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Abstract

In this paper, we describe the latest developments of
the minimally invasive hepatic surgery simulator pro-
totype developed at INRIA. The goal of this simula-
tor is to provide a realistic training test-bed for per-
forming laparoscopic procedures. Therefore, its main
functionality is to simulate the deformation and cut-
ting of tri-dimensional anatomical models with the
help of two wvirtual laparoscopic surgical instruments.
Throughout this paper, we present the general features
of the simulator including the implementation of dif-
ferent bio-mechanical models based on linear elastic-
ity and finite element theory and the integration of
two force-feedback devices in the simulation platform.
More precisely, we describe two new important devel-
opments that improve the overall realism of the simu-
lator. First, we can create bio-mechanical models that
include the notion of anisotropic deformation. In-
deed, we have generalized the linear elastic behavior
of anatomical models to "transversally isotropic” ma-
terials, i.e. materials having one privileged direction
of deformation. The second improvement is related
to the problem of haptic rendering. Currently, we are
able to achieve a simulation frequency of 25Hz (visual
real-time) with anatomical models of complex geome-
try and behavior. But to achieve a good haptic feedback
requires o frequency update of applied forces typically
above 300Hz (haptic real-time). Thus, we propose a
force extrapolation algorithm in order to reach haptic
real-time.

1 Introduction
A major and recent evolution in abdominal surgery

has been the development of laparoscopic surgery. In
this type of surgery, abdominal operations such as

hepatic resection are accomplished through small in-
cisions. A video camera and special surgical tools are
introduced into the abdomen, allowing the surgeon to
perform a less traumatizing operation. The drawback
of this technique is essentially for the surgeon who
needs to learn and adapt himself to this new type of
surgery. In this context, surgical simulation systems
could be a great help in the training process.
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Figure 1: Surgery simulator prototype developed at IN-
RIA

Several research groups work on surgery simulation
with different methods and applications. We can cite
applications to knee arthroscopic surgery [16], gynae-
cologic laparoscopy [24], or abdominal trauma surgery



[5]-

There are several key problems in the development
of a surgical simulator [2, 19]. To simulate a surgical
gesture, we must be able to model the organ (both geo-
metrically an physically), to detect and treat collisions
between the organ and the virtual tools, to visual-
ize implied deformations and to compute the reaction
forces to apply to the tools.

To study these problems, INRIA gathered six teams
in a joint action AISIM [1], this led to several results.
To simulate the deformation of the organ, AISIM’s
members followed several approaches, the spring/mass
models [6], the finite element method [10, 14] described
in this paper, and the hierarchical multi-resolution fi-
nite volume model [12]. To evaluate the validity of
the simplifications made on real-time physical mod-
els, a non-linear incompressible model with an exter-
nal shell [25] fitted with bio-mechanical results was
developed. A new method was designed to detect col-
lisions between a deformable object (the organ) and
a rigid tool passing though a fixed point: the idea
of this LCN (Lombardo Cani Neyret [18]) method is
to replace the complex algorithms usually involved in
collision detection by an intensive use of the graphics
hardware of modern workstations. By making an anal-
ogy between the rendering and the collision detection
process and using OpenGL, we are able to detect col-
lisions between the organ and the tool in about 0.1ms
on an Onyx2. Finally, the rendering processes, both
visual and haptic were addressed. This led to a new
technique to map undistorted textures on complex ge-
ometries [21]. Our solution to the haptic rendering
issue [22] is described later in this paper.

This article focuses on the developement of a
laparoscopic surgery simulator prototype (figure 1)
based on linear elasticity and finite element theory
and permiting the use of force feedback. Here we
give a general description of the two key components
of the simulator: we first describe a generalization of
"Tensor/Mass" models [14] which allows us to simu-
late real-time deformations and cutting of anisotropic
materials. Then we deal with the problem of hap-
tic rendering: while up to date physically based de-
formable models are able to run at sufficient frequen-
cies to provide a visual real time (about 25Hz), this is
not the case for haptic rendering. It is commonly ad-
mitted that to give good haptic sensations, the forces
must be refreshed at more than 300Hz for soft objects.
We propose to extrapolate the forces produced by the
simulation at a visual rate to feed the force feedback
device at the appropriate frequency (typically 500Hz).

2 Deformable models

2.1 Linear elasticity

The physical behavior of soft tissue may be consid-
ered as linear elastic if its displacement and defor-
mation remain small [15, 20] (less than 10% of the
mesh size). To describe a linear elastic model, we
first need to define a reference volumetric anatom-
ical model Mipiia1 corresponding to its rest posi-
tion. Under external constraints, for instance a sur-
gical instrument, the anatomical model Miyjtial is de-
formed. We represent the deformation of a volumetric
model from its rest shape with a displacement vec-
tor U(l’,y,Z) for (x,y,z) € Minitial and we write
Maeformed = Minitial + U(z,y, z). The displacement
vector U(z,y, z) has three components:

u(x7 y7 Z)
v(x,y,2)
w(x,y,z)

U(x,y,2) =

With this displacement vector, we define the lin-
earized Green-St Venant strain tensor (3 x 3 symmet-
ric matrix) E by:

E = % (VU +VUY). (1)

From the principal invariants of E:

Lh=trE ly=tr E? (2)
we can express the linear elastic energy Wgiastic, for
homogeneous isotropic materials, by the following for-
mula (see [11]):

A
WElastic = 5 (trE)? + ptrE?, (3)

where A and p are the Lamé coefficients characterizing
the stiffness of the material.

Equation 3, known as Hooke’s law, shows that the
elastic energy of a deformable object is a quadratic
function of the displacement vector.

2.2 Anisotropic elasticity

Isotropic behavior is overly restrictive when modeling
human tissue. In fact a lot of anatomical structures
such as muscles, tendons, ligaments, blood vessels,
are strongly anisotropic. That is why we are partic-
ularly interested in simulating materials having a dif-
ferent behavior in a given direction, which are called
transversally isotropic materials.



A.J.M. Spencer gives a very detailed theoretical de-
scription of transversally isotropic materials in [23].
In the literature we can find applications for modeling
human organs such as the knee ligaments [26] and the
eye [17].

We propose to apply the transversal isotropy to lin-
ear elasticity in the framework of real-time deformable
models. For such materials, the elastic energy of equa-
tion 3 must be modified in order to account for the
anisotropy. But first, we explain in more detail the
meaning of the strain tensor £. We consider an ele-
mentary cube in Mj,itia and then look at its shape
after applying the displacement U(z,y,z). The lo-
cal cube deformation is characterized by six compo-
nents of strain corresponding to the relative elon-
gations (e, = du/dz, €,, and €.) in the three cube
directions and the relative changes of angles (v, =
Ou/0y + 0v/0x, vyz, and v, ) between the cube faces.

The isotropic elastic energy of equation 3 can be
written as:

A
WeElastic = > (o t+ey+e) +ules+e +6€)
m
+ 5 Om e+ s): (4)

This energy is isotropic since the same weight is
given to each direction of stretch and shear. For
transversally isotropic materials, it is necessary to de-
fine two sets of Lamé constants:

e (A", u"): Longitudinal Lamé constants in a
given direction having unitary vector ao;

e (AT, u"): Transverse Lamé constants in the
plane transversal to ag;

e A X=X -\l and Ap=pl — 7.

For instance, if the z axis is the direction of
anisotropy ap = (0 0 1), then we need to add to
the isotropic energy of equation 4, the anisotropic con-
tribution AW an:s0 defined as:

A
AVVAniso = A)\ (fz + €y + fz)fz + (7 + A/J/) 622
1 1
+2Ap (e + 17“2 + Zwy}). (5)

In the general case, this anisotropic elastic energy can
be simply written with the introduction of two new
invariants [; and [5 linked to the strain tensor E and
direction ag:

l4 = agt E ao l5 = agt E2 ag. (6)

Then the anisotropic energy can be written as:
5, AX
AVVAniso = l4llA)\ + 2Z5A:U/ - 14(7 + A:U/) (7)

Finally, the total elastic energy of a transversally
isotropic material is:

WTransfiso = WElastic + AVVAniso~ (8)

2.3 Finite element formulation

Our deformable models are based on a finite ele-
ment model consisting of a conformal tetrahedral
mesh. At each point M(z,y,z) inside tetrahedron
T,, the displacement vector is expressed as a func-
tion of the displacements U, of the vertices Py:

U,

U(ﬂ%?/v Z) = Ei:o U/cAk(xvyv Z)

S0

o)

R

where A, are the barycentric coordinates of M in the
tetrahedron.

We can then write the isotropic linear elastic energy
of T; as a function of its vertex displacements:

3 3

WElastic = Z Z qu [I(]Z[l‘i]Uh (9)

k=0 =0

where K] = Aapal + pogad, + p(akog)Ids is the
tetrahedron contribution to the stiffness tensor of the
edge (Py,P;) (or of the vertex Py if & = [) and
{ax = (=1)¥/6V(Ti)(Prs1 APris + Pryo APpys

+ Pyi3 APpi1), k =0 — —3} are the shape vectors of
the tetrahedron. Likewise, we obtain a similar equa-
tion for the anisotropic part of the elastic energy:

3 3
WAniso = Z Z Ufg [A]Tli]Uh (10)

, AN
AT = A(aoad)(anaf) — (52 + An)(asah) (axaf)(@0ah)

+% [(a0ag)(cuary) + (uarg)(apag) + (a.ar)(apag)

+(agay) : (araj)lds] .

To obtain the force FE applied to the vertex Py pro-
duced by tetrahedron T, we derive the elastic energy



with respect to the vertex displacement Uy:

3

2 Z[K,rfl"

=0

ng + AEZE]UZ

3
= [GHIUc+ > [GHIUL (11
1=0;1%£k

Construction of the tensor:

We obtain the global force applied on vertex a Py by
adding the contributions of all the tetrahedra sharing
this vertex:

F, = [Gkk]Uk + Z [le]Uh (12)
PIEN(Pk)
Grr = Z Gyf Gu = Z Gl

T, eN(P},) T, EN(Py,Py)
Thus, Fy, are linear functions of the displacement vec-
tors of each node Py,.

2.4 Pre-computed model [10]

The most common method to solve the elasticity prob-
lem formulated in equation 12 is to build the global
linear system [K] U = F which gives the displacement
of all the nodes as a function of boundary conditions
and external forces. Unfortunately, such linear sys-
tems cannot be solve in real-time for complex objects.
The main idea is to pre-compute unitary deformations
of each node and to decompose, during the simulation,
any deformation into a sum of unitary deformations.
This method allows real-time simulation for complex
objects like anatomical structures but cannot model
any change of mesh topology. This drawback led us
to develop a new model presented below.

2.5 Tensor/Mass model [14]

Given a tetrahedral mesh of a solid —in our case an
anatomical structure— we build a data structure in-
corporating the notion of vertices, edges, and tetrahe-
dra. For each vertex, we store its neighboring tetrahe-
dra, its current position Py, its rest position P?, and
tensor [Grx]. For each edge, we store its two vertices
as well as the tensor [Gy;]. Finally for each tetrahe-
dron, we store its four vertices and its six edges as well
as the Lamé coefficients AL, uf, AT, ul' the direction
of anisotropy ag, and the four shape vectors ay.

2.5.1 Numerical integration

We use a Newtonian differential equation:

A’P;
m;——
dt?

dP;

= (13)

as the equation governing the motion of our linear elas-
tic model. This equation is related to the differential
equation found in continuum mechanics [3]:

MU + CU + KU = R. (14)

Following finite elements theory, the mass M and
damping C matrices are sparse matrices that are re-
lated to the stored physical properties of each tetra-
hedron. In our case, we consider that M and C are
diagonal matrices, i.e., that mass and damping effects
are concentrated at vertices. This simplification called
mass-lumping decouples the motion of all nodes and
therefore allows us to write equation 14 as the set of
independent differential equations (13) for each ver-
tex.

Furthermore, we choose an explicit integration
scheme where the elastic force is estimated at time ¢
in order to compute the vertex position at time ¢ + 1:

(K~ 2aa) P =P Pl (S + o) P

2.5.2 Simulation of cutting

One of the basic tasks in surgery simulation consists
in cutting soft tissue. With the dynamic linear elastic
model, this task can be achieved efficiently. We simu-
late the action of an electric scalpel on soft tissue by
successively removing tetrahedra at places where the
instrument is in contact with the anatomical model.

When a collision between the instrument and a
tetrahedron is detected, local deformation tensors as-
sociated with the tetrahedron are subtracted from the
current deformation tensors at the tetrahedron edges
and vertices. Since the tensors are only updated is
locally, this is performed in a very efficient manner.
For instance, when removing the tetrahedron 7;, 10
update operations are performed:

(K55 = [K5) = K]

i1 (K k] = [K] = [K ]
Finally, we update the list of displayed triangles lo-
cated on the mesh surface. By locally updating ten-
sors, the tissue has exactly the same properties as if
we had removed the corresponding tetrahedron at its
rest position. Because of the volumetric continuity
of finite element modeling, the tissue deformation is
realistic during the cutting.

t—1
7



2.6 Results

We present two results showing the main advantages
of the tensor /mass model. The first one is a little expe-

a b

Figure 2: Comparison between isotropic (a and c¢) and
anisotropic (b and d) cylinders

rience on anisotropic behavior. We take two identical
cylinders: one is isotropic (figure 2a and 2c) and the
other is 5 times stiffer in the z direction (figure 2b and
2d). First, we pinch the cylinders by applying forces
perpendicular to the anisotropic direction. We can see
that the range of the deformation is the same for the
two models. Furthermore the deformation is more re-
alistic in the second case because it is smoothed along
the anisotropic direction. On the second set of cylin-
ders (figure 2c¢ and 2d) we can see the deformation
resulting from the application of the same force in the
z direction on the top face of each cylinder (the bot-
tom face is fixed). As predicted by the theory, the
model is much stiffer in the anisotropic direction, and
the stretch is much smaller.

The second result (figure 3) shows a simulation of
laparoscopic liver surgery during which the user pulls
the right part of the deformable models with one tool
while cutting it with another.

2.7 Hybrid model [14]

A combination of the two previous deformable models
have been proposed in [14]: a hybrid model combines a
large pre-computed model with a smaller Tensor/Mass
model allowing for topology changes.

Figure 3: Simulation of hepatectomy

3 Force feedback

Haptic rendering requires a high update rate (ranging
from 300Hz for soft objects to 10kHz for rigid contact)
to give the user the sensation of continuity.

To achieve a satisfactory haptic feedback, two ap-
proaches have been proposed:

e computing forces empirically [4], for example by
using a force proportional to the penetration
depth of the tool in the object. In this case the
force is not computed from a physical deforma-
tion, but uniquely from geometric constraints.

e using a simplified physical model. The simplifi-
cation can be performed in two ways, either by
decreasing the mesh size [8] or by performing as
much pre-computation as possible [10].

We propose another solution based on human charac-
teristics. Indeed, it has been shown [7] that if haptic
rendering is very precise (we can feel force variations
above 300 Hz), human gesture can be sampled at a
much lower frequency (from 1Hz for the answer to an
unexpected signal to 10Hz for a reflex action). Thus,
all applied forces must be updated at a high rate, but,
because it is related to the user’s hand gesture, their
evolution is quite slow. The idea is to estimate forces
between two time steps of the deformable model sim-
ulation thanks to extrapolation. A more detailed pre-
sentation of this study can be found in [22].

3.1 Force extrapolation

Our aim is to generate forces at a rate of 500Hz from
forces computed by the deformable object simulation
at a rate of about 30Hz. The simulation loop gives us a
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Figure 4: Evaluating the different extrapolation methods

discrete series of parameters (,,P,, F,) representing
the force F,, applied to the tool in position P,, at time
t,. Good quality force feedback can be reached by a
force update at about 500Hz. So, we must choose an
extrapolation function F(¢) providing an estimation of
the force to apply to the tool at time ¢ (¢, < t < tp41)
according to already known data (¢;, P;, F;), i = 0..n.

The hardware of the Laparoscopic Impulse Engine
assumes a constant extrapolation between two re-
ceived forces. This has several advantages. First, it
does not require any additional computation. Second,
as the applied force results from the deformation com-
putation, such an extrapolation scheme ensures that
only valid forces are applied without the risk of dam-
aging the device. The main problem with this method
is the discontinuity of the applied force which gives the
sensation of touching a rough surface as soon as the
update rate becomes too low (under about 300Hz).

Another way to estimate the current value of a sig-
nal changing over time is to extrapolate it over time.
As our deformable model sketches a linear elastic be-
havior, we only consider linear extrapolation over
time. This method gives better results than the pre-
viously described one. The force discontinuities are
less noticeable. But we must face a new problem, as
the applied forces are not the ones that the simula-
tion of the deformable model computes, they can be
arbitrarily large. These force amplitude peaks occur
especially when the time step increases.

The force changes are mainly due to the tool move-
ment. In addition, it is possible to query at a very
high rate the position of the tool during the extrapo-
lation. These observations lead us to develop a force
estimator based on the tool position: linear extrap-
olation over position. We project the current tool
position P onto the line defined by the two previous
tool position P,,_; and P,, to obtain P’ (figure 5). We

can then consider the norm ratio for extrapolation:

[P’ — Pl

FPr(t)=F,+———
O =Futp =, ]

(Fn_anl) tn S t < tn+1
We notice that the error induced by the tool position
projection is null when P,,_;, P,,, and P are aligned,

in other words when the tool trajectory is a line.

Figure 5: Tool position projection for extrapolation over
position

All of these three extrapolation methods were im-
plemented in our surgery simulator. In order to com-
pare and to evaluate them, several experiments were
performed. The results are presented in the next sec-
tion.

3.2 Results

To evaluate and compare the three extrapolation
methods, the time, the tool position, and the force
computed by the simulation of the deformable model
were recorded during several surgery simulation ses-
sions. We have interpolated the force a posteriori to
have a reference for the computation of the errors. We
present results on the norm of the force. The top line
of figure 4 shows the original data set with the im-
pulses and the extrapolated one as a line. The norm
of the difference between the extrapolated and the in-
terpolated forces, which is taken as a measure of the
error, is plotted on the bottom line.



We note that the linear extrapolation over position
gives very interesting results (very few discontinuities
and no singular forces). We tried the same type of
experiment with different simulation frequencies and
with different tool movements. The position linear
extrapolation always gave the best results, which is
confirmed by the sensation perceived during simula-
tion.

4 Conclusion

The surgery simulator prototype presented in this pa-
per allows us to simulate several surgical gestures with
good visual and haptic realism. Our future work will
focus on modeling more complex bio-mechanical be-
havior, with the introduction of an external shell rep-
resenting the capsule de Glisson, and the development
of non-linear elastic models. An other improvement
will be the modeling of the hepatic vessels which con-
stitute one of the main problems during liver surgery.
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