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Abstract

In this article, we describe the latest developments of
the minimally invasive hepatic surgery simulator pro-
totype developed at INRIA. A key problem with such a
simulator is the physical modeling of soft tissues. We
propose a new deformable model based on mon-linear
elasticity and the finite element method. This model is
valid for large displacements, which means in particu-
lar that it is invariant with respect to rotations. This
property improves the realism of the deformations and
solves the problems related to the shortcomings of linear
elasticity, which is only valid for small displacements.
We also address the problem of anisotropic behavior,
and volume variations by adding to our model incom-
pressibility constraints. Finally, we demonstrate the
relevance of this approach for the real-time simulation
of laparoscopic surgical gestures on the liver.

1 Introduction

A major and recent evolution in abdominal surgery
has been the development of laparoscopic surgery. In
this type of surgery, abdominal operations such as he-
patic resection are performed through small incisions.
A video camera and special surgical tools are intro-
duced into the abdomen, allowing the surgeon to per-
form a procedure less invasive. A drawback of this
technique lies essentially in the need for more complex
gestures and in the loss of direct visual and tactile in-
formation. Therefore the surgeon needs to learn and
adapt himself to this new type of surgery and in par-
ticular to a new type of hand-eye coordination. In this
context, surgical simulation systems could be of great
help in the training process of surgeons.

Among the several key problems in the development
of a surgical simulator [10], the geometrical and phys-
ical representation of human organs remain the most
important. The deformable model must be at the same
time very realistic (both visually and physically) and
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very efficient to allow real-time deformations. Sev-
eral methods have been proposed: spring-mass mod-
els [3, 9], free form deformations [1], linear elasticity
with finite volume method [8] or various finite element
methods [6, 7, 12, 4].

In this article we propose a new real-time de-
formable model based on non-linear elasticity and a fi-
nite element method. We first introduce the linear elas-
ticity theory and its implementation through the finite
element method, and we then highlight its shortcom-
ings when the "small displacement" hypothesis does
not hold. Then we focus on our implementation of St
Venant-Kirchhoff elasticity and incompressibility con-
straints.

2 Shortcomings of the linear

elasticity model

Linear elasticity is often used for the modeling of de-
formable materials, mainly because the equations re-
main quite simple and the computation time can be
optimized.

The physical behavior of soft tissue may be consid-
ered as linear elastic if its displacement and deforma-
tion remain small [11] (typically less than 10% of the
mesh size). We represent the deformation of a volu-
metric model from its rest shape Mipnjtia With a dis-
placement vector U(z,y, z) for (z,y,2) € Minitial and
we write Mdeformed = Minitial + U(l', Y, Z)

From this displacement vector, we define the linearized
Green-St Venant strain tensor (3 x 3 symmetric matrix)
E; and its principal invariants [; and Is:

1
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The linear elastic energy Wrineqr, for homogeneous
isotropic materials, is defined by the following formula

(see [5]):

WLinear = (tT‘El)Q + 12 t'l“l’jl2 (2)
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where )\ and p are the Lamé coefficients characterizing
the material stiffness.

Equation 2, known as Hooke’s law, shows that the
elastic energy of a deformable object is a quadratic
function of the displacement vector.

2.1 Finite element method

Finite element method is a classical way to solve con-
tinuum mechanics equations. It is a mathematical
framework to discretize a continuous variational prob-
lem [13]. We chose to use P; finite elements where the
elementary volume is a tetrahedron with a node de-
fined at each vertex. At each point M(z,y, z) inside
tetrahedron T;, the displacement vector is expressed as
a function of the displacements Uy of vertices P;. For
P, finite elements, interpolation functions Ay are lin-
ear ({Ax;k =0,...,3} are the barycentric coordinates
of M in the tetrahedron):
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where x stands for the cross product between two vec-
tors, and V(T;) is the volume of the tetrahedron.

Using this equation for the displacement vector U
leads to the finite element formulation of linear elastic
energy in the tetrahedron T; [7]:

3
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where [Bﬁ] is the tetrahedron contribution to the stiff-
ness tensor of the edge (P;,Py) (or of the vertex P;
it j =k), {e;,k =0, ..,3} are the shape vectors of the
tetrahedron and @ stands for the tensor product of two
vectors.

Finally, to obtain the force Fg‘i applied by tetrahe-
dron T; on the vertex P,, we derive the elastic energy
with respect to the vertex displacement Up:

3
Fli =2 [BYU;. (4)
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We have been using this linear elasticity formula-
tion for several years through two deformable mod-
els, the pre-computed model [6] and the tensor-
mass model [7]. Furthermore, it can be extended to

anisotropic linear elasticity [12], which allows to model
fiber-reinforced materials, very common within biolog-
ical tissues (tendons, muscles, ...), or other anatomical
structures like blood vessels.

2.2 The problem of rotational invari-
ance

The main limitation of the linear model is that it is
not invariant with respect to rotations. When the ob-
ject undergoes a rotation, the elastic energy increases,
leading to a variation of the volume (see figure 2). In
the case of a global rotation of the object, we could
solve the problem with a specific change of the refer-
ence frame.

Figure 2: Global rotation of the linear elastic model (wire-
frame)

(c)

Figure 3: Successive deformations of a linear elastic cylin-
der. (a) and (b): side view. (c): top view

But this solution proves itself to be ineffective when
only one part of the object undergoes a rotation (which
is the case in general). This case is presented by the
cylinder of figure 3: the bottom face is fixed and a
force is applied to the central top vertex. Arrows show
the trajectory of some vertices, which are constrained
by the linear model to move along straight lines. This
results in the distortion of the mesh. Furthermore,
this abnormal deformation is the same in all directions
since the object only deforms itself in the rotation plane
(figure 3(c)).

This unrealistic behaviour of the linear elastic model
for large displacements led us to consider different
models of elasticity.

3 St Venant-Kirchhoff elasticity

A model of elasticity is considered as a large displace-
ment model if it derives from a strain tensor which



is a quadratic function of the deformation gradient.
Most common tensors are the left and right Cauchy-
Green strain tensors (respectively B = V¢V¢! and
C = V¢'Vo, ¢ being the deformation function).

The St Venant-Kirchhoff model is a generalization of
the linear model for large displacements, and is a par-
ticular case of hyperelastic materials. The basic energy
equation is the same (equation 2), but now E stands
for the complete Green-St Venant strain tensor:

E:%(C’—I):%(VU+VUt+VUtVU). (5)
Elastic energy, which was a quadratic function of VU
in the linear case, is now a polynomial of order four
with respect to VU.

In [12], we have generalized linear elasticity to mate-
rials having a different behavior in one given direction.
These materials, called "transversally isotropic" ma-
terials, can also be modeled with St Venant-Kirchhoff
elasticity by adding to the isotropic elastic energy, an
anisotropic contribution which penalizes the material
stretch in the direction given by unit vector ag:

L
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where A" and pu” are the Lamé constants along the
direction ag.

WTransiiso =W+ (

3.1 Finite element modeling

With the notations introduced in section 2.1, we ex-
press the St Venant-Kirchhoff elastic model with finite
element theory as:

W(T ZUt Bl U+ (Uschy) (UL
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where the terms B’ C;I}ll, and DY called stiffness

gk ]klm’
parameters, are given by:
. Bjk is a (3x3) symmetric matrix:
Bl =% (a; @ ai) + 4 [(ar © o) + (j.c) Ids]
+ (252 4 b - 1) (a0 @ a0) @ © k) (@0 @ a),

o C;l,;"l is a vector:
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The force applied at each vertex inside a tetrahedron
is derived from the elastic energy W(T;):
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The first term of the elastic force (F7(T;)) corresponds
to the linear elastic case presented in section 2.1. In
the remainder, we deal with the generalization of the
tensor-mass model to large displacements.

3.2 Non-linear Tensor-Mass Model

The main idea of the tensor-mass model is to split, for
each tetrahedron, the force applied at a vertex in two
parts: a force created by the vertex displacement and
forces produced by the displacements of its neighbours:

F{(T,) = [B);]1U, + Y _[B,/]U;. (9)

J#p
This way we can define for each tetrahedron a set of lo-
cal stiffness tensors for vertices ({Bpp ;p=0,..,3})

and for edges ({Bp]- D, J +3;p # j}). By do-
ing this for every tetrahedron, we can accumulate on
vertices and edges of the mesh the corresponding con-
tributions to the global stiffness tensors:

Byp= > By By= Y BE.
TiEN(V,) T;EN(Ey; )
These stiffness tensors are computed when creating
the mesh and are stored for each vertex and edge of
the mesh.

The same principle can be applied to the quadratic
term (F5(T;) of equation 8) and the cubic term
(FE(T;)). The former brings stiffness vectors for ver-
tices, edges, and triangles, and the latter brings stiff-
ness scalars for vertices, edges, triangles, and tetra-
hedra.

Given a tetrahedral mesh of a solid —in our case
an anatomical structure— we build a data structure
incorporating the notion of vertices, edges, triangles,
and tetrahedra, with all the necessary neighbours. For
each vertex, we store its current position P,, its rest
position P? »» and its stiffness data. For each edge, we
store stlffness data. Finally for each tetrahedron, we
store the Lamé coefficients A and u, the four shape
vectors ay, and the stiffness data.

During the simulation, we compute forces for each
vertex, edge, triangle, and tetrahedron, and we use a



Newtonian differential equation to update the vertex
ositions:
P P, dP;
g T g T

(11)

This equation is related to the differential equations of
continuum mechanics [2]:

MU + CU + F(U) =R. (12)

Following finite element theory, the mass M and damp-
ing C matrices are sparse matrices which are related
to the stored physical properties of each tetrahedron.
In our case, we consider that M and C are diagonal
matrices, i.e., that mass and damping effects are con-
centrated at vertices. This simplification called mass-
lumping decouples the motion of all nodes and there-
fore allows us to write equation 12 as the set of inde-
pendent differential equations for each vertex.
Furthermore, we choose an explicit integration
scheme where the elastic force is estimated at time ¢ in
order to compute the vertex position at time ¢t + 1:

(2
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One of the basic tasks in surgery simulation consists in
cutting soft tissue. With our deformable model, this
task can be achieved efficiently. We simulate the ac-
tion of an electric scalpel on soft tissue by successively
removing tetrahedra at places where the instrument is
in contact with the anatomical model.

When removing a tetrahedron, 280 floating num-
bers update operations are performed to suppress the
tetrahedron contributions to the stiffness data of the
surrounding vertices, edges, and triangles. By locally
updating stiffness data, the tissue has exactly the same
properties as if we had removed the corresponding
tetrahedron at its rest position. Because of the volu-
metric continuity of finite element modeling, the tissue
deformation remains realistic during the cutting.

4 Incompressibility constraint

Living tissue, which is essentially made of water, is
nearly incompressible. This property is difficult to
model and leads in most cases to instability problems.
This is the case with the St Venant-Kirchhoff model:
the material remains incompressible when the Lamé
constant A tends towards infinity. Taking a large value
for A would force us to decrease the time step and there-
fore to increase the computation time. Another reason
to add an external incompressibility constraint to our
model is related to the model itself: the main advan-
tage of the St Venant-Kirchhoff model is to use the

strain tensor E which is invariant with respect to rota-
tions. But it is also invariant with respect to symme-
tries, which could lead to the reversal of some tetrahe-
dra under strong constraints.

P
We choose to penalize vol- \F
ume variation by applying to
each vertex of the tetrahedron a
force directed along the normal
of the opposite face N, (see fig-
ure on the right), the norm of the
force being the square of the rel-

ative volume variation: Figure 4:
) V-V, 2 Penalization. of. the
chomp 7 N,. volume variation

These forces act as a pressure increase inside the
tetrahedron. This method is closely related to La-
grange multipliers, which are often used to solve prob-
lem of energy minimization under constraints.

5 Results

In the first experiment, we wish to highlight the con-
tributions of our new deformable model in the case of
partial rotations. Figure 5 shows the same experience
as the one presented for linear elasticity (section 2.2,
figure 3). On the left we can see that the cylinder ver-
tices can now follow trajectories different from straight
lines (figure 5(a)), leading to much more realistic de-
formations than in the linear (wire-frame) case (figures
5(b) and 5(c)).
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Figure 5: Non-linear (solid rendering) v. linear model

(wireframe)

The second example presents the differences be-
tween isotropic and anisotropic materials. The three
cylinders of figure 6 have their top and bottom faces
fixed, and are submited to the same forces. While the
isotropic model on the left undergoes a "snake-like"
deformation, the last two, which are anisotropic along
their height, stiffen in order to minimize their stretch in
the anisotropic direction. The rightmost model, being
twice as stiff as the other in the anisotropic direction,



starts to squeeze in the plane of isotropy because it can
not stretch anymore.

)

Figure 6: Deformation of tubular structures with non-
linear transversally isotropic elasticity.

In the third example (figure 7), we apply a force to
the right lobe of the liver (the liver is fixed in a region
near the center of its back side, and Lamé constants
are: A = 4.10%kg/cm? and p = 10*kg/cm?). Using the
linear model, the right part of the liver undergoes a
large (and unrealistic) volume increase, whereas with
non-linear elasticity, the right lobe is able to partially
rotate, while undergoing a much more realistic defor-
mation.

Figure 7: Linear (wireframe), non-linear (solid) liver mod-
els, and rest shape (bottom)

Adding the incompressibility constraint on the same
examples decreases the volume variation even more
(see table 1), and also stabilizes the behaviour of the
deformable models in strongly constrained areas.

Volume Non
. . . Non )
variations Linear ) linear
linear .
(%) incomp.
Cylinder
left 7 0.3 0.2
middle 28 1 0.5
right 63 2 1
Liver 9 1.5 0.7

Table 1: Volume variation results. For the cylinder: left,
middle and right stand for the different deformations of
figures 3 and 5(a)

The last example is the simulation of a typical la-
paroscopic surgical gesture on the liver. One tool is

pulling the edge of the liver sideways while a bipolar
cautery device cuts it. During the cutting, the surgeon
pulls away the part of the liver he wants to remove.
This piece of liver undergoes large displacements and
the deformation appears fairly realistic with this new
non-linear deformable model (figure 8).

Obviously, the computation time of this model is
larger than for the linear model because the force equa-
tion is much more complex (equation 8). With our cur-
rent implementation, simulation frequency is five times
slower than with the linear model. Nevertheless, with
this non-linear model, we can reach a frequency update
of 25 Hz on meshes made of about 2000 tetrahedra (on
a PC Pentium PIIT 500M Hz). This is sufficient to
reach visual real-time with quite complex objects, and
even to provide a realistic haptic feedback using force
extrapolation as described in [12].

6 Optimization of non-linear de-
formations

We have shown in this article that non-linear elastic-
ity allows to simulate much more realistic deformations
than linear elasticity as soon as the model undergoes
large displacements. However, non-linear elasticity is
more computationally expensive than linear elastic-
ity. Since, non-linear elastic forces are equal to lin-
ear elastic forces as the maximum vertex displacement
decreases to zero, we propose to use non-linear elastic-
ity only at parts of the mesh where displacements are
larger than a given threshold, the remaining part using
linear elasticity.

Figure 9 shows a deformation computed with this
optimization (same experiment as in figure 7). The
threshold is set to 2 cm while the liver mesh is about
30 cm long. The points drawn on the surface identify
vertices using non-linear elasticity. With this method,
we reach an update frequency of 20 Hz instead of 8 Hz
with a fully non-linear model.

Figure 9: Adaptative non-linear model deformation com-
pared with its rest position (wire-frame)

The diagram below shows the update frequencies
reached for several value of the threshold.



Figure 8: Simulation of laparoscopic liver surgery
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For the simulation example of figure 8, this optimiza-
tion allows to reach update frequencies between 50 and
80 Hz, depending on the ratio of points using non-linear
elasticity. The minimal frequency of 50 Hz is reached
at the end of the simulation, when all vertices of the
resected part of the liver are using large displacement
elasticity (figure 10).

Figure 10: Surgery simulation using adaptative model

7 Conclusion

We have proposed in this article a new de-
formable model based on large displacement, elasticity,
anisotropic behavior, finite element method, and a dy-
namic explicit integration scheme. It solves the prob-
lem of rotational invariance of deformations and takes
into account the incompressibility properties of biolog-
ical tissues. Including this model into our laparoscopic
surgery simulator prototype improves its biomechani-
cal realism and thus increases its impact in the learning
and training processes.
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