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Abstract— Diffusion tensor MRI (DT-MRI or DTI) is an imag-
ing modality that is gaining importance in clinical applications.
However, in a clinical environment, data have to be acquired
rapidly, often at the expense of the image quality. This often
results in DTI datasets that are not suitable for complex post-
processing like fiber tracking. We propose a new variational
framework to improve the estimation of DT-MRI in this clinical
context. Most of the existing estimation methods rely on a
log-Gaussian noise (Gaussian noise on the image logarithms),
or a Gaussian noise, that do not reflect the Rician nature of
the noise in MR images with low SNR. With these methods,
the Rician noise induces a shrinking effect: the tensor volume
is underestimated when other noise models are used for the
estimation. In this paper, we propose a maximum likelihood
strategy that fully exploits the assumption of a Rician noise. To
further reduce the influence of the noise, we optimally exploit the
spatial correlation by coupling the estimation with an anisotropic
prior previously proposed on the spatial regularity of the tensor
field itself, which results in a maximum a posteriori estimation.
Optimizing such a non-linear criterion requires adapted tools for
tensor computing. We show that Riemannian metrics for tensors,
and more specifically the Log-Euclidean metrics, are a good
candidate and that this criterion can be efficiently optimized.
Experiments on synthetic data show that our method correctly
handles the shrinking effect even with very low SNR, and that
the positive definiteness of tensors is always insured. Results on
real clinical data demonstrate the truthfulness of the proposed
approach and show promising improvements of fiber tracking in
the brain and the spinal cord.

Index Terms— DT-MRI, estimation, smoothing, tractography,
Log-Euclidean

I. I NTRODUCTION

Diffusion tensor MRI (DT-MRI or DTI) [1] is a unique
tool to assess in vivo oriented structures within tissues via the
measure of water diffusion. However, using such an imaging
modality in a clinical environment is difficult and acquisitions
generally have a limited number of encoding gradients and low
signal-to-noise ratios (SNR). Indeed, pathologies often prevent
the patient from staying too long in the same position in
the scanner. This short scanning time prevents from acquiring
and averaging the large number of gradient directions that is
necessary for enhancing the SNR. Moreover, the devices that
are usually available for clinical purposes (at least in France)
usually offer only low quality DWI datasets (generally 6
gradient directions with 4 repeated scans). It is known that the
estimation of the diffusion tensor field from diffusion weighted
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images (DWI) is noise-sensitive. Consequently, clinical DTI
is very often not suitable for complex post processing, like
fiber tracking. For these reasons, there has been a growing
interest in the regularization of tensor images. In the following
we quickly summarize the state of the art in diffusion tensor
estimation and regularization. Available methods generally
perform each of theses two steps independently. We propose
in this paper to couple them in a single Maximum-a-Posteriori
(MAP) estimation that better captures the information in these
intrinsically noisy clinical images. Note that a preliminary
version of this work was previously presented in [2].

The Stejskal-Tanner diffusion equation [1] relates the dif-
fusion tensorD to each DWI withSi = S0 exp(−bgi

>Dgi),
whereSi is the original DWI corresponding to the encoding
gradient gi, S0 an image with a null gradient, andb the
diffusion factor. To get a linear system, one usually takes
the logarithm of the DWI [3]–[5]. Solving the linearized
system in a least square sense leads to the minimization of
a quadratic criterion with algebraic methods. However, doing
this corresponds to a maximum likelihood (ML) estimation
with a Gaussian noise on the logarithm of the images (we
call this noise model log-Gaussian):log(Ŝi) = log(S0) −
bgi

>Dgi +Ni(0, σlg), whereŜi is the measured DWI inten-
sity, andNi(0, σlg) is a centered Gaussian noise of variance
σlg. One can wonder if this assumption correctly reflects the
noise appearing in real DW images. In fact, when the SNR
is high, one can show that the noise on the image logarithms
is well approximated by a Gaussian distribution [6], which
justifies the linearization of the diffusion equation. In the same
conditions, the noise can also be well approximated by a
Gaussian distribution within the brain [7]:̂Si = Si+Ni(0, σg).

However, for low SNR images typical of clinical acqui-
sitions, the real nature of the noise is Rician, which corre-
sponds to taking the magnitude of a complex signal whose
real and imaginary parts are corrupted by a Gaussian noise
[8]: Ŝi =

√
[Si + N1(0, σr)]2 + N2(0, σr)2, whereN1 and

N2 are two independent Gaussian noises. This is equivalent
to adding Gaussian noise on the k-space before computing
the signal magnitude. Wang et al. proposed for instance an
estimation criterion on the complex DWI signal that is adapted
to this type of noise [9]. We propose in this paper a ML
strategy which fully exploits the a priori knowledge on the
probability density function (pdf) of the Rician noise, and
which does not need to access the full complex signal but
only its magnitude, i.e., the standard DWI intensity.

In view of fiber reconstruction, the diffusion tensor field
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needs to be regularized without blurring the transitions be-
tween distinct fiber tracts, which delimit anatomical and
functional brain regions. A first idea consists in smoothing
independently each DWI, as done for instance very recently
in [10] with a Rician noise model. This results in a smoother
tensor field that conserves some of the transitions. However,
it also blurs the transitions between some regions as all the
boundaries of the tensor field are not visible in each DWI taken
separately. For instance, in brain DTI, only the combination
of all the DW images reveals the complex neural structure of
the white matter. Consequently, we believe that it is better to
detect the transitions on the tensor field itself.

Some regularization methods have been proposed as a post-
processing step after the estimation of the tensor field. For
instance, [11] regularizes the principal eigenvector (associ-
ated to the largest eigenvalue), while [12] uses the spectral
decomposition of tensors to independently regularize their
eigenvectors and eigenvalues. These two methods rely on the
spectral decomposition of tensors: considering only the prin-
cipal eigenvector for smoothing induces a loss of information
and there is an uncertainty of the spectral decomposition in
regions with flat tensors. Moreover, discontinuity problems
arise when smoothing the field of orthogonal matrices as the
spectral decomposition is not unique.

By contrast, it would be more interesting to consider the
regularization as a spatial prior on the tensor field during the
estimation step itself. This would allow to optimally weight the
information brought by the observed images and the expected
spatial regularity. Such a MAP estimation should extract the
maximal amount of meaningful information from very noisy
clinical DWI data. In that spirit, [9] proposed to parameterize
the space of tensors by the vector space of lower triangular
matrices thanks to the Cholesky decomposition. A lower trian-
gular matrixM is such that∀(i, j), if i > j thenM(i, j) = 0
(all terms above the diagonal are null). This provided them
with a computational framework that could handle a joint
estimation and regularization of the tensor field from the
complex DWI signal.

However, it is quite difficult to understand the structure of
the tensor space given by the Cholesky parameterization. We
believe that the use of Riemannian metrics as in [13] is a better
theoretical choice. Among these metrics, the Log-Euclidean
(LE) ones [14] also turn tensors into a vector space. Section II
investigates and compares these different tools for computing
with tensors. It appears that LE metrics are computationally
as efficient as the Cholesky decomposition while ensuring
the positive definiteness of tensors and canceling the swelling
effect in regularization.

Based on the LE computational framework, we detail in
Section III the variational method of the joint estimation and
smoothing of DTI. We first derive the ML estimation of tensors
with the log-Gaussian, Gaussian and Rician noise models. We
show that the Rician noise induces ashrinking effectwhen
other noise models are used for tensor estimation. By adding
an anisotropic spatial prior in a second step, we turn these
three ML into three MAP methods where the estimation and
the regularization of the tensor field are jointly performed.

A quantitative analysis of our 6 new methods on synthetic

data shows in Sec. IV that the Rician ML method correctly
handles the shrinking effect even with a very low SNR, while
other methods under-estimate the tensor volume by as much
as 40%. Then, we switch to experiments with real clinical data
on a medium quality brain DTI dataset (tumor case with only 6
gradient directions) and a low quality experimental acquisition
of the spinal cord (same sequence). The visual inspection of
the reconstructed tensor field shows that the MAP method
nicely preserves the separation between different regions. A
careful analysis in two specific regions shows that ML and
MAP Rician methods exhibit a larger tensor volume and
ADC than Gaussian and log-Gaussian methods. Last but not
least, we illustrate that the MAP Rician method qualitatively
improves the fiber tracking.

II. TOOLS FORTENSORCOMPUTING

Tensor computing is difficult due to the severe limitations
of the standard Euclidean calculus: while convex operations
are stable (e.g. the mean of a set of tensors is a tensor), one
can quickly reach the boundaries of the space with complex
operations (e.g., gradient descent or partial differential equa-
tions (PDE)) and null or negative eigenvalues may appear. To
overcome this limitation, [9] proposed to parameterize a tensor
D by its Cholesky factor. A Cholesky decomposition ofD is
given by: D = LL>, whereL is a lower triangular matrix.
For any lower triangular matrixL, the matrixLL> is positive
(this is easily shown using a SVD decomposition). However,
the definiteness is not ensured (null eigenvalues are possible).
The authors argue that forbidding negative eigenvalues is
sufficient because one cannot numerically distinguish very
small eigenvalues from null ones. Thus, forbidding explicitly
null eigenvalues has no practical justification.

While we agree that very small eigenvalues are not
distinguishable from null ones, we believe that both are very
unlikely to exist from a physical point of view, and should be
as far as possible from any reference tensor. In other words, a
tensor with very small eigenvalues has a very low probability
to appear, as well as a tensor with very large eigenvalues.
Both of them must be numerically nearly impossible to reach.

The recently proposed Riemannian metrics offer a solution
to this constraint: In [13], [15]–[17] an affine-invariant Rie-
mannian metric is proposed and the tensor space is replaced
by a regular manifold where matrices with null and negative
eigenvalues are at an infinite distance from any tensor. How-
ever, computations with this metric are time-consuming since
they extensively use the matrix exponential, logarithm, square
root and inverse. A novel family of Riemannian metrics, called
Log-Euclidean, combines the properties of the affine-invariant
family with a computational cost similar to the Euclidean case
[14]. The basic idea is to take the matrix logarithm of a tensor
D: L = log(D), and to run computations onL. The new
processed valuẽL obtained is turned back into a tensor by
taking the matrix exponential:̃D = exp(L̃). We proved that it
yields excellent theoretical properties, such as the monotone
interpolation of the determinants, and the prevention of the
swelling effect.
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Fig. 1. Geodesic shootings simulating a gradient descent. Thex axis is the
time t travelled along the geodesic (t ∈ [0,2]). Top: The Euclidean case.
2/3 of tensors are not positive definite and thus are not displayed.Middle:
The Cholesky case: the null matrix is reached (exact middle value) and values
beyond are the mirrored versions of the previous ones.Bottom: The Log-
Euclidean case: all tensors are positive definite, and the null tensor is never
reached.

Advantages of the Log-Euclidean Framework:

To compare the use of a LE metric with the standard
Euclidean framework and the more elaborate Cholesky de-
composition, we believe that understanding the structure of the
space is important. Let us illustrate this by realizing a geodesic
shooting in the tensor space endowed with an Euclidean,
Cholesky and Log-Euclidean structure. It consists in following
the geodesic starting at one given tensor in a given direction
during a certain time. In the Euclidean case, one simply
computes:De(t) = D+tḊe. In Figure 1, we chose a diagonal
tensorD = ((4, 0, 0), (0, 1, 0), (0, 0, 1)), a diagonal tangent
vector Ḋe = ((−8, 0, 0), (0,−2, 0), (0, 0,−2)) and t ∈ [0, 2].
A ”geodesic” with the Cholesky factors is given by a straight
line in the space of lower triangular matrices:L(t) = L+ tL̇.
The resulting tensor curve is simplyDc(t) = L(t)L(t)>.
To start at the same point with the same tangent vector as
in the Euclidean case,L is the Cholesky factor ofD and L̇
is solution of L̇ L

>
+ L L̇

>
= Ḋe. In our case, we obtain

L̇ = ((−2, 0, 0), (0,−1, 0), (0, 0,−1)). With the LE metric,
the geodesic is finally:Dlog = exp(log(D) + tḊlog), where
tangent vectors are given in the diagonal case byḊlog =
exp(D)−1Ḋe. Results of the geodesic shootings are displayed
in Fig. 1.

In the Euclidean case, as expected, one quickly reaches
the boundaries and non-displayed values are actually non-
positive tensors. The Cholesky case is algorithmically well
posed as non-positive matrices do not appear. However, we
still reach zero eigenvalues, i.e. the null matrix appears, and
values beyond it are the mirrored versions of the first ones.
This means that the null matrix is reached on the trajectory
during a gradient descent. Moreover, one may question the
physical meaning of the mirrored values obtained beyond the
null matrix. In the LE case, the null matrix is never reached
and all tensors are by nature positive definite.

(a) (b)

(c) (d) (e)

Fig. 2. Anisotropic regularization of a noisy tensor field. (a): Original
field. (b): Noisy field. (c): Euclidean regularization.(d): Cholesky regular-
ization. (e): Log-Euclidean regularization. Note the swelling effect in the
Euclidean and Cholesky cases.

As a second advantage, the Log-Euclidean framework com-
pletely overcomes theswelling effectwhich can be observed in
both Euclidean and Cholesky cases, and is illustrated in Fig.
2 with the example of the regularization. This effect causes
tensors to grow after a processing. We generated a synthetic
noisy tensor field and applied the anisotropic regularization
of Sec. III-B with 3 different ways to process tensors. First,
we used the Euclidean calculus, second we computed on the
Cholesky factors and third we used a LE metric. Both Eu-
clidean and Cholesky regularization suffer from the swelling
effect, i.e. the denoised tensors are larger than the original
values, the effect being less pronounced in the Cholesky case.
With the LE framework, the swelling effect vanishes and the
tensors are correctly denoised.

To quantify the benefit of the Log-Euclidean framework,
we computed the root mean square error (RMSE) between
the restored and original fields. Not to influence one partic-
ular metric, we computed the RMSE for the three metrics:
Euclidean, Cholesky and LE. Results are summarized in
Table I. Whatever the metric, the LE framework gives results
quantitatively better than the 2 other frameworks.

To conclude, we believe that the Log-Euclidean framework
is well adapted to the processing of diffusion tensors: it
not only overcomes the limitations of the Euclidean calculus
(negative eigenvalues), but it also removes the swelling effect
which can be observed in both Euclidean and Cholesky
frameworks. Consequently, we choose this family of metrics

TABLE I

RMSE between the restored and original tensor fields.FOR THE THREE

GIVEN METRICS, THE LOG-EUCLIDEAN REGULARIZATION PRODUCES

RESULTS THE CLOSEST TO THE ORIGINAL DATA.

Euc. Reg. Chol. Reg. LE Reg.
Euclidean RMSE 0.228 0.172 0.051
Cholesky RMSE 0.152 0.092 0.015

Log-Euclidean RMSE 0.532 0.313 0.111
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to solve our problem of joint estimation and smoothing of
clinical DTI.

III. JOINT ESTIMATION AND REGULARIZATION OF

CLINICAL DTI

The joint estimation and regularization of DTI can be
tackled by a variational formulation, i.e. one has to minimize
the energy functional:

E(L) =
1
2

Sim(L) +
λ

2
Reg(L), (1)

with Sim(.) being the data attachment term (estimation) and
Reg(.) being the regularization term. In a statistical setting,
Sim(.) is usually the log-likelihood of the measurements
knowing the parameters, while Reg(.) is the prior knowledge
on the parameters.λ is a normalization factor between the
two terms. To fully make use of the advantages of the LE
framework, we directly parameterize the diffusion tensor by
its logarithmL = log(D).

A. Three Least-Squares Criteria for DTI Estimation

The data attachment term can obviously take different
forms. First, we propose a least-squares criterion on the
logarithm of the DWI intensities, which is commonly used
for tensor estimation. It corresponds to a maximum likelihood
estimator when the noise is log-Gaussian (ML log-Gaussian).
Second, we propose a least-squares criterion acting directly on
the DWI intensities. In that case, the estimator corresponds to
a ML with a Gaussian noise model (ML Gaussian). Third, we
propose a new ML criterion handling the Rician nature of the
noise (ML Rician).

1) Gaussian Noise on the Logarithm of the DWI Intensities:
The linearized version of the Stejskal and Tanner diffusion
equation system gives us the following energy to minimize, in
the least-squares sense:

Simlog (L) =
∫

Ω

N∑

i=1

(
log

(
S0

Ŝi

)
− bgi

> exp(L)gi

)2

, (2)

whereN is the number of encoding gradients. In order to
minimize the criterion of Eq. [2], we need to differentiate it.
The differentiation is easy to perform in the LE framework
and gives:

∇Simlog(L) = −2
(
log

(
S0
Si

)
− bgi

> exp(L)gi

)
×

×∂Gi
exp(L),

with Gi = gigi
> (see Appendix I for a practical imple-

mentation of the directional derivatives of the matrix expo-
nential ∂Gi

exp(L)). Finally, the minimization is achieved
through a simple first order gradient descent:Lt+1 = Lt −
dt∇Simlog(Lt). L belongs to a vector space and this evolution
equation is actually a geodesic marching. After convergence,
one simply needs to exponentiate the vectorL to obtain a
tensor:D = exp(L).

2) Gaussian Noise on the Original DWI Intensities:As-
suming a Gaussian noise on the original DWI intensities, the
ML estimation boils down to a least-squares estimation of the
tensor field from the images themselves rather than from their
logarithm versions. For more clarity, we denote the predicted
DWI intensity by Si(L) = S0 exp(−bgi exp(L)gi

>). This
gives the following criterion [7]:

Simsignal(L) =
N∑

i=1

∫

Ω

(Si (L)− Ŝi)2. (3)

The differentiation of Eq. [3] gives:

∇Simsignal(L) = −2b
N∑

i=1

(
Si (L)− Ŝi

)
×

×Si (L) ∂Gi
exp(L). (4)

Similarly to Eq. [2], the minimization is achieved through a
first order gradient descent.

3) A Maximum Likelihood Estimator for a Rician Noise:In
this section, we consider that the noise in MR images is Rician,
i.e. the measured magnitude of the DWI can be modeled as:

Ŝi =
√

[Si + Nre(0, σ)]2 + Nim(0, σ)2

where Nre(0, σ) and Nim(0, σ) are independent Gaussian
noises acting respectively on the real and imaginary part of
the signal. The square magnitude of the observationŜi is:

Ŝ2
i = (Si +Nre(0, σ))2 +Nim(0, σ)2.

Taking the mean of the last expression gives:

E
[
Ŝ2

i

]
= E

[
(Si +Nre(0, σ))2

]
+ E

[
Nim(0, σ)2

]

= E
[
S2

i

]
+ 2σ2.

Therefore, the observed square magnitudeŜ2
i is a non-central

chi-square random variable. In this case, the DWI signal (not
the squared version) is shifted by approximativelyσ2/(2Si)
[8]. This means that the Rician noise induces a shrinking effect
of tensors: The DWI signal tends to be greater than it should
be, and the resulting tensors tend to be smaller than they
actually are (a higher signal means a lower diffusion). This
effect is even more obvious when the variance of the noise is
high. To correct for this shrinking effect, we propose the ML
estimator for the Rician noise.

For a Rician noise of varianceσ2 on the data, the pdf of
the measured signal̂S knowing the expected signalS is [8]:

p(Ŝ|S) =
Ŝ

σ2
exp

(
− Ŝ

2 + S2

2σ2

)
I0

(
SŜ

σ2

)
, (5)

whereI0 is the modified0th order Bessel function of the first
kind. The ML estimator for the pdf of Eq. [5] is:

SimML(L) = −
N∑

i=1

log
(
p

(
Ŝi|Si (L)

))
. (6)

The differentiation of Eq. [6] gives:

∇SimML(L) = −1/σ2
∑N

i=1(Si(L)− αŜi)×
×Si (L) ∂Gi

exp(L),
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with α = I ′0/I0(ŜiSi/σ
2) (see Appendix II for a practical

implementation ofα). The formulation is similar to the
gradient of Eq. [4], except that a correcting factorα
depending on the signal and the noise variance appears.
A simple estimator of the noise variance is based on the
following. Typical MRIs include regions outside of the
patient. Considering the fact that the square magnitude of
such regions is null, taking its mean gives us an estimation
of 2σ2.

B. An Anisotropic Regularization Term

Let us now turn to the prior on tensors: We expect the
tensor field to vary spatially slowly within homogeneous
regions (where the spatial gradient is small), while it can
drastically change at the boundaries of these regions. The log-
probability of such a prior can be efficiently represented by
the φ-functionals usually used for anisotropic regularization:
Reg(L) =

∫
Ω
φ (‖∇L‖) . The φ-function gives an anisotropic

behavior to the regularization, i.e., it will preserve the edges of
the tensor field while smoothing homogeneous regions. Note
that this type of regularization using LE metrics was already
proposed in [14], but without being coupled to an estimation
criterion. Moreover, we give here the implementation details
of such a regularization procedure using a finite differences
strategy.

As we are working on a vector space, the gradient of the
regularization criterion can be expressed as follows, using
ψ(s) = φ′(s)/s:

∇Reg(L) = −2div (ψ (‖∇L‖)∇L)

= −2ψ (‖∇L‖)∆L− 2
3∑

i=1

∂i (ψ (‖∇L‖)) ∂iL. (7)

For the experiments, we usedφ(s) = 2(1 + s2/κ2)1/2 −
2 and ψ(s) = (1 + s2/κ2)−1/2 as in [12]. κ can be seen
as a normalization factor for the gradient. The key for the
numerical implementation is the computation of the matrix
and scalar fields∂iL, ∆L and ‖∇L‖ of R3. Using a finite
difference scheme, these are simply:

∂iL(x) =
L(x + xi)− L(x− xi)

2‖xi‖ ,

∆L(x) =
3∑

i=1

L(x + xi)− 2L(x) + L(x− xi)
‖xi‖2 ,

‖∇L(x)‖2 =
3∑

i=1

‖∂iL(x)‖2LE ,

‖.‖LE being the Log-Euclidean metric of [14]. Finally, by
combining the gradient of one of the criteria (Eq. [2], [3] or
[6]) with the gradient of Eq. [7], one obtains the evolution
equation of the joint estimation and smoothing of DTI:

Lt+1 = Lt − dt∇E(Lt)
= Lt − dt/2 (∇Sim(Lt) + λ∇Reg(Lt)) .

Of course, one has to take the exponential of the solution to
obtain a tensor.

We call the full criterion a Maximum A Posteriori estimator,
because a spatial prior (the regularization term) is taken into
account. As a conclusion of this section, we derive three
new potential estimators: the MAP log-Gaussian (ML log-
Gaussian estimator + regularization), the MAP Gaussian (ML
Gaussian + regularization) and finally the MAP Rician (ML
Rician + regularization). We now investigate the effects of
these estimators on synthetic and real datasets.

IV. RESULTS ONSYNTHETIC AND CLINICAL DATA

To illustrate the benefits of our methodology, we first
perform 7 types of estimation on synthetic data: a classic
estimation with an algebraic resolution (Classic), the ML log-
Gaussian (Eq. [2]), the ML Gaussian (Eq. [3]) and the ML
Rician (Eq. [6]). Then, the regularization term is added to turn
each ML estimator into MAP estimations (MAP log-Gaussian,
MAP Gaussian, MAP Rician), which gives a total of 7
different estimations. Second, we apply the same methodology
on 2 clinical datasets, of medium and low quality. Results are
presented and discussed in the sequel.

A. Synthetic Data

We generated a synthetic16×16×16 tensor field containing
two homogeneous regions with anisotropic tensors (Fig. 3 left)
as in [9]: the first region (R1) contains tensors whose coeffi-
cients are:(0.970, 0.0, 1.751, 0.0, 0.0, 0.842) stored this way:
(dxx, dxy, dyy, dxz, dyz, dzz). The second region (R2) con-
tains tensors defined as:(1.556, 0.338, 1.165, 0.0, 0.0, 0.842).
A correspondingS0 image is created with a constant value
of 10. The DWI are artificially produced using the Stejskal
& Tanner equation with 6 diffusion gradients simulating the
real data of Sec. IV-B. Finally, a Rician noise is added to
each simulated DWI, including theS0, with three standard
deviations: 0.5 (SNR' 10dB), 1.0 (SNR' 8dB) and 1.5
(SNR' 6dB). Fig. 3 b, c and d show a slice of a DWI for the
three levels of noise. Parameterκ for smoothing was set to
0.05. We found that this value gives good smoothing results
while keeping most of the transitions. Going up to 0.1∼0.5
will smooth a little more the data, but won’t preserve much
the interfaces in the tensor field, while going down to 0.01 will
preserve almost everything and thus result in less smoothing.
Moreover, as LE metric are similitude-invariant,κ does not
depend on the scale of the tensors, and the given values can be
used with any type of dataset. We setλ = 1.0 anddt = 100
iterations, which gives correct results in terms of speed of
convergence, stability of the gradient descent, and influence
of the regularization for the MAP estimators. A good range
for λ is [0.25, 1]. Results of the Classic, ML log-Gaussian, ML
Gaussian and ML Rician estimations are shown respectively
in Fig. 4 b, c, d and e. Results of the MAP log-Gaussian,
MAP Gaussian and MAP Rician estimations are presented
respectively in Fig. 4 f, g, h.

To quantitatively compare the methods, we computed the
mean error, the variance, the minimum and maximum errors
between each estimation and the original data with the LE
metric. Results are summarized in Table II. Since non positive
tensors appear with a classical estimation, the LE metric
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(a) (b) (c) (d)

Fig. 3. A slice of a generated DWI with σn = 0.5 (b), σn = 1.0 (c),
σn = 1.5 (d). The encoding gradient isg = (−1, 1, 0)>.

gives an infinite error. With the ML log-Gaussian estimation,
all tensors are by nature positive definite. However, negative
tensors in a classical estimation are turned into tensors whose
eigenvalues are as close as possible to zero. Indeed, the energy
is minimum when these tensor eigenvalues are negative. This
results in a slow convergence and high errors. On the contrary,
the ML Gaussian estimator prevents the tensors to degenerate.
Finally, the ML Rician estimator allows us to correct for the
bias induced by the noise in each DWI and the shrinking effect
vanishes, resulting in better quantitative results. The MAP
estimators present the nice feature to preserve discontinuities
between tensors, even when the tensors shapes are similar. This
is an interesting feature when one would like, for instance, to
smooth brain DTI: regions delimiting different fiber tracts have
tensors about the same size but with different orientations.
With our MAP estimators, these limits will be preserved.

Effects of these estimators on FA and ADC are detailed
in Tab. II (last two columns). One notices that FA increases
with noise, as reported in [18], [19]. ML Gaussian and Rician
estimators are slightly less sensitive to noise w.r.t. FA than
a Classic or ML Log-Gaussian estimator (the growth in FA
is lower). The main advantage comes with the regularization
(MAP estimators) which lower the FA compared to ML
estimators. Conversely, ADC is underestimated when noise
increases, which is a consequence of the shrinking effect. The
ML and MAP Rician estimators suffer less from this shrinking,
managing to recover almost the loss in tensor size.

To even more illustrate the shrinking effect, we evaluated
the percentage of tensor volume lost during the estimation

(a) (b) (c) (d)

(h) (g) (f) (e)

Fig. 4. 2D slices of 7 different estimations of a noisy synthetic DTI
dataset (σn = 1.0). (a): The 3D synthetic field.(b): The classic estimation
(non-displayed ellipsoids correspond to non-positive tensors).(c): The ML
log-Gaussian,(d): The ML Gaussian,(e): The ML Rician, (f): The MAP
log-Gaussian,(g): The MAP Gaussian,(h): The MAP Rician.

(the tensor volume is its determinant) for the three levels of
noise. Results are presented in Table III. The shrinking effect
is obvious when the SNR is low. As depicted in Table III, the
ML Rician estimator corrects for this effect, even when the
noise variance is high.

These experiments show that using the ML estimator for the
correct noise model helps to correct for the shrinking effect
one can observe with a Rician noise and a low SNR. Moreover,
the anisotropic regularization enforces the spatial correlation
while preserving discontinuities of the diffusion tensor field,
making our estimators suitable for clinical datasets with low
SNRs.

B. Clinical Data

We tested the methods on 2 clinical datasets of medium and
low quality. First, we used a brain dataset (Fig. 5) acquired on
a 1.5T scanner with 7 encoding gradients (Basser sequence [1],
b-value of 1000 s.mm−2). The image dimensions are128 ×
128× 30 and the spatial resolution is1.875× 1.875× 4 mm3.
Second, we used an experimental acquisition of the spinal cord
on a 1.5T scanner1 (Fig. 6 and 10) obtained with the same 7
encoding gradients and b-value as previously. The dimensions
are 128 × 128 × 24 (acquisition is coronal) with a spatial
resolution of1.4×1.4×1.4mm3. This new type of acquisition
is currently actively investigated in clinical research (e.g., see
[20]) and is difficult to perform. Indeed, the patient often
cannot stay long enough in the scanner due to pathology.
Moreover, the small entrance of the scanner forces the patient
to have an uncomfortable position, and the scanning time must
be shortened. Finally, the coil cannot be perfectly adapted to
the body as it is for the head. The images are consequently
much noisier than for the brain MRI. Note that these datasets
were actually collected in a clinical environment: the brain
dataset corresponds to a patient with a tumor, and the spinal
cord one was acquired to check for possible compressions
[20]. Estimation of the SNR in the brain dataset givesσ = 12
(SNR' 8dB). Estimation of the SNR of the spinal cord dataset
givesσ = 14 (SNR' 6dB). Parameters used for the estimation
are: κ = 0.05, λ = 0.25, dt = 1.0 and 100 iterations.
Each of the ML and MAP log-Gaussian, Gaussian and Rician
estimations took about 12 minutes to run on a PC with a
Pentium M at 2GHz with 1 Go of memory.

Figures 5 show a closeup of the splenium region and nearby.
We clearly see that the missing tensors in a Classic estimation
(fig. 5 c) that are not positive-definite are not completely
replaced with an ML log-Gaussian estimation (fig. 5 d) due to
degenerate tensors. Using a ML Gaussian estimation (fig. 5 e)
and the ML Rician (fig. 5 f) results in a field where all tensors
are positive-definite. Below, we investigate quantitatively the
effects of these estimators on the tensor field.

To evaluate the quality of the tensor fields estimated, we
computed the mean apparent diffusion coefficient (ADC),
the mean fractional anisotropy (FA) and the mean volume
(VOL) in 2 distinct regions with different diffusion properties.
First, we chose the ventricles, where the diffusion is high but

1The authors would like to thank Denis Ducreux, MD, for providing the
brain and spinal cord DTI dataset.
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isotropic, and second, we chose the corpus callosum (including
the splenium and genu), where the diffusion is known to be
restricted by neural fibers, thus exhibiting high FA values.
Regions were segmented manually on axial slices. Results
for the 7 estimations are presented in Table IV. As expected,
the ML/Map Rician estimations produce the greatest volumes
(we found an increase of about 14%), and the highest ADC
values. A good property is that in anisotropic regions like the
corpus callosum, the gain of volume does not induce a loss of
anisotropy (see Table IV right, last column).

Finally, adding the regularization term (fig. 5 g, h and i)

not only smooths isotropic regions like the ventricles without
blurring the nearby splenium tract, but also replaces non-
positive tensors of the ML log-Gaussian estimation by positive
ones. Other experiments showed that the same comments
apply for the interface between grey and white matter. FA
maps are shown in Fig. 7 first row. However, the effect on
the tensor volume, ADC and FA is more difficult to analyze.
In isotropic regions like the ventricles, the nearby anisotropic
regions have a small influence during the regularization pro-
cess. Thus, tensors on the boundaries are corrupted by small
anisotropic ones. Consequently, mean tensor volumes in the

TABLE II

Estimation of a synthetic dataset with 7 methods.RMSE ARE CALCULATED WITH THE LOG-EUCLIDEAN METRIC. FA AND ADC COLUMNS INDICATE

MEAN VALUES OF THE ESTIMATIONS. THE PERCENTAGE IS THE RELATIVE DIFFERENCE TO THE TRUE MEAN VALUES(FA= 0.39,

ADC= 3.56 10−3mm2s−1). FA INCREASES WITH NOISE. USING MAP ESTIMATORS PERMITS TO CANCEL THIS EFFECT. CONVERSELY, ADC IS

UNDERESTIMATED WHEN NOT USING THEML/MAP R ICIAN ESTIMATORS.

σn = 0.5

NPT Mean Error Variance Min Error Max Error FA ADC (10−3mm2s−1)
Classic 7 ∞ ∞ 0.077 ∞ 0.403 (2.7%) 3.567 (0.1%)

ML log-Gaussian 0 0.459 0.342 0.077 13.670 0.403 (2.7%) 3.567 (0.1%)
ML Gaussian 0 0.439 0.052 0.077 3.389 0.397 (1.2%) 3.534 (-0.8%)
ML Rician 0 0.250 0.007 0.051 0.666 0.402 (2.4%) 3.575 (0.3%)

MAP log-Gaussian 0 0.163 0.005 0.035 0.937 0.393 (0.1%) 3.573 (0.3%)
MAP Gaussian 0 0.141 0.003 0.032 0.374 0.385 (-1.9%) 3.517 (-1.3%)
MAP Rician 0 0.075 0.002 0.011 0.262 0.390 (-0.6%) 3.558 (-0.1%)

σn = 1.0

NPT Mean Error Variance Min Error Max Error FA ADC(10−3mm2s−1)
Classic 224 ∞ ∞ 0.128 ∞ 0.428 (9%) 3.552 (-0.3%)

ML log-Gaussian 0 1.641 8.777 0.128 14.255 0.428 (9%) 3.552 (-0.3%)
ML Gaussian 0 1.086 0.718 0.128 5.413 0.410 (4.5%) 3.427 (-3.8%)
ML Rician 0 0.718 0.064 0.095 2.397 0.412 (5%) 3.58 (0.4%)

MAP log-Gaussian 0 0.584 0.051 0.011 2.032 0.409 (4%) 3.564 (0.1%)
MAP Gaussian 0 0.543 0.034 0.037 1.648 0.369 (-6%) 3.371 (-5.4%)
MAP Rician 0 0.120 0.004 0.017 0.545 0.390 (-0.6%) 3.534 (-0.8%)

σn = 1.5

NPT Mean Error Variance Min Error Max Error FA ADC(10−3mm2s−1)
Classic 717 ∞ ∞ 0.205 ∞ 0.446 (14%) 3.423 (-4%)

ML log-Gaussian 0 3.518 22.921 0.205 14.422 0.446 (14%) 3.423 (-4%)
ML Gaussian 0 1.889 2.117 0.205 7.212 0.422 (7.5%) 3.207 (-10%)
ML Rician 0 1.525 0.542 0.261 6.332 0.441 (12%) 3.61 (1.3%)

MAP log-Gaussian 0 0.989 0.140 0.188 3.039 0.425 (8%) 3.434 (-3.6%)
MAP Gaussian 0 0.984 0.134 0.208 2.932 0.366 (-6.7%) 3.107 (-13%)
MAP Rician 0 0.394 0.046 0.033 1.889 0.410 (4.4%) 3.474 (-2.5%)

TABLE III

Illustration of the shrinking effect. MEAN VOLUMES ARE MEAN TENSOR DETERMINANTS OF EACH ESTIMATION. THE PERCENTAGE OF VOLUME LOSS

INCREASES WITH THE NOISE VARIANCE. NOTE THAT THE ML R ICIAN ESTIMATOR IS CORRECTING FOR THIS EFFECT.

σn = 0.5
Original Data ML log-Gaussian ML Gaussian ML Rician

Mean volume 1.43 1.41 1.39 1.43
Volume loss NA 1.4% 2.9% 0.0%

σn = 1.0
Original Data ML log-Gaussian ML Gaussian ML Rician

Mean volume 1.43 1.25 1.15 1.42
Volume loss NA 12% 19.2% 0.7%

σn = 1.5
Original Data ML log-Gaussian ML Gaussian ML Rician

Mean volume 1.43 1.11 0.81 1.40
Volume loss NA 22% 43% 2%
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Tensor field estimation of a brain DTI dataset. (a):The S0 image. The other figures are a closeup on the region delimited by the white square.
(b): The DWI corresponding to the encoding gradientg = (1, 0, 1). (c): Classic estimation. The color codes for the principal direction of tensors:red:
left-right, green: anterior-posterior,blue: inferior-superior. Missing tensors in the splenium region are non-positive.(d): ML log-Gaussian. Some tensors are
still missing because their eigenvalues are very close to zero.(e): ML Gaussian. All tensors remain positive definite.(f): ML Rician. All tensors are positive
definite and are slightly bigger.(g): MAP log-Gaussian. The regularization term prevents the appearance of non-positive tensors. Note that the boundary
between the ventricles and the splenium was preserved.(h): MAP Gaussian and(i): MAP Rician. The three MAP estimators give very close results. Note
that our color scheme imposes to choose an orientation for coloring a glyph, even in case of isotropic tensors. Thus, inside the ventricles where tensors are
isotropic after regularization (Fig. g, h and i), the same blue color is chosen arbitrarly.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. Tensor field estimation of a spinal cord dataset. (a):The S0 image. The other figures are a closeup of the region delimited by the white square.
(b): The DWI corresponding to the encoding gradientg = (1, 0, 1). (c): Classic estimation. Many tensors are missing in and around the spinal cord.(d): ML
log-Gaussian. Same tensors than with the Classic estimation are missing.(e): ML Gaussian. All tensors are positive definite and regions outside the spinal
cord are coherent and show no artificial anisotropy.(f): ML Rician. (g): MAP log-Gaussian,(h): MAP Gaussian and(i): MAP Rician. The spinal tract is
smoothed and boundaries with nearby isotropic regions are preserved.

ventricles with MAP estimators are lower than those without
regularization. The same remark applies to the ADC (see
Table IV left, second column). Conversely, in regions with
anisotropic tensors, large isotropic neighbors may influence
the results, leading to higher volume and ADC (Tab. IV right,
first and second columns). Effects on FA maps are shown in
Fig. 7 last row.

Figure 6 shows the results of the estimations of the spinal

cord dataset. A closeup is made on the top of the spinal
cord. The same remarks as for the brain dataset apply: the
Classic estimation (Fig. 6 c) and the ML log-Gaussian (Fig.
6 d) lead to approximately the same results. Working with
ML Gaussian and Rician estimators (Fig. 6 e and f) ensures
that all tensors remain positive, with the advantage that the
ML Rician estimator corrects for the shrinking effect: tensor
volumes inside the spinal cord have grown by about 30%
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Fractional Anisotropy (FA) of the tensor fields obtained in Fig.
5. (a): ML log-Gaussian estimation. Outliers (black dots) in the splenium are
caused by degenerate tensors.(b): ML Gaussian. One notices no outliers.(c):
ML Rician. Same as previously.(d): Map log-Gaussian,(e): Map Gaussian
and(f): Map Rician. With the three MAP estimators, the FA contrast between
the ventricles and the splenium is well enhanced.

compared to the Classic estimation (the spinal cord was
manually segmented from the baseline image). We found a
greater growth of tensor volumes in the spinal cord than in
the brain (within the brain, tensors have grown on average
by 10%). This difference can be explained by the noise level:
the SNR of the spinal cord dataset is the lowest. Effects on
FA maps are presented in Fig. 8 top row. The regularization
term (Fig. 6 g, h and i) smooths the field while preserving the
boundaries with the spinal tract.

With the MAP log-Gaussian estimation, some artificial
anisotropic tensors appear: The FA map (Fig. 8 d) presents
high values outside the spinal cord, and is thus noisier than
those obtained with MAP Gaussian and Rician estimators (Fig.
8 e and f).

This exemplifies the importance of the choice of the noise
model: For low quality data, considering a log-Gaussian noise
may not be the right choice, even with a MAP estimation.

(a) (b) (c)

(d) (e) (f)

Fig. 8. Fractional Anisotropy (FA) of the tensor fields obtained in Fig. 6.
(a): ML log-Gaussian estimation. Outliers (black dots) in the spinal cord are
caused by degenerate tensors.(b): ML Gaussian. One notices no outliers.(c):
ML Rician. Same as previously.(d): Map log-Gaussian,(e): Map Gaussian
and(f): Map Rician. With the three MAP estimators, the FA contrast between
the spinal cord and around is well enhanced.

Switching to Gaussian or Rician noise models can largely
improve the quality of the tensor estimation.
We now study how the MAP Rician estimator impacts the
quality of fiber tracking on these two datasets.

C. Improvement of Tractography

Tractography, or fiber tracking, is a process which runs at
the end of the DTI processing pipeline. Among the numerous
available methods for tracking fibers, we chose a relatively fast
and easy to implement one [21] and show how the tracking
can be improved by our variational estimation combined
with regularization. Criteria for stopping the tracking are: a
threshold on FA (if FA is too low, the tracking is stopped)
and on the curvature (to forbid unlikely fibers having a high
curvature). Prior to the tracking, tensor fields are resampled to
obtain isotropic voxels: in general, the out-plane resolution
is very low (e.g., the brain dataset here) and interpolating
the tensors improves the regularity of the fibers. Resampling
is interpreted as a weighted mean with trilinear coefficients.

TABLE IV

Quantitative comparison of 7 diffusion tensor estimations of a brain DTI dataset.FOR EACH ESTIMATION, THE MEAN VOLUME , ADC AND FA WERE

EVALUATED IN THE VENTRICLES, AND THE CORPUS CALLOSUM. IN ISOTROPIC REGIONS LIKE THE VENTRICLES, ONE NOTICES THAT THE TENSOR

VOLUME IS ON AVERAGE 14% (ML RICIAN ) OR 10% (MAP RICIAN ) LARGER THAN WITH A CLASSIC ESTIMATION. THE ADC SHOWS SLIGHTLY

HIGHER VALUES WITH THE ML R ICIAN ESTIMATION (4% GROWTH) AND MAP RICIAN (2% GROWTH) THAN WITH THE CLASSIC ESTIMATION. THE

SAME REMARKS APPLY IN THE CORPUS CALLOSUM BUT IS LESS MARKED.

Ventricles
Volume ADC (mm2s−1) FA

Classic 14.43 6.63.10−3 0.26
ML log-Gaussian 14.31 6.62.10−3 0.25

MAP log-Gaussian 13.82 6.49.10−3 0.18
ML Gaussian 14.39 6.63.10−3 0.25

MAP Gaussian 14.18 6.58.10−3 0.22
ML Rician 16.47 6.87.10−3 0.27

MAP Rician 15.94 6.78.10−3 0.23

Corpus Callosum
Volume ADC (mm2s−1) FA

Classic 0.63 2.66.10−3 0.64
ML log-Gaussian 0.63 2.66.10−3 0.64

MAP log-Gaussian 0.61 2.61.10−3 0.57
ML Gaussian 0.63 2.66.10−3 0.64

MAP Gaussian 0.65 2.65.10−3 0.61
ML Rician 0.65 2.68.10−3 0.64

MAP Rician 0.67 2.68.10−3 0.62
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Fig. 9. Improvement of fiber reconstruction. A seed region was placed inside the corpus callosum. Results of the fiber reconstruction after a classical
estimation (Left ), and after the MAP Rician estimation (Right). Fibers are overlapped with a volume rendering of the T1 image.

Such a mean is computed in the logarithmic domain and then
mapped back to the tensor space with the matrix exponential:
D = exp(

∑N
i=1 ωi log(Di)), whereωi are classical trilinear

weights. We showed in [14] that such an interpolation has good
practical properties in the context of DT-MRI, compared to a
Euclidean interpolation. We tracked the fibers from the tensor
fields obtained after the Classic estimation plus resampling and
the MAP Rician estimator plus resampling. The parameters
used for the tracking are: FA threshold:0.3, maximum angle
of deviation: 90◦. Results of tracking in the brain and the
spinal cord are shown in Fig. 9, and 10. With the MAP Rician
estimator, the tracking is qualitatively much smoother in both

cases and shows less dispersion. The smoothness of the tensor
field leads to more regular and longer fibers: tracts that were
stopped due to the noise are now fully reconstructed. The FA
threshold used ensures that all fibers belong to white matter,
and do not result from a tracking in CSF or grey matter.

V. D ISCUSSION ANDCONCLUSIONS

We presented a new methodology to process DTIs of
medium and low quality (typical of clinical applications)
through a joint estimation and regularization of the diffusion
tensor field. In particular, the estimation, which assumes that
the data are corrupted by a Rician noise, is achieved through

Fig. 10. Spinal cord fiber tract reconstruction. A region containing the spinal cord was used for the tracking.Left: The spinal cord reconstructed after
the Classic estimation.Right: The same tract after our proposed variational framework. Fibers are overlapped with a slice of the FA map.
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a maximum likelihood strategy adapted to the nature of this
noise. This approach has the advantage to correct for the bias
induced by the Rician noise in the DWI, and consequently
not to underestimate the true volume of tensors (shrinking
effect). Other estimation criteria which make the assumption
of a Gaussian noise on the logarithm of the signal and on
the signal itself are compared. These estimators are combined
with an anisotropic regularization of the tensor field, so that
transitions between homogeneous fiber tracts are preserved.
To optimize these criteria, we use a Log-Euclidean metric that
provides a fast and easy to use framework to process tensors.
This tensor computing framework completely overcomes the
limitations of the standard Euclidean calculus, and is well
adapted to the processing of diffusion tensors. Results on
synthetic data show that considering a ML estimation adapted
to a Rician noise model corrects for the shrinking effect, while
assuming other noise models results in a loss of tensor volume
after estimation. Results on real clinical datasets show that
the use of ML estimators can be valuable in clinical studies:
The MAP estimations nicely smooths homogeneous regions
without blurring transitions between different tract in the case
of brain DTI. Moreover, with a dataset of low quality, we
showed that the choice of the noise model is important, as
outliers may persist even with the regularization. The ML
Rician estimator turns out to be the best choice in that case.
Finally, the promising improvement of the fiber reconstruction
of these data shows that even clinical DTIs can be used for
tractography.

Previously, diffusion tensor estimation was performed apart
from tensor regularization. Recently, Basu et al. [10] regu-
larized independently each DWI with a Rician noise removal
approach, and estimated diffusion tensors afterwards. In this
paper, we propose to do both together, i.e. to regularize the
tensor field while estimating it from DWI with a Rician noise
model. We believe that using such an approach allows to
capture more information than considering each DWI individ-
ually. However, one should compare in practice the properties
of DWI processing versus tensor processing, e.g. does DWI
processing preserve FA, trace, and tensor volumes?

In the future, the questions of validation and reproducibility
have to be answered. We could think of repeating scans of
the same patient in various orientations in the scanner, and
in various scanners, for this purpose. One also could think of
using phantoms and histological data as in [22].

Finally, the observed qualitative impact on the tracking
could be quantified, using for instance a dispersion measure
of the fibers.

APPENDIX I
PRACTICAL IMPLEMENTATION OF THE MATRIX

EXPONENTIAL DIRECTIONAL DERIVATIVE

In Sec. III, the directional derivative of the exponential
∂G exp(L) is used. For general matrices, one has to compute
the series [14]:

∂G exp(L) =
+∞∑

k=1

1
k!

k−1∑

i=0

LiGLk−i−1. (8)

In general, Eq. [8] cannot be simplified. However, in the
case of symmetric matrices, the differential can take a much
simpler form. We know thatG and L are both symmetric
matrices: In our application,G is the tensor product of a
vector g with itself: G = gg>, which is by construction
symmetric, andL is the matrix logarithm of a diffusion
tensor, therefore symmetric.

Let L = R>SR be an eigen decomposition ofL. S is
diagonal:S = diag(s1, s2, s3). From Eq. [8], we have:

∂G exp(L) =
+∞∑

k=1

1
k!

k−1∑

i=0

(
R>SiR

)
G

(
R>Sk−i−1R

)

= R>
(

+∞∑

k=1

1
k!

k−1∑

i=0

Si
(
RGR>

)
Sk−i−1

)
R (9)

= R> (∂RGR> exp (S))R (10)

We have ∂G exp(L) = R>∂RGR> exp(S)R. Let M be
∂RGR> exp (S). We denote by[M](l,m) the coefficient(l,m)
of matrix M (i.e. the matrix coefficient stored at rowl and
columnm). (l,m) ∈ {1, 2, 3} for diffusion tensors. From Eq.
[9] we can express the coefficient(l,m) of M as:

[M](l,m) =
+∞∑

k=1

1
k!

k−1∑

i=0

[
SiRGR>Sk−i−1

]
(l,m)

.

As S is diagonal, we can further write:

[M](l,m) =
+∞∑

k=1

1
k!

k−1∑

i=0

si
l

[
RGR>

]
(l,m)

sk−i−1
m

=
[
RGR>

]
(l,m)

+∞∑

k=1

1
k!

k−1∑

i=0

si
ls

k−i−1
m .

Now, we only need to express the series∑+∞
k=1 1/k!

∑k−1
i=0 s

i
ls

k−i−1
m . If sl 6= sm, we have:

+∞∑

k=1

1
k!

k−1∑

i=0

si
ls

k−i−1
m =

+∞∑

k=1

1
k!
sk−1

m

k−1∑

i=0

(
sl

sm

)i

=
+∞∑

k=1

1
k!
sk−1

m

1− (sl/sm)k

1− sl/sm

=
1

sm − sl

+∞∑

k=1

1
k!
sk

m

sk
m − sk

l

sk
m

=
exp(sm)− exp(sl)

sm − sl
.

If sl = sm = s, then the series can be even more simplified:

+∞∑

k=1

1
k!

k−1∑

i=0

sisk−i−1 =
+∞∑

k=1

1
k!

k−1∑

i=0

sk−1 =
+∞∑

k=1

1
k!

(
ksk−1

)

=
+∞∑

k=1

sk−1

(k − 1)!
=

+∞∑

k=0

sk

k!

= exp(s).
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Finally, one can access the coefficient(l,m) of M as:

[M ](l,m) =
[
RGR>

]
(l,m)

esm − esl

sm − sl
if sl 6= sm,

=
[
RGR>

]
(l,m)

esl if sl = sm. (11)

From Eq. [11], and Eq. [9], we deduce the directional deriva-
tive of the matrix exponential∂G exp(L).

APPENDIX II
PRACTICAL IMPLEMENTATION OFα(x)

In Sec. III-A.3, the coefficientα(x) = I ′0/I0(x) is needed
to be able to compute the gradients of the ML and MAP
estimators.α takes its values between 0 and 1. A practical
implementation ofα(x) is given in the following.

The 0th order modified Bessel function of the first kind
I0(x) is expressed as follows:I0(x) =

∑+∞
k=0

(x2/4)k

k!2 .
Consequently,α(x) can be written as:

α(x) =
I ′0(x)
I0(x)

=
x

2

∑+∞
k=0

( 1
4 x2)k

k!(k−1)!

∑+∞
k=0

( 1
4 x2)k

k!2

. (12)

Unfortunately, Eq. [12] cannot be simplified. However, for
small values ofx (typically x ≤ 10) the series converges very
quickly, and in practice 10 terms of the series are sufficient for
an accuracy of1.10−12, which is by far enough. For higher
values ofx, one may experience numerical stability issues. To
prevent this, one may use the following Taylor expansion of
α(x) valid for x > 10:

α(x) ' 1.0− 0.5x−1 − 0.125x−2 − 0.125x−3 − 0.1953125x−4

−0.40625x−5 − 1.0478515625x−6 − 3.21875x−7

−11.46646118164x−8 − 46.478515625x−9

−211.276149749755x−10 − 1064.67822265625x−11
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