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Abstract— Diffusion tensor MRI (DT-MRI or DTI) is an imag-  images (DWI) is noise-sensitive. Consequently, clinical DTI
ing modality that is gaining importance in clinical applications. js very often not suitable for complex post processing, like
However, in a clinical environment, data have to be acquired fiber tracking. For these reasons, there has been a growing
rapidly, often at the expense of the image quality. This often . - N T .
results in DTI datasets that are not suitable for complex post- mteres_t in the regula'lrlzatlon of tensor 'mag‘?s- In th? following
processing like fiber tracking. We propose a new variational W€ quickly summarize the state of the art in diffusion tensor
framework to improve the estimation of DT-MRI in this clinical ~ estimation and regularization. Available methods generally
context. Most of the existing estimation methods rely on a perform each of theses two steps independently. We propose
log-Gaussian noise (Gaussian noise on the image logarithms),iy this paper to couple them in a single Maximum-a-Posteriori

?r:eangzgsﬁ:an,wSoi';i{gtehsatwiﬁ ?C?VE, rse{\llngt wﬁhﬁfgg '?;L:,Z%dosf (MAP) estimation that better captures the information in these

the Rician noise induces a shrinking effect: the tensor volume intrir?sically OOiSy clinical ima}ges. Note that a preliminary
is underestimated when other noise models are used for the version of this work was previously presented in [2].

estimation. In this paper, we propose a maximum likelihood  The Stejskal-Tanner diffusion equation [1] relates the dif-
strategy that fully exploits the assumption of a Rician noise. To ,cion tenso to each DWI withS; — Soexp(—bg; ' Dg;)
1 T 1 1/

further reduce the influence of the noise, we optimally exploit the . o . .
spatial correlation by coupling the estimation with an anisotropic where S; is the original DWI corresponding to the encoding

prior previously proposed on the spatial regularity of the tensor gradientg;, So an image with a null gradient, antl the
field itself, which results in a maximum a posteriori estimation. diffusion factor. To get a linear system, one usually takes

Optimizing such a non-linear criterion requires adapted tools for the logarithm of the DWI [3]-[5]. Solving the linearized
tensor computing. We show that Riemannian metrics for tensors, system in a least square sense leads to the minimization of

and more specifically the Log-Euclidean metrics, are a good . o - . .
candidate and that this criterion can be efficiently optimized. & duadratic criterion with algebraic methods. However, doing

Experiments on synthetic data show that our method correctly this corresponds to a maximum likelihood (ML) estimation
handles the shrinking effect even with very low SNR, and that with a Gaussian noise on the logarithm of the images (we
the po_si_tive definiteness of tensors is always insured. Results oncall this noise model log-Gaussianpg(S;) = log(Sy) —
real clinical data demons_trate _the truthfulness o_f the proposed bgiTDgi + Ni((),glg)n WhereSi is the measured DWI inten-
approach and show promising improvements of fiber tracking in : - . .
the brain and the spinal cord. sity, and N;(0, oy4) is a ceptered Gaqssmn noise of variance
o1g. One can wonder if this assumption correctly reflects the
noise appearing in real DW images. In fact, when the SNR
is high, one can show that the noise on the image logarithms
is well approximated by a Gaussian distribution [6], which
justifies the linearization of the diffusion equation. In the same
Diffusion tensor MRI (DT-MRI or DTI) [1] is a unique conditions, the noise can also be well approximated by a
tool to assess in vivo oriented structures within tissues via ttBaussian distribution within the brain [7§; = Si+N;(0,04).
measure of water diffusion. However, using such an imagingHowever, for low SNR images typical of clinical acqui-
modality in a clinical environment is difficult and acquisitionssitions, the real nature of the noise is Rician, which corre-
generally have a limited number of encoding gradients and Iagonds to taking the magnitude of a complex signal whose
signal-to-noise ratios (SNR). Indeed, pathologies often prevestl and imaginary parts are corrupted by a Gaussian noise
the patient from staying too long in the same position i[8]: S; = V/[Si + N1(0,0,)]2 + N2(0,0,)2, where N; and
the scanner. This short scanning time prevents from acquiring are two independent Gaussian noises. This is equivalent
and averaging the large number of gradient directions thattés adding Gaussian noise on the k-space before computing
necessary for enhancing the SNR. Moreover, the devices ttié# signal magnitude. Wang et al. proposed for instance an
are usually available for clinical purposes (at least in Francegtimation criterion on the complex DWI signal that is adapted
usually offer only low quality DWI datasets (generally Go this type of noise [9]. We propose in this paper a ML
gradient directions with 4 repeated scans). It is known that terategy which fully exploits the a priori knowledge on the
estimation of the diffusion tensor field from diffusion weightegrobability density function (pdf) of the Rician noise, and

, _ . . which does not need to access the full complex signal but
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needs to be regularized without blurring the transitions bdata shows in Sec. IV that the Rician ML method correctly
tween distinct fiber tracts, which delimit anatomical antdandles the shrinking effect even with a very low SNR, while
functional brain regions. A first idea consists in smoothingther methods under-estimate the tensor volume by as much
independently each DWI, as done for instance very recentlg 40%. Then, we switch to experiments with real clinical data
in [10] with a Rician noise model. This results in a smootheyn a medium quality brain DTI dataset (tumor case with only 6
tensor field that conserves some of the transitions. Howevegradient directions) and a low quality experimental acquisition
it also blurs the transitions between some regions as all thiethe spinal cord (same sequence). The visual inspection of
boundaries of the tensor field are not visible in each DWI takéine reconstructed tensor field shows that the MAP method
separately. For instance, in brain DTI, only the combinatiamicely preserves the separation between different regions. A
of all the DW images reveals the complex neural structure oéreful analysis in two specific regions shows that ML and
the white matter. Consequently, we believe that it is better AP Rician methods exhibit a larger tensor volume and
detect the transitions on the tensor field itself. ADC than Gaussian and log-Gaussian methods. Last but not
Some regularization methods have been proposed as a plestst, we illustrate that the MAP Rician method qualitatively
processing step after the estimation of the tensor field. FHarproves the fiber tracking.
instance, [11] regularizes the principal eigenvector (associ-
ated to the largest eigenvalue), while [12] uses the spectral
decomposition of tensors to independently regularize their
eigenvectors and eigenvalues. These two methods rely on théensor computing is difficult due to the severe limitations
spectral decomposition of tensors: considering only the prigf the standard Euclidean calculus: while convex operations
cipal eigenvector for smoothing induces a loss of informaticire stable (e.g. the mean of a set of tensors is a tensor), one
and there is an uncertainty of the spectral decomposition éan quickly reach the boundaries of the space with complex
regions with flat tensors. Moreover, discontinuity problemgperations (e.g., gradient descent or partial differential equa-
arise when smoothing the field of orthogonal matrices as ttiens (PDE)) and null or negative eigenvalues may appear. To
spectral decomposition is not unique. overcome this limitation, [9] proposed to parameterize a tensor
By contrast, it would be more interesting to consider thP by its Cholesky factor. A Cholesky decompositionIdfis
regularization as a spatial prior on the tensor field during tigiven by: D = LL", whereL is a lower triangular matrix.
estimation step itself. This would allow to optimally weight thé=or any lower triangular matri%,, the matrixLL " is positive
information brought by the observed images and the expect#is is easily shown using a SVD decomposition). However,
spatial regularity. Such a MAP estimation should extract ttibe definiteness is not ensured (null eigenvalues are possible).
maximal amount of meaningful information from very noisyThe authors argue that forbidding negative eigenvalues is
clinical DWI data. In that spirit, [9] proposed to parameterizsufficient because one cannot numerically distinguish very
the space of tensors by the vector space of lower triangufanall eigenvalues from null ones. Thus, forbidding explicitly
matrices thanks to the Cholesky decomposition. A lower trianull eigenvalues has no practical justification.
gular matrix M is such thatv(i, 5),if ¢ > j thenM(4,5) =0 While we agree that very small eigenvalues are not
(all terms above the diagonal are null). This provided thentistinguishable from null ones, we believe that both are very
with a computational framework that could handle a jointnlikely to exist from a physical point of view, and should be
estimation and regularization of the tensor field from thas far as possible from any reference tensor. In other words, a
complex DWI signal. tensor with very small eigenvalues has a very low probability
However, it is quite difficult to understand the structure db appear, as well as a tensor with very large eigenvalues.
the tensor space given by the Cholesky parameterization. Bfgth of them must be numerically nearly impossible to reach.
believe that the use of Riemannian metrics as in [13] is a better
theoretical choice. Among these metrics, the Log-EuclideanThe recently proposed Riemannian metrics offer a solution
(LE) ones [14] also turn tensors into a vector space. Sectiortdl this constraint: In [13], [15]-[17] an affine-invariant Rie-
investigates and compares these different tools for computimgnnian metric is proposed and the tensor space is replaced
with tensors. It appears that LE metrics are computationalby a regular manifold where matrices with null and negative
as efficient as the Cholesky decomposition while ensurimggenvalues are at an infinite distance from any tensor. How-
the positive definiteness of tensors and canceling the swellieger, computations with this metric are time-consuming since
effect in regularization. they extensively use the matrix exponential, logarithm, square
Based on the LE computational framework, we detail iroot and inverse. A novel family of Riemannian metrics, called
Section Il the variational method of the joint estimation antog-Euclidean, combines the properties of the affine-invariant
smoothing of DTI. We first derive the ML estimation of tensorgamily with a computational cost similar to the Euclidean case
with the log-Gaussian, Gaussian and Rician noise models. Y¥d]. The basic idea is to take the matrix logarithm of a tensor
show that the Rician noise inducesshrinking effectwhen D: L = log(D), and to run computations oh. The new
other noise models are used for tensor estimation. By addipgcessed valud. obtained is turned back into a tensor by
an anisotropic spatial prior in a second step, we turn thetsking the matrix exponentiald = exp(L). We proved that it
three ML into three MAP methods where the estimation andelds excellent theoretical properties, such as the monotone
the regularization of the tensor field are jointly performed. interpolation of the determinants, and the prevention of the
A quantitative analysis of our 6 new methods on synthetwelling effect.

[I. TOOLS FORTENSORCOMPUTING
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Fig. 1. Geodesic shootings simulating a gradient descent. Theaxis is the Fi : : N~ . ) . A
. . " ; g. 2. Anisotropic regularization of a noisy tensor field. (a): Original
time ¢ travelled along the geodesict( € [0, 2]). Top: The Euclidean case. field. (b): Noisy field. (c): Euclidean regularizationid): Cholesky regular-

2/3 of tensors are not positive definite and thus are not displayettle: .~ - . ) ! ot ; :
The Cholesky case: the null matrix is reached (exact middle value) and vallﬁlzaﬁtll(i)géa(ﬁ)ékg%ﬁggf@agag%uIarlzatlon. Note the swelling effect in the

beyond are the mirrored versions of the previous olegtom: The Log-
Euclidean case: all tensors are positive definite, and the null tensor is never
reached.

As a second advantage, the Log-Euclidean framework com-
_ pletely overcomes thewelling effectvhich can be observed in
Advantages of the Log-Euclidean Framework: both Euclidean and Cholesky cases, and is illustrated in Fig.

To compare the use of a LE metric with the standard with the example of the regularization. This effect causes

Euclidean framework and the more elaborate Cholesky d&NSOrs to grow after a processing. We generated a synthetic
composition, we believe that understanding the structure of tA@'Sy tensor field and applied the anisotropic regularization
space is important. Let us illustrate this by realizing a geodedE Sec- !1l-B with 3 different ways to process tensors. First,
shooting in the tensor space endowed with an Euclided® used the Euclidean calculus, second we computed on the

Cholesky and Log-Euclidean structure. It consists in following10/€Sky factors and third we used a LE metric. Both Eu-
the geodesic starting at one given tensor in a given directibfidéan and Cholesky regularization suffer from the swelling

during a certain time. In the Euclidean case, one simpﬁﬁect, i.e. the denoised tensors are larger than the original
computesD,(t) = D+¢D.. In Figure 1, we chose a diagonalvalues' the effect being less pronounced in the Cholesky case.
tensorD :e((4 0,0), (0 N 0).(0.0,1)), a diagonal tangent With the LE framework, the swelling effect vanishes and the

vector D, = ((—8,0,0), (0, —2,0), (0,0, —2)) andt € [0, 2]. tensors are correctly deqoised. .
A "geodesic” with the Cholesky factors is given by a straight 10 quantify the benefit of the Log-Euclidean framework,
line in the space of lower triangular matricds(t) = L + L. We computed the root mean square error (RMSE) between

The resulting tensor curve is simplp.(f) — L(t)L(t)T‘ the restored and original fields. Not to influence one partic-

To start at the same point with the same tangent vector Y&’ metric, we computed the RMSE for the three metrics:

in the Euclidean casd, is the Cholesky factor oD and 1. Euclidean, Cholesky and LE. Results are summarized in
. . . T T . . Table I. Whatever the metric, the LE framework gives results
is solution of LL + LL = D.. In our case, we obtain

L = ((=2,0,0),(0,—1,0), (0,0,—1)). With the LE metric, quantitatively better thgn the 2 other framewprks.

the geodesic is finallyDiog — exp(log(D) + tDlog), where To conclude, we believe that th_e Log—Egchd_ean framew-or.k

tangent vectors are given in the diagonal caselhy, — is well adapted to the processing of dlffuspn tensors: it
D)-1D.. Results of the aeodesic shootinas are dgis la né)t only overcomes the limitations of the Euclidean calculus

exp(D)~"De. 9 9 PiaYffegative eigenvalues), but it also removes the swelling effect

in Fig. 1. which can be observed in both Euclidean and Cholesky

In the Euglldean case, as expected, one quickly reac'?ﬁfmeworks. Consequently, we choose this family of metrics
the boundaries and non-displayed values are actually non-

positive tensors. The Cholesky case is algorithmically well

posed as non-positive matrices do not appear. However, we TABLE |

still reach zero eigenvalues, i.e. the null matrix appears, afSE between the restored and original tensor fieldsFOR THE THREE
values beyond it are the mirrored versions of the first onesGIVEN METRICS, THE LOG-EUCLIDEAN REGULARIZATION PRODUCES

This means that the null matrix is reached on the trajectory RESULTS THE CLOSEST TO THE ORIGINAL DATA

durln_g a gradl_ent descent? Moreover, one may question the Euc. Reg.| Chol Reg | [E Reg.
physical meaning of the mirrored values obtained beyond the Euclidean RMSE 0.8 0172 0.051
null matrix. In the LE case, the null matrix is never reached Cholesky RMSE 0.152 0.092 0.015

and all tensors are by nature positive definite. Log-Euclidean RMSE]|  0.532 0.313 0.111




to solve our problem of joint estimation and smoothing of 2) Gaussian Noise on the Original DWI IntensitieAs-
clinical DTI. suming a Gaussian noise on the original DWI intensities, the
ML estimation boils down to a least-squares estimation of the
tensor field from the images themselves rather than from their
logarithm versions. For more clarity, we denote the predicted
DWI intensity by S;(L) = Spexp(—bg;exp(L)g;"). This
The joint estimation and regularization of DTI can b@&ves the following criterion [7]:

Il. JOINT ESTIMATION AND REGULARIZATION OF
CLINICAL DTI

tackled by a variational formulation, i.e. one has to minimize N X
the energy functional: SiMyigna(L) = / (Si (L) = 95)°. 3)
i=17%
E(L) = %Sim(L) + %ReQL), (1) The differentiation of Eq. [3] gives:

N
with Sim(.) being the data attachment term (estimation) and VSimyignar (L) = 721,2 (Si (L) — Sz) %
Reg(.) being the regularization term. In a statistical setting, =1

Sim(.) is usually the log-likelihood of the measurements xS; (L) dg, exp(L). (4)
knowing the parameters, while Reg(.) is the prior knowledge S )

on the parameters) is a normalization factor between the>imilarly to Eq. [2], the minimization is achieved through a
two terms. To fully make use of the advantages of the LSt order gradient descent.

framework, we directly parameterize the diffusion tensor by 3) A Maximum Likelihood Estimator for a Rician Noiskr
its logarithmL = log(D). this section, we consider that the noise in MR images is Rician,

i.e. the measured magnitude of the DWI can be modeled as:

& 2
A. Three Least-Squares Criteria for DTI Estimation S; = \/[Si + Nie(0,0)]” + Nim (0, 0)?

The data attachment term can obviously take differedthere N,c(0,0) and Niy,(0,0) are independent Gaussian
forms. First, we propose a least-squares criterion on tAgiSes acting respectively on the real and imaginary part of
logarithm of the DWI intensities, which is commonly usedhe signal. The square magnitude of the observatiprs:
for tensor estimation. It co_rresponds to a maximum I|kel|h(_)od $2 = (S + Nye(0,0))% + Ni (0,02
estimator when the noise is log-Gaussian (ML log-Gaussian). _ _

Second, we propose a least-squares criterion acting directly @king the mean of the last expression gives:

the DWI intensities. In that case, the estimator corresponds to 1507 2 2

a ML with a Gaussian noise model (ML Gaussian). Third, we E [Sl] = B {(S" +Nre(0,0)) } + B [Nim(0,0)°]
propose a new ML criterion handling the Rician nature of the = FE [S?] + 202

noise (ML Rician). N
; ; ; .._Therefore, the observed square magnitdgds a non-central
1) Gaussian Noise on the Logarithm of the DWI Intensmeg— i _square random variablg In this ?:ase@the DWI signal (not
The linearized version of the Stejskal and Tanner diffusio%“e s?quared version) is shiﬁed by appr(;ximativeﬁ//(gS)
equation system gives us the following energy to minimize, ) - J I A8
thqe Ieast-s)(;uaresgsense' g oy ]. This means that the Rician noise induces a shrinking effect
| of tensors: The DWI signal tends to be greater than it should
N S 2 be, and the resulting tensors tend to be smaller than they
Simy,, (L) = / > (log <A> —bg; " eXp(L)gi> , (2) actually are (a higher signal means a lower diffusion). This
Q=1 Si effect is even more obvious when the variance of the noise is

where N is the number of encoding gradients. In order tE‘igh' To correct for this shrinking effect, we propose the ML

minimize the criterion of Eqg. [2], we need to differentiate jtestimator for the R'C'an NOISE. 9
For a Rician noise of variance” on the data, the pdf of

The diff iation i f in the LE f A
ang éjilveesr.enUatlon 's easy 1o perform in the rameworl,Ehe measured signd knowing the expected signdl is [8]:

- S 5% 4 52 SS
VSim,, (L) = —2 (1og (%‘3) — bg; " exp(L)gi) X p(S|S) = 2 &XP (— 21—2 ) Iy <02> 5 (5)
x0g, exp(L), ) - _ _
whereI, is the modified0” order Bessel function of the first
with G; = gigiT (See Appendix | for a practica| imp|e- kind. The ML estimator for the pdf of Eq [5] is:
mentation of the directional derivatives of the matrix expo- N
nential dg, exp(L)). Finally, the minimization is achieved Simyyz (L) = — > log (p (Sy\si (L))). 6)
through a simple first order gradient descebf;, = Ly — i=1
dtVSimy,,(Le). L belongs to a vector space and this evolutiofhe differentiation of Eq. [6] gives:
equation is actually a geodesic marching. After convergence, ) N .
one simply needs to exponentiate the vedoto obtain a VSimyr (L) = —1/0 33,2, (Si(L) — aS;) x
tensor:D = exp(L). xS; (L) Og, exp(L),



with o = I}/Iy(5;S;/o2) (see Appendix Il for a practical ~We call the full criterion a Maximum A Posteriori estimator,
implementation ofa). The formulation is similar to the because a spatial prior (the regularization term) is taken into
gradient of Eqg. [4], except that a correcting factar account. As a conclusion of this section, we derive three
depending on the signal and the noise variance appeamsw potential estimators: the MAP log-Gaussian (ML log-
A simple estimator of the noise variance is based on tiizaussian estimator + regularization), the MAP Gaussian (ML
following. Typical MRIs include regions outside of theGaussian + regularization) and finally the MAP Rician (ML
patient. Considering the fact that the square magnitude Rician + regularization). We now investigate the effects of
such regions is null, taking its mean gives us an estimatitinese estimators on synthetic and real datasets.
of 202,

IV. RESULTS ONSYNTHETIC AND CLINICAL DATA

To illustrate the benefits of our methodology, we first

B. An Anisotropic Regularization Term perform 7 types of estimation on synthetic data: a classic

Let us now turn to the prior on tensors: We expect thestimation with an algebraic resolution (Classic), the ML log-
tensor field to vary spatially slowly within homogeneou&aussian (Eg. [2]), the ML Gaussian (Eq. [3]) and the ML
regions (where the spatial gradient is small), while it caRician (Eq. [6]). Then, the regularization term is added to turn
drastically change at the boundaries of these regions. The legch ML estimator into MAP estimations (MAP log-Gaussian,
probability of such a prior can be efficiently represented BMAP Gaussian, MAP Rician), which gives a total of 7
the ¢-functionals usually used for anisotropic regularizatiordifferent estimations. Second, we apply the same methodology
RegL) = [, ¢ (| VL|) . The ¢-function gives an anisotropic on 2 clinical datasets, of medium and low quality. Results are
behavior to the regularization, i.e., it will preserve the edges pfesented and discussed in the sequel.
the tensor field while smoothing homogeneous regions. Note
that this ty_pe of regular_ization u_sing LE metrics was glrea_lqg(. Synthetic Data
proposed in [14], but without being coupled to an estimation

criterion. Moreover, we give here the implementation details We generated a syntheti6 x 16 x 16 tensor field containing

of such a regularization procedure using a finite differencggo. homogene_ous regions with an|sgtrop|c tensors (Fig. 3 Ief_t)
strategy as in [9]: the first region (R1) contains tensors whose coeffi-

éents are:(0.970,0.0,1.751,0.0,0.0,0.842) stored this way:

As we are working on a vector space, the gradient of ttZ .
. o Ado, doyy dyy, dezydy.,d,,). The second region (R2) con-
regularization criterion can be expressed as follows, using*®’~*¥> “yy>"wz; “yz; "2z
9 P tains tensors defined aét.556,0.338,1.165,0.0,0.0,0.842).

= o/ .
V(s) = 1(s)/s A correspondingS, image is created with a constant value

VRedgL) = —2div (¢ (||VL||) VL) of 10. The DWI are artificially produced using the Stejskal

3 & Tanner equation with 6 diffusion gradients simulating the

= —2¢ (|VL|) AL - 2> 0; (¢ (| VL])) d,L. (7) real data of Sec. IV-B. Finally, a Rician noise is added to
i=1 each simulated DWI, including th&,, with three standard

For the experiments, we usefls) = 2(1 + s2/x2)1/2 — deviations: 0.5 (SNR 10dB), 1.0 (SNR~ 8dB) and 1.5
2 and ¢(s) = (1 + s2/k2)~1/2 as in [12]. x can be seen (SNR~6dB). Fig. 3 b, ¢ and d show a slice of a DWI for the

as a normalization factor for the gradient. The key for tH&ree levels of noise. Parameterfor smoothing was set to
numerical implementation is the computation of the matri%05. We found that this value gives good smoothing results
and scalar field$);,L, AL and |[VL|| of R®. Using a finite w_hﬂe keeping most of the transitions. Going up to 0015
difference scheme, these are simply: will smooth a little more the data, but won't preserve much

L(x + x1) — L(x — x;) the interfaces in the tensor field, while going down to 0.01 will

O;L(z) , preserve almost everything and thus result in less smoothing.
24| Moreover, as LE metric are similitude-invariant, does not
3 L(x +x;) — 2L(x) + L(x — x3) depend on the scale of the tensors, and the given values can be
AL(x) = Z EAE ) used with any type of dataset. We set= 1.0 anddt = 100
i? iterations, which gives correct results in terms of speed of
9 2 convergence, stability of the gradient descent, and influence
IVL&I" = ; 1L - of the regularization for the MAP estimators. A good range

] ] ) ] for A is [0.25, 1]. Results of the Classic, ML log-Gaussian, ML
|-l being the Log-Euclidean metric of [14]. Finally, byGayssian and ML Rician estimations are shown respectively
combl_mng the gra_dlent of one of the criteria (Eq. [2], [3]_°Tn Fig. 4 b, ¢, d and e. Results of the MAP log-Gaussian,
[6]) with the gradient of Eq. [7], one obtains the evolution ap Gaussian and MAP Rician estimations are presented
equation of the joint estimation and smoothing of DTI: respectively in Fig. 4 f, g, h.

Lix = Lg—dtVE(L) To quantitart]ively pomparﬁ the' methods,dwe cqmputed the

B B ) mean error, the variance, the minimum and maximum errors

= Lo dt/2(VSIM(Le) + AVRegLy)) . between each estimation and the original data with the LE

Of course, one has to take the exponential of the solution rieetric. Results are summarized in Table Il. Since non positive
obtain a tensor. tensors appear with a classical estimation, the LE metric



(the tensor volume is its determinant) for the three levels of
noise. Results are presented in Table Ill. The shrinking effect
is obvious when the SNR is low. As depicted in Table I, the
ML Rician estimator corrects for this effect, even when the
noise variance is high.
a) (b) (d) These experiments show that using the ML estimator for the
correct noise model helps to correct for the shrinking effect
Fig. 3. A slice of a generated DWI with o, = 0.5 (b), on = 1.0 (©),  one can observe with a Rician noise and a low SNR. Moreover,
on = 1.5 (). The encoding gradient ig = (—1,1,0) " the anisotropic regularization enforces the spatial correlation
while preserving discontinuities of the diffusion tensor field,
making our estimators suitable for clinical datasets with low
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gives an infinite error. With the ML log-Gaussian estimatio
all tensors are by nature positive definite. However, negative
tensors in a classical estimation are turned into tensors whose
eigenvalues are as close as possible to zero. Indeed, the enBrgf¢linical Data
is minimum when these tensor eigenvalues are negative. This\Ve tested the methods on 2 clinical datasets of medium and
results in a slow convergence and high errors. On the contrdowy quality. First, we used a brain dataset (Fig. 5) acquired on
the ML Gaussian estimator prevents the tensors to degenerat&.5T scanner with 7 encoding gradients (Basser sequence [1],
Finally, the ML Rician estimator allows us to correct for thés-value of 1000 s.mm?). The image dimensions a8 x
bias induced by the noise in each DWI and the shrinking effer28 x 30 and the spatial resolution is875 x 1.875 x 4 mn.
vanishes, resulting in better quantitative results. The MABecond, we used an experimental acquisition of the spinal cord
estimators present the nice feature to preserve discontinuitiesa 1.5T scannér(Fig. 6 and 10) obtained with the same 7
between tensors, even when the tensors shapes are similar. @hiding gradients and b-value as previously. The dimensions
is an interesting feature when one would like, for instance, twe 128 x 128 x 24 (acquisition is coronal) with a spatial
smooth brain DTI: regions delimiting different fiber tracts haveesolution of1.4 x 1.4 x 1.4mm?. This new type of acquisition
tensors about the same size but with different orientations.currently actively investigated in clinical research (e.g., see
With our MAP estimators, these limits will be preserved. [20]) and is difficult to perform. Indeed, the patient often
Effects of these estimators on FA and ADC are detailethnnot stay long enough in the scanner due to pathology.
in Tab. 1l (last two columns). One notices that FA increasedoreover, the small entrance of the scanner forces the patient
with noise, as reported in [18], [19]. ML Gaussian and Riciato have an uncomfortable position, and the scanning time must
estimators are slightly less sensitive to noise w.r.t. FA thdre shortened. Finally, the coil cannot be perfectly adapted to
a Classic or ML Log-Gaussian estimator (the growth in F&e body as it is for the head. The images are consequently
is lower). The main advantage comes with the regularizatiomuch noisier than for the brain MRI. Note that these datasets
(MAP estimators) which lower the FA compared to MLwere actually collected in a clinical environment: the brain
estimators. Conversely, ADC is underestimated when noidataset corresponds to a patient with a tumor, and the spinal
increases, which is a consequence of the shrinking effect. Téwd one was acquired to check for possible compressions
ML and MAP Rician estimators suffer less from this shrinking20]. Estimation of the SNR in the brain dataset gives: 12
managing to recover almost the loss in tensor size. (SNR~ 8d B). Estimation of the SNR of the spinal cord dataset
To even more illustrate the shrinking effect, we evaluategiveso = 14 (SNR~ 6dB). Parameters used for the estimation
the percentage of tensor volume lost during the estimatiere: x = 0.05, A = 0.25, d¢ = 1.0 and 100 iterations.
Each of the ML and MAP log-Gaussian, Gaussian and Rician
estimations took about 12 minutes to run on a PC with a

00000000 ; ;
00000000 |38 lectoltstecio|ss i tec?s| Pentum M at 2GHz with 1 Go of memory.
00000000 00)0@@ 0 @0)0@® 0 00)000-0 Figures 5 show a closeup of the splenium region and nearby.
00000002 |00000@020 00000020 (00000070 L . . - .
00000000 |0i000000|00000000|0c0 )00 We clearly see that the missing tensors in a Classic estimation
:“::::: ?8“:';5 ”23:-;5 Hgg:i;; (fig. 5 ¢) that are not positive-definite are not completely
00000000 000020000020 00000 =0 replaced with an ML log-Gaussian estimation (fig. 5 d) due to
(a) (b) (c) (d) degenerate tensors. Using a ML Gaussian estimation (fig. 5 e)
0000009009 00000000 . . . .
8000000 00000000 3 : g:ff: 80 : g;g;ﬁ and the_l\_/IL Rician (fig. 5 1) result_s in a_ﬂeld where_all_tensors
:“::::: g g : ::::: ®00000-0 |0\ 0vose are positive-definite. Below, we investigate quantitatively the
08000000 /00000000 se8e0cel8siezoZ|  effects of these estimators on the tensor field.
000000000000 0000000 00000200 i 3 ;
00000000(00000000| 10000000 K 000soce To evaluate the quality of the tensor fields estimated, we
00000000 (00000000 (00()00coe | |(00oroe computed the mean apparent diffusion coefficient (ADC),
(h) (9) 0] (e) the mean fractional anisotropy (FA) and the mean volume

Fig. 4. 2D slices of 7 different estimations of a noisy synthetic DTI (\_/OL) in 2 distinct reglon§ with different d'ﬁFJS'O.n pr-ope-rt|es.
dataset ¢, = 1.0). (a): The 3D synthetic field(b): The classic estimation First, we chose the ventricles, where the diffusion is high but
(non-displayed ellipsoids correspond to non-positive tens¢c$). The ML

log-Gaussian(d): The ML Gaussian(e): The ML Rician, (f): The MAP 1The authors would like to thank Denis Ducreux, MD, for providing the
log-Gaussian(g): The MAP Gaussianth): The MAP Rician. brain and spinal cord DTI dataset.



isotropic, and second, we chose the corpus callosum (includimgt only smooths isotropic regions like the ventricles without
the splenium and genu), where the diffusion is known to l®Burring the nearby splenium tract, but also replaces non-
restricted by neural fibers, thus exhibiting high FA valuegositive tensors of the ML log-Gaussian estimation by positive
Regions were segmented manually on axial slices. Resutses. Other experiments showed that the same comments
for the 7 estimations are presented in Table V. As expectaapply for the interface between grey and white matter. FA
the ML/Map Rician estimations produce the greatest volumesaps are shown in Fig. 7 first row. However, the effect on
(we found an increase of about 14%), and the highest AX@ie tensor volume, ADC and FA is more difficult to analyze.
values. A good property is that in anisotropic regions like tha isotropic regions like the ventricles, the nearby anisotropic
corpus callosum, the gain of volume does not induce a lossrefjions have a small influence during the regularization pro-
anisotropy (see Table IV right, last column). cess. Thus, tensors on the boundaries are corrupted by small

, , L i anisotropic ones. Consequently, mean tensor volumes in the
Finally, adding the regularization term (fig. 5 g, h and i)

TABLE I
Estimation of a synthetic dataset with 7 methodsSRMSE ARE CALCULATED WITH THE LOG-EUCLIDEAN METRIC. FA AND ADC COLUMNS INDICATE
MEAN VALUES OF THE ESTIMATIONS. THE PERCENTAGE IS THE RELATIVE DIFFERENCE TO THE TRUE MEAN VALUE$FA= 0.39,
ADC= 3.56 10~3mm?s~1). FA INCREASES WITH NOISE USING MAP ESTIMATORS PERMITS TO CANCEL THIS EFFECTCONVERSELY, ADC IS
UNDERESTIMATED WHEN NOT USING THEML/MAP RICIAN ESTIMATORS.

on = 0.5
NPT | Mean Error | Variance | Min Error | Max Error FA ADC (10—3mm?s~T)
Classic 7 ) ) 0.077 ) 0.403 (2.7%) 3.567 (0.1%)
ML log-Gaussian || 0 0.459 0.342 0.077 13.670 | 0.403 (2.7%) 3.567 (0.1%)
ML Gaussian 0 0.439 0.052 0.077 3.389 0.397 (1.2%) 3.534 (-0.8%)
ML Rician 0 0.250 0.007 0.051 0.666 0.402 (2.4%) 3.575 (0.3%)
MAP log-Gaussian 0 0.163 0.005 0.035 0.937 0.393 (0.1%) 3.573 (0.3%)
MAP Gaussian 0 0.141 0.003 0.032 0.374 0.385 (-1.9%) 3.517 (-1.3%)
MAP Rician 0 0.075 0.002 0.011 0.262 0.390 (-0.6%) 3.558 (-0.1%)
on =1.0
NPT | Mean Error | Variance | Min Error | Max Error FA ADC(10 3mm?2sT)
Classic 224 ) o 0.128 o 0.428 (9%) 3.552 (-0.3%)
ML log-Gaussian 0 1.641 8.777 0.128 14.255 0.428 (9%) 3.552 (-0.3%)
ML Gaussian 0 1.086 0.718 0.128 5.413 0.410 (4.5%) 3.427 (-3.8%)
ML Rician 0 0.718 0.064 0.095 2.397 0.412 (5%) 3.58 (0.4%)
MAP log-Gaussian 0 0.584 0.051 0.011 2.032 0.409 (4%) 3.564 (0.1%)
MAP Gaussian 0 0.543 0.034 0.037 1.648 0.369 (-6%) 3.371 (-5.4%)
MAP Rician 0 0.120 0.004 0.017 0.545 0.390 (-0.6%) 3.534 (-0.8%)
onp =1.5
NPT [ Mean Error [ Variance | Min Error | Max Error FA ADC(103mm?s~ 1)
Classic 717 ) o 0.205 o 0.446 (14%) 3.423 (-4%)
ML log-Gaussian 0 3.518 22.921 0.205 14.422 0.446 (14%) 3.423 (-4%)
ML Gaussian 0 1.889 2117 0.205 7.212 0.422 (7.5%) 3.207 (-10%)
ML Rician 0 1.525 0.542 0.261 6.332 0.441 (12%) 3.61 (1.3%)
MAP log-Gaussian 0 0.989 0.140 0.188 3.039 0.425 (8%) 3.434 (-3.6%)
MAP Gaussian 0 0.984 0.134 0.208 2.932 0.366 (-6.7%) 3.107 (-13%)
MAP Rician 0 0.394 0.046 0.033 1.889 0.410 (4.4%) 3.474 (-2.5%)
TABLE Il

lllustration of the shrinking effect. MEAN VOLUMES ARE MEAN TENSOR DETERMINANTS OF EACH ESTIMATION THE PERCENTAGE OF VOLUME LOSS

INCREASES WITH THE NOISE VARIANCE NOTE THAT THE ML RICIAN ESTIMATOR IS CORRECTING FOR THIS EFFECT

on = 0.5
Original Data ML log-Gaussian ML Gaussian ML Rician
Mean volume 1.43 1.41 1.39 1.43
Volume loss NA 1.4% 2.9% 0.0%
op =1.0
Original Data ML log-Gaussian ML Gaussian ML Rician
Mean volume 1.43 1.25 1.15 1.42
Volume loss NA 12% 19.2% 0.7%
on =1.5
Original Data ML log-Gaussian ML Gaussian ML Rician
Mean volume 1.43 1.11 0.81 1.40
Volume loss NA 22% 43% 2%
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Fig. 5. Tensor field estimation of a brain DTI dataset. (a): The Sy image. The other figures are a closeup on the region delimited by the white square.

(b): The DWI corresponding to the encoding gradignt= (1,0, 1). (c): Classic estimation. The color codes for the principal direction of tenseds:

left-right, green: anterior-posteriorblue: inferior.

superior. Missing tensors in the splenium region are non-pos{tye ML log-Gaussian. Some tensors are

that our color scheme imposes to choose an orientation for coloring a glyph, even in case of isotropic tensors. Thus, inside the ventricles where tensors are

definite and are slightly biggefg): MAP log-Gaussian. The regularization term prevents the appearance of non-positive tensors. Note that the boundary
isotropic after regularization (Fig. g, h and

still missing because their eigenvalues are very close to feyoML Gaussian. All tensors remain positive defini(®: ML Rician. All tensors are positive
between the ventricles and the splenium was prese¥@dMAP Gaussian andi): MAP Rician. The three MAP estimators give very close results. Note

i), the same blue color is chosen arbitrarly.
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Fig. 6. Tensor field estimation of a spinal cord dataset. (a)The So image. The other figures are a closeup of the region delimited by the white square.
(b): The DWI corresponding to the encoding gradignt (1,0, 1). (c): Classic estimation. Many tensors are missing in and around the spinakdpréiL
log-Gaussian. Same tensors than with the Classic estimation are miginlL Gaussian. All tensors are positive definite and regions outside the spinal
cord are coherent and show no artificial anisotrgfly. ML Rician. (g): MAP log-Gaussian(h): MAP Gaussian andi): MAP Rician. The spinal tract is
smoothed and boundaries with nearby isotropic regions are preserved.

ventricles with MAP estimators are lower than those withoword dataset. A closeup is made on the top of the spinal
regularization. The same remark applies to the ADC (seerd. The same remarks as for the brain dataset apply: the
Table IV left, second column). Conversely, in regions witiClassic estimation (Fig. 6 c) and the ML log-Gaussian (Fig.
anisotropic tensors, large isotropic neighbors may influen6ed) lead to approximately the same results. Working with
the results, leading to higher volume and ADC (Tab. IV rightylL Gaussian and Rician estimators (Fig. 6 e and f) ensures
first and second columns). Effects on FA maps are shownthmat all tensors remain positive, with the advantage that the
Fig. 7 last row. ML Rician estimator corrects for the shrinking effect: tensor

. L val inside the spinal cord h by about 30%
Figure 6 shows the results of the estimations of the spm‘éﬂ umes inside the spinal cord have grown by abou °
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(f)

Fig. 8. Fractional Anisotropy (FA) of the tensor fields obtained in Fig. 6.
(d) (f) (a): ML log-Gaussian estimation. Outliers (black dots) in the spinal cord are

Fig. 7. Fractional Anisotropy (FA) of the tensor fields obtained in Fig. caused by degenerate tens¢ty: ML Gaussian. One notices no outlie(s):

. ; ot ; ; ; L Rician. Same as previouslyd): Map log-Gaussian(e): Map Gaussian
5. (a): ML log-Gaussian estimation. Outliers (black dots) in the splenium aid - - .
caused by degenerate tens@ty: ML Gaussian. One notices no outlie(s): and(f): Map Rician. With the three MAP estimators, the FA contrast between

ML Rician. Same as previouslyd): Map log-Gaussian(e): Map Gaussian € Spinal cord and around is well enhanced.
and(f): Map Rician. With the three MAP estimators, the FA contrast between
the ventricles and the splenium is well enhanced.

Switching to Gaussian or Rician noise models can largely
improve the quality of the tensor estimation.

compared to the Classic estimation (the spinal cord w¥e now study how the MAP Rician estimator impacts the
manually segmented from the baseline image). We founddg@lity of fiber tracking on these two datasets.
greater growth of tensor volumes in the spinal cord than in
the brain (within the brain, tensors have grown on average Improvement of Tractography
by 10%). This diffe_rence can be explgined by the noise 'evel:Tractography, or fiber tracking, is a process which runs at
the SNR of the spinal cc_)rd (_jataset is the lowest. Effe_cts_gqle end of the DTI processing pipeline. Among the numerous
FA maps are presented in Fig. 8 top row. The regularizatigy,ijaple methods for tracking fibers, we chose a relatively fast
term (F|g. 6 9, h and i) _smooths the field while preserving thg, 4 easy to implement one [21] and show how the tracking
boundaries with the spinal tract. can be improved by our variational estimation combined
With the MAP log-Gaussian estimation, some artificialith regularization. Criteria for stopping the tracking are: a
anisotropic tensors appear: The FA map (Fig. 8 d) preseffiseshold on FA (if FA is too low, the tracking is stopped)
high values outside the spinal cord, and is thus noisier thaAd on the curvature (to forbid unlikely fibers having a high
those obtained with MAP Gaussian and Rician estimators (Figurvature). Prior to the tracking, tensor fields are resampled to
8 e and f). obtain isotropic voxels: in general, the out-plane resolution
This exemplifies the importance of the choice of the noise very low (e.g., the brain dataset here) and interpolating
model: For low quality data, considering a log-Gaussian noilee tensors improves the regularity of the fibers. Resampling
may not be the right choice, even with a MAP estimatioris interpreted as a weighted mean with trilinear coefficients.

TABLE IV
Quantitative comparison of 7 diffusion tensor estimations of a brain DTI datasetFOR EACH ESTIMATION, THE MEAN VOLUME, ADC AND FA WERE
EVALUATED IN THE VENTRICLES, AND THE CORPUS CALLOSUM IN ISOTROPIC REGIONS LIKE THE VENTRICLESONE NOTICES THAT THE TENSOR
VOLUME IS ON AVERAGE 14% (ML RICIAN) OR 10% (MAP RCIAN) LARGER THAN WITH A CLASSIC ESTIMATION. THE ADC SHOWS SLIGHTLY
HIGHER VALUES WITH THE ML RICIAN ESTIMATION (4% GROWTH) AND MAP RICIAN (2% GROWTH) THAN WITH THE CLASSIC ESTIMATION. THE
SAME REMARKS APPLY IN THE CORPUS CALLOSUM BUT IS LESS MARKED

Ventricles Corpus Callosum
Volume | ADC (mm?2s—1) FA Volume | ADC (mm?2s—1) FA
Classic 14.43 6.6310~3 0.26 Classic 0.63 2.6610~3 0.64
ML log-Gaussian 14.31 6.62103 0.25 ML log-Gaussian 0.63 2.66103 0.64
MAP log-Gaussian|| 13.82 6.49103 0.18 | MAP log-Gaussian|| 0.61 2.611073 0.57
ML Gaussian 14.39 6.63103 0.25 ML Gaussian 0.63 2.66103 0.64
MAP Gaussian 14.18 6.5810~3 0.22 MAP Gaussian 0.65 2.6510~7 0.61
ML Rician 16.47 6.87.10~3 0.27 ML Rician 0.65 2.6810~3 0.64
MAP Rician 15.94 6.78103 0.23 MAP Rician 0.67 2.68103 0.62
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Fig. 9. Improvement of fiber reconstruction. A seed region was placed inside the corpus callosum. Results of the fiber reconstruction after a classical
estimation Left), and after the MAP Rician estimatioRight). Fibers are overlapped with a volume rendering of the T1 image.

Such a mean is computed in the logarithmic domain and theases and shows less dispersion. The smoothness of the tensor
mapped back to the tensor space with the matrix exponenti@id leads to more regular and longer fibers: tracts that were
D = eXp(Ef\Llwi log(D;)), wherew; are classical trilinear stopped due to the noise are now fully reconstructed. The FA
weights. We showed in [14] that such an interpolation has gotitteshold used ensures that all fibers belong to white matter,
practical properties in the context of DT-MRI, compared to and do not result from a tracking in CSF or grey matter.
Euclidean interpolation. We tracked the fibers from the tensor

fields obtained after the Classic estimation plus resampling and V. DISCUSSION ANDCONCLUSIONS

the MAP Rician estimator plus resampling. The parametersyy,e presented a new methodology to process DTIs of
used for the tracking are: FA threshold3, maximum angle medium and low quality (typical of clinical applications)
of deviation: 90°. Results of tracking in the brain and thehrough a joint estimation and regularization of the diffusion
spinal cord are shown in Fig. 9, and 10. With the MAP Riciagansor field. In particular, the estimation, which assumes that
estimator, the tracking is qualitatively much smoother in bofpe gata are corrupted by a Rician noise, is achieved through

Fig. 10. Spinal cord fiber tract reconstruction. A region containing the spinal cord was used for the trackirgft: The spinal cord reconstructed after
the Classic estimatiorRight: The same tract after our proposed variational framework. Fibers are overlapped with a slice of the FA map.
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a maximum likelihood strategy adapted to the nature of this general, Eq. [8] cannot be simplified. However, in the
noise. This approach has the advantage to correct for the liase of symmetric matrices, the differential can take a much
induced by the Rician noise in the DWI, and consequentyympler form. We know thalG and L are both symmetric
not to underestimate the true volume of tensors (shrinkimgatrices: In our applicationG is the tensor product of a
effect). Other estimation criteria which make the assumptimector g with itself: G = gg', which is by construction
of a Gaussian noise on the logarithm of the signal and @gmmetric, andL is the matrix logarithm of a diffusion
the signal itself are compared. These estimators are combiteasor, therefore symmetric.

with an anisotropic regularization of the tensor field, so that

transitions between homogeneous fiber tracts are preserdsst. L = RTSR be an eigen decomposition df. S is
To optimize these criteria, we use a Log-Euclidean metric thdiagonal:S = diag(s1, s2, s3). From Eq. [8], we have:
provides a fast and easy to use framework to process tensors.

This tensor computing framework completely overcomes the R R T Tk i1
limitations of the standard Euclidean calculus, and is wel G exp(L) = gz (R S R) G (R S R)
adapted to the processing of diffusion tensors. Results on k=1 ’=0k )

=

. . . . . +oo
synthetic data show that considering a ML estimation adapted oT i ( T) b—io1
to a Rician noise model corrects for the shrinking effect, while R k! Z S'(RGR)S RO
assuming other noise models results in a loss of tensor volume o7
after estimation. Results on real clinical datasets show that - (Orgr™ exp(S)) R (10)

the use of ML estimators can be valuable in clinical studle§ve have 9 exp(L) — RT0 - exp(S)R. Let M be
- RGR '

ihout buing iranaions between diferen ract i the cargRiGE” CxP (S): We denote M. the coeflcient. m)
9 matrix M (i.e. the matrix coefficient stored at roivand

O DT pTecue, it deasel of Lol QLAY W), (1) € (1.2.) o ifusion ensors. From Ex
) . X $ 1S Imp Ebﬁ we can express the coefﬁue(’it m) of M as:

outliers may persist even with the regularization. The M

Rician estimator turns out to be the best choice in that case.

“+o0 k—1

Finally, the promising improvement of the fiber reconstruction [M](z m) = l' [SiRGRTSk—i—1] )
of these data shows that even clinical DTIs can be used for k=1 k! i=0 (tm)
tractography. . )

Previously, diffusion tensor estimation was performed apa@lS S is diagonal, we can further write:
from tensor regularization. Recently, Basu et al. [10] regu- too . k1
larized independently each DWI with a Rician noise removal  |pM m) = 1 ZS [RGRT} gh=i=1
approach, and estimated diffusion tensors afterwards. In this ’ 1 k! i (tm
paper, we propose to do both together, i.e. to regularize the +oo 4 k-l
tensor field while estimating it from DWI with a Rician noise = {RGRT} — ) sjshitt
model. We believe that using such an approach allows to &m) 3 e

capture more information than considering each DWI individ-
ually. However, one should compare in practice the properti W’
of DWI processing versus tensor processing, e.g. does D
processing preserve FA, trace, and tensor volumes?

we only need to express the series
ORI siskr iU sy # 5,0, We have:

k—1 +o00 k—1 7
. . . - 1 i ki 1 b Sy
In the future, the questions of validation and reproducibility Z o Z sish=i=1 = i 1 Z (
have to be answered. We could think of repeating scans of 0 Pl —o \Sm
the same patient in various orientations in the scanner, and 400
. ; X . B 1 11— (sl/sm)
in various scanners, for this purpose. One also could think of = Tm T
using phantoms and histological data as in [22]. el = 51/5m
Finally, the observed qualitative impact on the tracking 1 =9 " P
could be quantified, using for instance a dispersion measure P k:' mT
of the fibers. m = mn
_ exp(sm) — exp(sl)
APPENDIX| Sm = 81
PRACTICAL IMPLEMENTATION OF THE MATRIX If sl =s,, = s, then the series can be even more simplified:
EXPONENTIAL DIRECTIONAL DERIVATIVE
In Sec. Ill, the directional derivative of th fiak~ 1 S = 1
n Sec. e directional derivative of the exponen |a 2N it 2N 2 (kb1
da exp(L) is used. For general matrices, one has to compugtey /! ; kzzj k! ; kzz:l k! ( )
the series [14]: £oo e oo g
X1 —— - k-1 Z k!
i 1— k:l k=
Ogexp(L) = — o ZL GL (8)

k=1"" i=0 = exp(s).



Finally, one can access the coefficiéhtrn) of M as:

_ T efm — el .
My = [RERT] S it
- [RGRT] et s = s (11)

From Eg. [11], and Eq. [9], we deduce the directional deriva-

tive of the matrix exponentiadg exp(L).

(14]

APPENDIXII
PRACTICAL IMPLEMENTATION OF «(x)

In Sec. IlI-A.3, the coefficienty(z) = Ij)/Io(x) is needed

to be able to compute the gradients of the ML and MAE&;

estimators.a. takes its values between 0 and 1. A practical

implementation ofx(z) is given in the following.

The 0 order modified Bessel function of the first kind
Iy(z) is expressed as followsIy(z) = fjf) %.
Consequentlya(x) can be written as:
+o0 122)"
ae) = 10@) _ & Lk=o % (12)
Io(l‘) 2 4o (%aﬁ)k
k=0 k!2

L 21
Unfortunately, Eq. [12] cannot be simplified. However, fo['
small values ofz (typically z < 10) the series converges very[22]
quickly, and in practice 10 terms of the series are sufficient for

an accuracy oft.10~12, which is by far enough. For higher

values ofz, one may experience numerical stability issues. To
prevent this, one may use the following Taylor expansion of

a(x) valid for z > 10:

a(z)

(1]
(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]

~1.0-05z"" —0.125072 — 0.1252 "% — 0.1953125z*
—0.40625z > — 1.0478515625z ¢ — 3.21875z "
—11.46646118164z % — 46.478515625z°
—211.276149749755z ' — 1064.67822265625z "
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