i=1

∫
Ω

(Tr(WΣ(-1) (Σ(∂iΛi)Σ) Σ(-1)
)

+
〈
W
∣∣ (∂iΣ) Σ(-1) (∂iΣ)

〉
Σ

)
= −2

d∑
i=1

∫
Ω

〈
W
∣∣ Σ(∂iΛi)Σ + (∂iΣ) Σ(-1) (∂iΣ)

〉
Σ
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We have obtained the expression that de�nes the gradient of our regularization
criterion:

∇Reg = −2
d∑

i=1

(
Σ (∂iΛi) Σ + (∂iΣ) Σ(-1) (∂iΣ)

)
To compute explicitly its value, let us observe �rst that ∂iΣ(-1) = −Σ(-1) (∂iΣ) Σ(-1)

because ∂i(Σ(-1) Σ) = 0. Thus, thanks to the chain rule, we have:
Σ (∂iΛi) Σ = Σ ∂i

(
Σ(-1) (∂iΣ) Σ(-1)) Σ = ∂2

i Σ− 2 (∂iΣ) Σ(-1) (∂iΣ)

Eventually, we end up with∇Reg(Σ) = −2∆Σ, where ∆ is the Laplace-Beltrami
operator on our manifold:

∆Σ =
d∑

i=1

∆iΣ with ∆iΣ = ∂2
i Σ− (∂iΣ) Σ(-1) (∂iΣ)

A.2 Numerical Implementation of the Laplace-Beltrami
Operator

From the Taylor expansion of a tensor �eld (considered as a matrix �eld) Σ at x, we
have Σ(x+ εu) = Σ(x) + ε ∂uΣ(x) + ε2 ∂2

uΣ(x)/2 + ε3 ∂3
uΣ(x)/6 +O(ε4). Thus, we

may approximate the �rst and second order tensor derivatives by their Euclidean
derivatives:

∂uΣ(x) =
1
2
(
Σ(x+ u)− Σ(x− u)

)
+O(‖u‖3)

∂2
uΣ(x) =

(
Σ(x+ u)− Σ(x)

)
+
(
Σ(x− u)− Σ(x)

)
+O(‖u‖4)

This �nally gives us a fourth order approximation of the Laplace-Beltrami operator
in the spatial direction u:

∆uΣ(x) = ∂2
uΣ− 2 (∂uΣ) Σ(-1) (∂uΣ)

= Σ(x+ u) + Σ(x− u)− 2Σ(x)

−1
2
(
Σ(x+ u)− Σ(x− u)

)
Σ(-1)(Σ(x+ u)− Σ(x− u)

)
+O(‖u‖4)

However, this numerical scheme is extrinsic since it is based on (Euclidean)
di�erences of tensors. We propose here an intrinsic scheme based on the exponential
chart at the current point: we claim that −−−−−−−−−→Σ(x)Σ(x+ u) +

−−−−−−−−−→
Σ(x)Σ(x− u) is a forth

order approximation of the Laplace Beltrami operator in the direction u. Indeed,
we have

−−−−−−−−−−→
Σ(x)Σ(x+ εu) = Σ

1
2 (x) log

(
Σ− 1

2 (x) Σ(x+ εu) Σ− 1
2 (x)

)
Σ

1
2 (x)

= Σ
1
2 (x) log

(
Id + εW +

ε2

2
H +O(ε3)

)
Σ

1
2 (x)
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where we put W = Σ− 1
2 ∂uΣΣ− 1

2 and H = Σ− 1
2 ∂2

uΣΣ− 1
2 . From the Log series (Eq.

3.1), we get:
−−−−−−−−−−→
Σ(x)Σ(x+ εu) = Σ

1
2

[
+εW +

ε2

2
H − 1

2

(
ε2W 2 +

ε3

2
(WH +HW )

)
+
ε3

3
W 3 +O(ε4)

]
Σ

1
2

The Taylor expansion of −−−−−−−−−−→
Σ(x)Σ(x− εu) is obtained by replacing ε by

−ε, so that we �nally end up with −−−−−−−−−−→
Σ(x)Σ(x+ εu) +

−−−−−−−−−−→
Σ(x)Σ(x− εu) =

Σ
1
2

[
ε2H − ε2W 2 +O(ε4)

]
Σ

1
2 , which proves that

−−−−−−−−−→
Σ(x)Σ(x+ u)+

−−−−−−−−−→
Σ(x)Σ(x− u) = ∂2

uΣ−(∂uΣ)Σ(-1)(∂uΣ)+O(‖u‖4) = ∆uΣ+O(‖u‖4)





Appendix B

Estimation of the A�ne

Transformation from Sulcal

Correspondences

In Sec. 11.1.2, we gave the solution of a system to estimate the a�ne transformation
for each subject based on the correspondence mappings from each sulci to the mean
representation. We show here how to obtain this solution (actually, we show it only
for the linear component of the a�ne transformation, the translation was discussed
in Sec. 11.1.2). This system to solve is:

C(A) =
N∑

i=1

∫ 1

0
‖Ayi(s)− zi(s)‖2ds,

where A is the linear component of the a�ne transformation we want to estimate,
yi is the sulcus i and zi the mean sulcus. By doing a Taylor expansion, we get:

C(A+ dA) =
N∑

i=1

∫ 1

0
〈(A+ dA)yi(s)− zi(s)|(A+ dA)yi(s)− zi(s)〉 ds

=
N∑

i=1

[∫ 1

0
〈Ayi(s)− zi(s)|Ayi(s)− zi(s)〉 ds+

+ 2
∫ 1

0
〈Ayi(s)− zi(s)|dAyi(s)〉 ds+O(‖dA‖2)

]
C(A+ dA) = C(A) + 2

N∑
i=1

∫ 1

0
〈Ayi(s)− zi(s)|dAyi(s)〉 ds+O(‖dA‖2)



216
Appendix B. Estimation of the A�ne Transformation from Sulcal

Correspondences

By analogy with the Taylor expansion of C: C(A+ dA) = C(A)+ < ∇C(A)|dA >

+O(‖dA‖2), we obtain:

〈∇C(A)|dA〉 = 2
N∑

i=1

∫ 1

0
〈Ayi(s)− zi(s)|dAyi(s)〉 ds

= 2
N∑

i=1

∫ 1

0
Trace((Ayi(s)− zi(s)) (dAyi(s))>

)
ds

= 2
N∑

i=1

∫ 1

0
Trace(Ayi(s)yi(s)>dA> − zi(s)yi(s)>dA>

)
ds

= 2
N∑

i=1

∫ 1

0

〈
Ayi(s)yi(s)> − zi(s)yi(s)>|dA

〉
ds

By identi�cation, we get ∇C(A):

∇C(A) = 2
N∑

i=1

∫ 1

0

(
Ayi(s)yi(s)> − zi(s)yi(s)>

)
ds.

Finally, solving ∇C(A) = 0 gives:

A =

(
N∑

i=1

∫ 1

0
zi(s)yi(s)>ds

)(
N∑

i=1

∫ 1

0
yi(s)yi(s)>ds

)−1

.



Appendix C

Practical Implementation of the

Matrix Exponential Directional

Derivative

In Sec. 6.2, the directional derivative of the exponential ∂G exp(L) is used. For
general matrices, one has to compute the series [Arsigny 2006c]:

∂G exp(L) =
+∞∑
k=1

1
k!

k−1∑
i=0

LiGLk−i−1. (C.1)

In general, Eq. [C.1] cannot be simpli�ed. However, in the case of symmetric
matrices, the di�erential can take a much simpler form. We know that G and L are
both symmetric matrices: In our application, G is the tensor product of a vector
g with itself: G = gg>, which is by construction symmetric, and L is the matrix
logarithm of a di�usion tensor, therefore symmetric.
Let L = R>SR be an eigen decomposition of L. S is diagonal: S = diag(s1, s2, s3).
From Eq. [C.1], we have:

∂G exp(L) =
+∞∑
k=1

1
k!

k−1∑
i=0

(
R>SiR

)
G
(
R>Sk−i−1R

)
= R>

(
+∞∑
k=1

1
k!

k−1∑
i=0

Si
(
RGR>

)
Sk−i−1

)
R (C.2)

= R> (∂RGR> exp (S)
)
R (C.3)

We have ∂G exp(L) = R>∂RGR> exp(S)R. Let M be ∂RGR> exp (S). We denote
by [M](l,m) the coe�cient (l,m) of matrix M (i.e. the matrix coe�cient stored at
row l and column m). (l,m) ∈ {1, 2, 3} for di�usion tensors. From Eq. [C.2] we can
express the coe�cient (l,m) of M as:

[M](l,m) =
+∞∑
k=1

1
k!

k−1∑
i=0

[
SiRGR>Sk−i−1

]
(l,m)

.
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As S is diagonal, we can further write:

[M](l,m) =
+∞∑
k=1

1
k!

k−1∑
i=0

si
l

[
RGR>

]
(l,m)

sk−i−1
m

=
[
RGR>

]
(l,m)

+∞∑
k=1

1
k!

k−1∑
i=0

si
ls

k−i−1
m .

Now, we only need to express the series ∑+∞
k=1 1/k!

∑k−1
i=0 s

i
ls

k−i−1
m . If sl 6= sm, we

have:
+∞∑
k=1

1
k!

k−1∑
i=0

si
ls

k−i−1
m =

+∞∑
k=1

1
k!
sk−1
m

k−1∑
i=0

(
sl

sm

)i

=
+∞∑
k=1

1
k!
sk−1
m

1− (sl/sm)k

1− sl/sm

=
1

sm − sl

+∞∑
k=1

1
k!
sk
m

sk
m − sk

l

sk
m

=
exp(sm)− exp(sl)

sm − sl
.

If sl = sm = s, then the series can be even more simpli�ed:
+∞∑
k=1

1
k!

k−1∑
i=0

sisk−i−1 =
+∞∑
k=1

1
k!

k−1∑
i=0

sk−1 =
+∞∑
k=1

1
k!

(
ksk−1

)
=

+∞∑
k=1

sk−1

(k − 1)!
=

+∞∑
k=0

sk

k!

= exp(s).

Finally, one can access the coe�cient (l,m) of M as:
[M ](l,m) =

[
RGR>

]
(l,m)

esm − esl

sm − sl
if sl 6= sm,

=
[
RGR>

]
(l,m)

esl if sl = sm. (C.4)
From Eq. [C.4], and Eq. [C.2], we deduce the directional derivative of the matrix
exponential ∂G exp(L).



Appendix D

Practical Implementation of α(x)

In Sec. 6.2.3, the coe�cient α(x) = I ′0/I0(x) is needed to be able to compute the
gradients of the ML and MAP estimators. α takes its values between 0 and 1. A
practical implementation of α(x) is given in the following.
The 0th order modi�ed Bessel function of the �rst kind I0(x) is expressed as
follows: I0(x) =

∑+∞
k=0

(x2/4)k

k!2
. Consequently, α(x) can be written as:

α(x) =
I ′0(x)
I0(x)

=
x

2

∑+∞
k=0

( 1
4
x2)k

k!(k−1)!∑+∞
k=0

( 1
4
x2)k

k!2

. (D.1)

Unfortunately, Eq. [D.1] cannot be simpli�ed. However, for small values of x
(typically x ≤ 10) the series converges very quickly, and in practice 10 terms of
the series are su�cient for an accuracy of 1.10−12, which is by far enough. For
higher values of x, one may experience numerical stability issues. To prevent this,
one may use the following Taylor expansion of α(x) valid for x > 10:

α(x) ' 1.0− 0.5x−1 − 0.125x−2 − 0.125x−3 − 0.1953125x−4

−0.40625x−5 − 1.0478515625x−6 − 3.21875x−7

−11.46646118164x−8 − 46.478515625x−9

−211.276149749755x−10 − 1064.67822265625x−11
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