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Abstract. Modeling and understanding the degree of correlations be-
tween brain structures is a fundamental problem in neuroscience. Cor-
related anatomic measures may arise from common genetic and trophic
influences across brain regions, and may be overlooked if structures are
modeled independently. Here, we propose a new method to analyze struc-
tural brain correlations based on a large set of cortical sulcal landmarks
(72 per brain) delineated in 98 healthy subjects (age: 51.8 +/-6.2 years).
First, we evaluate the correlation between any pair of sulcal positions via
the total covariance matrix, a 6 × 6 symmetric positive-definite matrix.
Second, we perform canonical correlation analysis to measure the degree
of correlations between any two positions, and derive from it a p-value
map for significance testing. We present maps of both local and long-
range correlations, including maps of covariation between corresponding
structures in opposite hemispheres, which show different degrees of hemi-
spheric specialization.

1 Introduction

Understanding structural correlations between brain structures is a challenging
problem in neuroscience. Most computational anatomic studies of development
and disease study deficits or changes by modeling individual brain structures
independently, or create voxel-based maps of group anatomical differences. This
reveals factors (e.g., age or disease) that influence each brain structure individ-
ually, but may miss important supra-regional correlations, such as brain regions
that develop or fail to develop together, or correlations between structures in
opposite brain hemispheres. Mechelli et al. [1] discovered (1) spatial correlations
between corresponding regions in opposite brain hemispheres, except in the vi-
sual cortex, and (2) some negative correlations between functionally distinct
regions in the same hemisphere. Neuroscientists are interested in identifying the
reasons of such long-range brain correlations, and what causes them at a ge-
netic and environmental level. Despite many hypotheses, few tools allow such
long-range correlations to be measured, and thus studied empirically.

An efficient, parsimonious model of the complex patterns of brain correlations
should help to identify factors that influence them. Inter-hemispheric correlations



(i.e., correlations between point in anatomically homologous structures in both
hemispheres) are of interest as they shed light on how their functions become
specialized or depend on each other. Furthermore, information on statistical
correlations could reduce the difficulty of automated segmentation and labeling
of brain structures. Accessing anatomical correlations also opens up a broad
range of studies and comparing groups (e.g., disease versus normal) and a new
path to generate hypotheses regarding patterns of brain growth.

First-order models (mean anatomical templates), and second-order models
(variability models) [2] of the brain have previously been built to capture the 3D
variations of each anatomical point independently around a mean anatomy, af-
ter registration of multi-subject anatomical images to a common reference space.
These variations are often represented by covariance matrices, or variability ten-
sors, as variations may not be the same in all directions. Here, we go one step
further and model the joint variability of all pairs of anatomical points, to see
how the displacement of any point in a specific subject w.r.t. a reference anatomy
covaries with the displacement of neighboring or distant point.

In Section 2, we introduce the main tool of our analysis: the total covariance
matrix (TCM) between two vector variates, and we recall how to extract from
it some matrix and scalar measures to test if these two variables are correlated.
In Section 3, we experiment this framework on TCMs defined from anatomical
landmarks (sulcal curves). We start by studying the TCMs of 6 sulcal positions to
the rest of the brain, which eventually lead us to analyze the TCMs of all sulcal
positions of one hemisphere with their homologous positions in the opposite
hemisphere.

2 The Total Covariance Matrix

2.1 Definition

Let X = {Xi}i=1..N and Y = {Yi}i=1..N be the sets of N measures of two
random vectors whose dimensionality is d. Computing the correlation between X
and Y requires to know not only the variability of each vector (i.e., its covariance
matrix), but also their cross-covariance. We therefore define the TCM of X and
Y that contains this information as Λ(X, Y ):

Λ(X, Y ) =
1

N − 1

N∑
i=1

(
Xi − X̄
Yi − Ȳ

) (
Xi − X̄
Yi − Ȳ

)>
, (1)

where X̄ = (
∑N

1 Xi)/N and Ȳ = (
∑N

1 Yi)/N . We denote by ΣXX (resp. ΣY Y )
the covariance matrix of X (resp. Y ): ΣXX = E[(X − X̄)(X − X̄)>]. The cross-
covariance of X and Y is given by: ΣXY = E[(X − X̄)(Y − Ȳ )>]. By further
developing Eq. 1, one can write Λ(X, Y ) in a simpler way:

Λ(X, Y ) =
(

ΣXX ΣXY

ΣY X ΣY Y

)
. (2)



Λ is a 2d×2d matrix. It has the same properties as a classical covariance matrix:
it is symmetric and positive definite. Then, we may also call Λ a tensor. In the
3D case, Λ is a 6× 6 tensor.

2.2 Analysis of Total Covariance Matrices

In its current form, it is difficult to appreciate the meaning of the TCM and it
cannot be easily represented (it is an ellipsoid in 6D). However, several matrix,
vector and scalar measures may be derived from it. Here, we will focus on quan-
tifying the correlation of X and Y through the Canonical Correlation Analysis.

Canonical Correlation Analysis (CCA): CCA [3] refers to the method
of finding vector bases that maximize the correlation between two vector vari-
ates, and is the generalization of the correlation coefficient to multivariate data.
In the scalar case, we define the correlation coefficient between x and y as:
ρ = σxy/

√
σxx.σyy, where σxx (resp. σyy) is the variance of x (resp. y), and

σxy is the cross-variance of x and y. Similarly, the correlation matrix Γ in the
multivariate case is defined as:

Γ (X, Y ) = Σ
−1/2
XX ΣXY Σ

−1/2
Y Y . (3)

We have the property that Γ (Y,X) = Γ (X, Y )>. Taking the mean trace of the
Γ gives us an average correlation coefficient ρ̄. The range of ρ̄ lies between −1
(anti-correlation) and 1 (correlation). 0 means absence of correlation (e.g. if X
and Y are independent). However, sometimes an average correlation coefficient
in multivariate statistics may not reveal a potential correlation. This is the case,
for instance, when only one component of X is correlated with one component
of Y . Taking the average correlation coefficient may discard this relationship.
To distinguish between correlations along potentially different axes, one needs
to run a canonical correlation analysis, which is nothing else than decomposing
Γ in singular values: Γ = U.S.V >, where U and V are orthogonal matrices of
correlation vectors, and S is a diagonal matrix of correlation coefficients ρi.

Significance Testing: To test the statistical significance of correlations, [4]
proposed to test the dimensionality of the correlation matrix. If its rank is zero,
then there is no correlation (ρi = 0,∀i). If we reject this hypothesis, then the rank
is at least one, which means that at least two directions in space are correlated.
We use the Bartlett-Lawley test [4] with the null hypothesis: H0 : rank(Γ ) = 0:
L(Γ ) = −

(
N − d + 1

2

) ∑d
j=1 log

(
1− ρ2

j

)
. L’s distribution is chi-squared under

the Gaussian assumption on X and Y with d2 degrees of freedom. We can con-
sequently derive a p-value for testing the significance of correlations.

3 Experiments

We used a dataset of sulcal landmark curves manually delineated in 98 subjects
by expert anatomists, according to a precise protocol with established reliability



within and across raters [2]. The dataset consists of 47 men and 53 women (age:
51.8 +/- 6.2 years), all normal controls. The lines are traced in 3D on the cortical
surface. We included the maximal subset of all curves that consistently appear
in all normal subjects, 72 in total (36 per hemisphere). MR images used for
delineations were first linearly aligned to the ICBM stereotactic space [5].

We used the methodology outlined in [2] to determine the mean curve for each
sulcal line by modeling samples as deformations of a single average curve. Mean
curve computation involves filtering each sample by B-spline parameterization,
minimization of total variance, and sulcal matching by dynamic programming.

In the following, we investigate the potential correlations between locations
on different sulci. First, we study the correlation between particular sulcal lines
and other cortical points not belonging to the same structure: we call this study
sulcal correlation. Second, we assess inter-hemispheric correlations between cor-
responding anatomical points in the two hemispheres.

3.1 Sulcal Correlation for 6 Specific Positions

Methodology: Obviously, this study is a combinatorial challenge. We sampled
the 72 mean sulci with approximately 1000 points (average of 14 points per sul-
cus), which gives a total of 499500 pairs of points to process. To limit the number
of pairs investigated, we focused on two major sulcal lines: the Central Sulcus
(CS) and the Inferior Temporal Sulcus (ITS). These sulci lie in different lobes,
develop at different times during gyrogenesis (CS developing earlier) and are dis-
tant in terms of fiber and functional connectivity, so they are good candidates for
assessing inter-structure correlation, as little correlation is expected a priori. For
each of these lines, three reference positions are picked: the beginning, middle,
and end point. First, for each of the three reference positions, we extract the set
of corresponding sulcal positions in each of the 98 subjects. Second, we compute
the TCM of Eq. 2 with each of the remaining 999 average sulcal positions. We
end up with a sparse field of TCMs. However, we would be more comfortable
with a dense field of TCMs, as we could map those onto an average cortex to
facilitate the visual interpretation of the results. We use Log-Euclidean (LE)
metrics [6] and the methodology exposed in [2] (combination of a radial basis
function interpolation with an harmonic partial differential equation) for extrap-
olating TCMs on a mean cortical surface. This type of interpolation was shown
to preserve all the features of a covariance matrix, and has desirable properties
like absence of swelling effect, and a smooth interpolation of the eigenvectors.
Moreover, leave-one-out tests showed that this type of interpolation is able to
predict missing data in regions locally correlated. This interpolation is conse-
quently well adapted for TCMs. The correlation matrix and the p-value derived
from the CCA can be computed at any point of this mean cortex. Notice that
even if we only focused only on the p-value defined in Sec. 2.2, other measures
are potentially interesting, such as the principal vectors of correlation which are
currently under investigation. This is why we need to extrapolate the full TCMs
and not just the p-value.



The main problem for the curve matching procedure proposed in [2] is the aper-
ture problem: correspondences in the direction tangent to the curve are almost
impossible to retrieve without additional expert knowledge. To keep our results
independent from this, we need to cancel the contribution in this tangential di-
rection. The method proposed in this paper is the following. We define at each
position of the mean sulci the Frenet frame, which gives us the plane orthogonal
to the curve. Then, we project the sulcal positions onto this plane, which zeroes
out the tangential component. Note that we lose one degree of freedom in the
dimensionality of the data: vectors no longer have three degrees of freedom but
two. This must be accounted for in the statistical tests of Sec. 2.2.
Results: p-value derived from the CCA are shown in Fig. 1 (the significance
level was set to 0.0001 to correct for multiple comparisons). A large area around
the reference points shows high p-values: as expected, points that are anatomi-
cally close to the reference do have a correlated distribution among individuals.
More interestingly, regions with high p-values most often include the structures’
opposite hemisphere counterparts, but not always: the first (upper) and middle
CS positions are highly correlated (Fig. 1 top panel, 1st and 2nd row), while
the most inferior position is not, most likely because its variability across sub-
jects is extremely low (Fig. 1 top panel, 3rd row). In right-handed subjects, we
know that some measures of motor skill correlate with gray matter volume posi-
tively in the left CS, but negatively in the right CS [7]. Logically, such functional
specializations may promote correlations between the two hemispheres in these
regions of the CS. The posterior part of the ITS shows lowest correlation with
its opposite hemisphere counterpart. Unlike the bottom of the CS, the posterior
tip of the ITS is highly variable and asymmetric in structure and function - it is
specialized for understanding the semantics of language in the left hemisphere,
but for understanding prosodic aspects of language in the right hemisphere. This
may suggest partially independent developmental programs for these function-
ally specialized structures. The long-range correlation between the back of the
ITS and the left and right intra-parietal sulci is of interest, as the planum tem-
porale and planum parietale are the two distinct areas most widely studied in
neuroscience for their very high hemispheric asymmetry.
Nevertheless, it is intriguing that 5 of the 6 sulcal positions studied reflect a
correlation with their symmetric counterpart in the opposite hemisphere. In the
following, we test if this observation can be generalized to all sulcal positions.

3.2 Inter-Hemispheric Correlation Analysis

In this study, we specifically target the correlation between all points of one
hemisphere and their homologous region in the other hemisphere. To do so,
we first map all sulci of the right hemisphere onto the left. Then, we define a
global mean, i.e. an average sulcal curve computed from the 98 left and right
samples. Global means provide a common reference curve to compare left and
right positions. Correspondences between global means and left and right average
curves are computed using the same framework as for the samples. For any given
position on the global mean, we obtain corresponding points on left and right



Fig. 1. Correlation Maps between Specific Reference Points and Other Brain
Regions. Top panel: the Central Sulcus. A white arrow in each row indicates a
reference landmark; correlations with the reference landmark are plotted. Correlations
for 3 reference landmarks on the CS are shown: the first (top row), the middle (second
row), and the last, i.e. most inferior, position (third row) on the sulcal trace. Cor-
responding regions in the opposite hemisphere are highly correlated for the top and
middle points (marked A and B). The lower end of the sulcus, however, exhibits low
correlation with its symmetric contralateral counterpart. Bottom panel: The Infe-
rior Temporal Sulcus. The same 3 positions as for the CS are analyzed. The first (top
row) and middle (second row) positions are symmetrically correlated (marks A and B).
The last position (third row) correlates less with its opposite hemisphere counterpart,
than with the intra-parietal sulci (marked B and C).



average curves, giving in turn correspondences between left and right sulcal
positions in the 98 subjects (the choice of the left hemisphere is arbitrary, and
we obtained the same results when using the right hemisphere instead). Finally,
we compute the TCM of Eq. 2 between left and right positions. As for the sulcal
correlation study, we extrapolate this sparse field of TCMs to an average left
hemisphere surface, and cancel the tangential component which is uncertain.
Then, we extract p-values with the CCA and map those on the surface (Fig. 2).

As observed previously on a few specific sulcal positions, most points are
correlated with their symmetric counterparts. Regions with lowest correlations
include Broca’s and Wernicke’s areas, which were already shown to exhibit the
greatest asymmetries in variability [2]. These cortical regions are specialized for
language production and comprehension respectively, but most right-handers
show a greater reliance on the left hemisphere for language processing, and the
volumes of these regions are highly asymmetric between hemispheres.

4 Conclusions and Perspectives

In this paper, we represent the cross-covariance between one point and any other
point of the brain by a total covariance matrix describing not only the vari-
ability of the two points, but also their cross-covariance. Canonical correlation
analysis allows us to test for the significance of these correlations. Moreover,
as TCMs have the same properties as classical covariance matrices (symmetric
and positive-definite), we apply Log-Euclidean extrapolation to obtain a dense
representation of initially sparsely-defined measures.

We apply this method to study sulcal and hemispheric correlations. We
showed that the central sulcus was highly correlated with its symmetric, except
in its inferior part which is not highly variable. For the central sulcus, where mo-
tor skill is correlated with volume and is also lateralized, a strong hand preference
for motor skills is likely to promote negative correlations between hemispheres

Fig. 2. Hemispheric correlations. Hot colors (red) correspond to p-value≤0.0001.
Most of the cortex shows anatomical variantions that are correlated with their counter-
parts in the opposite hemisphere. Un-correlated regions include Wernicke’s (marked A)
and Broca’s areas (marked B), which, in most subjects, are known to be more heavily
specialized for language processing in the left hemisphere.



for volumes in opposite regions. The Inferior Temporal Sulcus shows similar in-
triguing correlations, and its low correlation with its opposite counterpart may
reflect their different developmental programs and functions.

Corresponding brain regions in each hemisphere are highly correlated, ex-
cept for regions including Wernicke’s and Broca’s areas, which are known to be
functionally specialized in one hemisphere. Any longer-range correlation - such
as that found between the intra-parietal sulci and inferior temporal sulci - is in
itself an interesting neuroscience finding. The planum parietale and temporale
are distinct highly asymmetric systems in each of these regions, and the long-
range correlations may reflect common factors driving programmed asymmetries
for both regions.

Future work includes a concrete modeling of these correlations. We could
store, for each point of the brain, a minimal set of correlated positions, such as
the local neighborhood and the set of distant most correlated points. This in-
formation could be used as a prior to guide inter-subject non-linear registration
algorithms. Furthermore, a detailed study of all possible correlations between
cortical landmarks could help understand the effects of genes on brain matura-
tion. Validations of long-range correlations could be made using other sources
of information, such as functional MRI: Are jointly activated regions, or causal
models, for a given task related to anatomical correlations as well as connectivity
(fiber bundle)? All this information, if it converges to the same outcome, could
contribute to understanding the functional organization of the brain. Finally,
these results should be compared with those of other methods, such as surface-
based versus volumetric registration algorithms; this comparison is is currently
underway for generating second-order models of brain variability [8].
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