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Abstract

Intra-subject and inter-subject non linear registration based on dense transforma-
tions requires the setting of many parameters, mainly for regularization. This task
is a major issue, as the global quality of the registration will depend on it. Setting
these parameters is however very hard, and they may have to be tuned for each
patient when processing data acquired by di�erent centers or using di�erent proto-
cols. Thus, we present in this article a method to introduce more coherence in the
registration by using fewer degrees of freedom than with a dense registration. This is
done by registering the images only on user-de�ned areas, using a set of a�ne trans-
formations, which are optimized together in a very e�cient manner. Our framework
also ensures a smooth and coherent transformation thanks to a new regularization
of the a�ne components. Finally, we ensure an invertible transformation thanks to
the Log-Euclidean polya�ne framework. This allows us to get a more robust and
very e�cient registration method, while obtaining good results as explained below.
We performed a qualitative and quantitative evaluation of the obtained results on

two applications: �rst on atlas-based brain segmentation, comparing our results with
a dense registration algorithm. Then the second application for which our framework
is particularly well suited concerns bone registration in the lower abdomen area. We
obtain in this case a better positioning of the femoral heads than with a dense reg-
istration. For both applications, we show a signi�cant improvement in computation
time, which is crucial for clinical applications.

Key words: non linear registration, locally a�ne transformation, Log-Euclidean
regularization, atlas-based brain segmentation
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1 Introduction

Non linear registration of medical images can be used for various purposes.
It allows, for example, to quantify the evolution of a disease over time [1�3].
It can also be used to compare patients between them or with respect to an
anatomical atlas. In the latter case, one can use non linear registration to
compute statistics with respect to a reference anatomy [4,5] or perform atlas-
based segmentation [6,7] using labeled structures in the atlas to segment a
patient image.

The main requirements for the use of non linear registration for atlas-based
segmentation in a clinical context are divided in three points:

(1) �rst, the non linear transformation must be su�ciently generic to take
into account the atlas-patient variability,

(2) however, this transformation must also be as regular as possible so that
the delineated structures have meaningful contours,

(3) �nally, the registration method should also be robust, i.e. we should be
able to use always the same set of parameters to delineate patients, whose
images were acquired in di�erent centers.

The �rst two requirements are valid for all non linear registration methods
while the third one is closely related to the use in a clinical context. Clinicians
are indeed usually not experts in image registration. It is therefore mandatory
to be able to use a default parameter set for all patients and all acquisition
protocols. In addition to this last requirement, a reasonable computational
time would also be desirable.

Typically, the registration problem is solved by designing a similarity measure
S (typically SSD, correlation coe�cient or mutual information) that assesses
the quality of the registration. In the following, we denote by R a reference
image (typically an atlas image) on which we want to superimpose a �oating
image F using a transformation T . Then, following Brown et al. [8], the global
transformation is computed by:

T̂ = arg min
T

S(R,F ◦ T ). (1)

∗ Corresponding author. Phone: +1 617-355-5382. Fax: +1 617-730-0635
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URL: http://olivier.commowick.org/ (O. Commowick).

2



Since a closed form of the solution is usually not available, this measure is
optimized iteratively, i.e. a sequence of transformations T 0, T 1, ..., T l, ..., TN

is computed, where T l = T l−1 ◦ δT l. Therefore, at each iteration l, a correc-
tion δT l to the current transformation T l−1 is computed using the following
equation:

δT l = arg min
δT

S(R, F ◦ T l−1 ◦ δT ). (2)

To address the �rst requirement, the transformation T must have a large
number of degrees of freedom, for example a dense transformation made of one
displacement vector per image voxel. The minimization of Eq. (2) is however
likely to be trapped in a local minimum, due for example to noise in the
images. To address this issue and also the second requirement, regularization
terms are explicitly added to the similarity term in Eq. (2), yielding:

δT l = arg min
δT

S(R, F ◦ T l−1 ◦ δT ) + αEel(T
l−1 ◦ δT ) + βEfl(δT ) (3)

The regularization can be done either on δT (this is the �uid regularization,
popularized by [9]) or on the transformation itself T l (this is the elastic reg-
ularization, used for example in [10]): the corresponding energy terms are
respectively denoted by Efl(δT ) and Eel(T

l−1 ◦ δT ) in Eq. (3). Other exam-
ples of elastic regularization include Bajcsy and Broit [11,12] who introduced
methods where real world elastic deformations were computed. Bajcsy [13] ex-
tended later these methods to a multi-resolution scheme. Finally, one can use
inhomogeneous visco-elastic regularization [14], depending on the deformabil-
ity characteristics of the tissues in the images. For this last method, de�ning
the deformability of the tissues is however a di�cult problem. It has been stud-
ied for brain structures [15], but not yet for other parts of the body, where
very deformable soft tissues are present.

In addition, the regularity of the transformation can be further constrained by
decreasing a priori the number of degrees of freedom of its parameterization.
One can use, for example, a linear combination of regularly or irregularly
placed radial basis functions [16] or B-Splines [17]. However, there is a trade-o�
using these methods between the number of degrees of freedom and obtaining
a precise deformation in a reasonable time. Other works parameterize the
transformation using vortex particles [18] or geodesic interpolating splines
[19]. An arbitrary number of degrees of freedom can be assigned to these
transformations. We have to point out that these methods (e.g. [17,18]) do
not guarantee the invertibility of the transformation, which will penalize their
implementation for applications such as atlas-based brain segmentation.

These approaches reduce the dependency with respect to the regularization
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parameters, but do not suppress it. A more drastic reduction of the transfor-
mation parameters may yield to the realization of the third requirement but it
will also compromise the realization of the �rst requirement. We are however
only interested in registering known structures. In this context, both the �rst
and third requirements can be satis�ed by designing an ad-hoc transformation
on these regions.

Several approaches which register structures of interest in the images using few
degrees of freedom have been proposed in the literature. Little et al. [20] intro-
duced �rst a way to interpolate between local a�ne transformations, also used
by Pitiot et al. [21]. Some methods have also been developed speci�cally for
the registration of articulated structures [22,23]. They register bones but us-
ing very speci�c transformations, coherent with the movements in the images
(rotations with respect to articulations). However, for all these methods, the
a�ne transformations are computed independently, yielding to possible dis-
crepancies. More recently in [24,25], more sophisticated frameworks have been
introduced, allowing to compute a global invertible transformation from a set
of local a�ne transformations and optimize it to match 2D images. However,
calculations using these frameworks are costly in 2D and their generalization
to 3D is again not straightforward.

In this article, we choose to use a meaningful parameterization of the trans-
formation based on the structures present in the images. We can indeed de�ne
them easily and once and for all on a reference image or on an atlas. We
therefore present a general and e�cient locally a�ne framework for register-
ing these �xed regions in 3D images. The registration is done by optimizing
together local a�ne transformations and using a new Log-Euclidean regular-
ization of these transformations, therefore ensuring coherency between them.
The global transformation is then parameterized using these a�ne compo-
nents Ai, associated to user de�ned areas Ri. Our framework guarantees, at
the end, an invertible and anatomically consistent transformation, thanks to
the use of the recently introduced Log-Euclidean polya�ne framework [26].

The remainder of the article is organized as follows: we will �rst present the
method we adopt to register the local a�ne components de�ned by the user.
Then, we will focus on our new regularization scheme, which allows us to
remove discrepancies between the a�ne transformations of areas close to each
other and to have a very smooth transformation.

Afterwards, we will demonstrate the versatility of our method by showing
qualitative and quantitative results on two di�erent applications. The �rst
one is the segmentation of brain critical structures using atlas-to-subject reg-
istration, showing that the obtained transformations are much smoother with
our method than with a dense registration method. Quantitative results us-
ing STAPLE validation method [27] also show similar or better registration
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results. The second one, for which our framework is particularly well suited,
is bone registration for bladder localization in the lower abdomen area. We
show in this case better results on the positioning of bones (evaluated through
the distance of manually pointed landmarks to those obtained automatically)
than with a dense registration.

2 Method

2.1 Global Algorithm

Following the ideas presented in the introduction, we will register a �oating
image F on a reference image R on speci�c prede�ned regions. These regions
Ri are given by the user or prede�ned on an anatomical atlas. The goal of our
method is then to compute an a�ne transformation Ai for each region Ri that
best matches this region in the two images. Finally, a global transformation
T is interpolated from the a�ne components Ai.

We choose to follow an iterative framework using a multi-resolution scheme
illustrated in Algorithm 1 to compute the transformation on the di�erent spec-
i�ed areas. This framework is similar to the one of [28] for rigid registration,
and also to the ICP framework for surface matching [29,30]. At each iteration
l, we evaluate transformation corrections δAl

i thanks to pairings obtained by
Block-Matching, so that F ◦T l gets closer to R than F ◦T l−1. To ensure a co-
herent transformation, we regularize the transformations corrections and the
a�ne transformations themselves at each step of the estimation using a new
regularization scheme. We detail all the steps of our algorithm in the following.

Algorithm 1 Overview of the registration algorithm
1: Creation of weight functions wi(x) from the Ri. Section 2.2.
2: Initialization of the transformation: T 0, A0

i ← Id.
3: for p = 1...P , iteration on pyramid levels, do
4: for l = 1...L, iterations, do
5: Estimation of a�ne corrections: δAl

i ← register(Ri, F ◦T l−1). Section
2.3.

6: Fluid like regularization: δÃi
l ← regul(δAl

i). Section 2.4.
7: Composition of corrections Al

i = Ãi
l−1 ◦ δÃi

l.
8: Elastic like regularization: Ãi

l ← regul(Al
i). Section 2.4.

9: Computation of T l : T l ←M2(Ãi
l
). Section 2.5.

10: Computation of T final : T final ←M3(Ãi
L
). Section 2.5.
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2.2 Preprocessing

2.2.1 User De�nition of Registered Regions

To use our algorithm, we �rst need to de�ne the regions Ri we want to register.
We de�ne them on the reference image. This image is indeed never deformed
and the regions can thus be de�ned once and for all. In our case, we choose to
have entire areas adopting the same a�ne behavior. For example, on Fig. 1,
we want the transformation to be roughly a�ne for each one. We therefore put
only one region over each eye. The areas are speci�ed as binary sub-images.

Fig. 1. Example of prede�ned areas on the brain. Each contour corresponds
to a region Ri de�ned by the user on the atlas. The regions shown here are eroded
for interpolation following the method of [21].

2.2.2 Ensuring a Minimal Distance between Regions

To ensure a smooth interpolation between the regions we have de�ned, we
need a minimal distance between them. The binary areas can indeed overlap
each other after de�nition. We then need to erode them as little as possible
to have a minimal distance between regions while keeping them as close as
possible to the original region. A way to cope with this problem has been
devised in [21], illustrated on Fig. 2.

First, we superimpose all the sub-images in a single image. A series of erosions
then ensures that the areas are disjoint. A distance map is computed in the
background of the resulting image and a thinning algorithm is used to extract
the skeleton of the background. We are then able to compute a distance to
this skeleton. By removing from the binary image the voxels whose distance
to the skeleton is less than a threshold ν, we ensure a minimal distance of 2ν
between the regions while modifying them as little as possible.
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Fig. 2. Synthetic example of the adaptive erosion of prede�ned structures.
These images show the process used to erode regions 1, 2 and 3 which are overlapping
each other: (a) : original regions; (b) : skeleton and limits of erosion superimposed;
(c) : resulting regions after erosion (see text).

2.2.3 De�nition of Weighting Functions

The binary sub-images do not overlap anymore. We then associate to each
region a weighting function wi(x), de�ning the relative in�uence of the ith

region at point x. We have chosen to implement the weighting function for
each component as a function of the minimal distance to the corresponding
region Ri: wi(x) = 1/(1 + αdist(x,Ri)) (in our algorithm we used α = 0.5 to
ensure a smoother interpolation). Other choices are indeed possible to compute
these weight functions 1 .

At each point x, the weights wi(x) are then normalized so that their sum is
equal to 1: wi(x) = wi(x)/

∑N
i=1 wi(x). Because of this normalization, wi(x) is

not constant spatially inside the region Ri.

The Ri and the associated wi are computed on the eroded regions once and
for all during the algorithm. Moreover, as we will see in section 3.1, when
registering patients on an atlas, the Ri and wi are computed on the atlas and
do not depend on the patient's image.

2.3 Updating the Transformation

At each iteration l, we update the transformation T l−1 by looking for local
a�ne transformations Al

i = Al−1
i ◦ δAl

i so that we get a better correspondence
between the images over the regions Ri. We detail in the following �rst how we
obtain pairings between the current images, and then how to combine them

1 Convolving the binary images with a Gaussian kernel may be an other possibility
to compute the weights.
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to get the transformation corrections δAl
i. For clarity, δAl

i will be replaced by
δAi in the following.

We follow in this part the framework which was proposed in [28] to estimate
a global rigid or a�ne transformation between two images. We now focus on
the main steps of this framework and its application to our problem.

2.3.1 Pairings Estimation

We �rst need to choose a method to estimate correspondences between the
images R and F ◦ T l−1. We have chosen to use a Block-Matching approach to
estimate these correspondences. This method allows to look for big displace-
ments while being robust to local minima in the similarity measure.

In our method, blocks are regularly spaced (typically one block every 3 voxels
in each direction) inside the areas Ri de�ned on the reference image. For each
block B(xv) ∈ Ri, centered in xv, we look for its best match B(yv) in F ◦T l−1.
The choice of the similarity measure to select this best match should depend of
the expected relationship between the block intensities. Considering that the
blocks are small (typically 5x5x5 or 7x7x7 voxels), they may contain up to two
or rarely three di�erent tissues. Assuming an a�ne relationship between the
block intensities seems therefore reasonable [31]. Hence, we choose the local
squared correlation coe�cient between the two blocks as similarity measure
[32], CC2(B(xv), B(y)) = Cov2(B(xv), B(y))/

(
V ar(B(xv))V ar(B(y))

)
. This

choice also seems good as some structures (like vessels or arteries) may be
present in one image and not in the other. The best pairing is therefore chosen
following this equation:

B(yv) = arg max
B(y),y∈V (xv)

CC2(B(xv), B(y)), (4)

where V (xv) denotes the local neighborhood of xv in image F ◦ T l−1. In the
remaining, we will call CCv the best value of the squared correlation coe�cient
for the block B(xv): CCv = CC2(B(xv), B(yv)).

2.3.2 A�ne Transformation Estimation

At this step of the process, we have computed a collection of pairings (xv, yv)
for each area thanks to the Block-Matching algorithm. We are then using these
pairings to compute the corrections δAi. We choose to use a separate optimiza-
tion of the a�ne transformations: we consider each area independently. We
then use only the pairings (xv, yv)v∈Ri

in order to estimate δAi. The system
used to obtain the δAi is given by the following formula, which amounts to a
Weighted Least Squares (LSW) problem:
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δAi = arg min
δA

∑

v:xv∈Ri

CCvwi(xv) ‖δA.xv − yv‖2 . (5)

This transformation estimation can be seen as the �rst similarity term of
Eq. (3) presented in the introduction. In the above formulation, we choose
to use CCvwi(xv) as a weighting parameter for each equation of the system.
We indeed consider that a block with a small wi(xv), i.e. located between two
regions, should in�uence less the transformation Ai. Moreover, we want to give
more importance to terms that are good pairings in order to promote their
in�uence on the solution. CCv varies between 0 and 1 and gives us for each
block this relative goodness of the pairing. We have indeed CCv = 1 when the
pairing is perfect and CCv = 0 when the pairing is false. We can thus use it
straightforward as a weight in the LSW system.

This method is fast as we divide one large single system into several small
systems. We have seen in our experiments that we obtain results similar to a
coupled optimization, while running much faster. We thus choose to use this
separated method as it approximates well the transformation corrections.

The energy given in Eq. (5) can be solved very e�ciently as it leads to a linear
over-constrained system. Given that we can have outliers due to noise or miss-
ing structures, we choose to use an Least Trimmed Squares Weighted (LTSW)
estimator [33]. This minimization scheme has proved to be more robust to out-
liers than the classical LSW method. At a glance, instead of minimizing the
total sum of the squared residuals, we will iteratively minimize the sum of the
h smallest squared residuals. This method reduces drastically the in�uence of
the outliers. Moreover, as mentioned before, we use the correlation coe�cient
values CCv as weights for each equation of the system.

2.4 Regularization

At this step, we obtain at each iteration l of the algorithm a set of transforma-
tion corrections δAi computed so that F ◦ T l is closer to the reference image
R than F ◦ T l−1. Without any regularization process, we can have some dis-
crepancies in the interpolated areas between the a�ne components (see Fig.
3). These discrepancies are mainly due to the separate estimation of the a�ne
corrections δAi.

To avoid these problems, we present here a novel regularization approach, spe-
ci�c to locally a�ne transformations. The basic idea is to use the 4x4 matrix
representation of 3D a�ne transformation in homogeneous coordinates. Inter-
estingly, whenever the amount of rotation present in an a�ne transformation
A is less than π radians, one can de�ne the matrix logarithm of A, simply via
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the principal logarithm of the matrix representing A. For more details on prin-
cipal matrix logarithms and their practical computation, see [34]. This matrix

logarithm is of the form:




M v

0 0


 , where M is a 3x3 matrix (not necessarily

invertible) and v a 3D vector. Conversely, a unique a�ne transformation is
associated to any 4x4 matrix B of the latter form via its matrix exponential.

It has been shown in [26] that taking the logarithm of a�ne transformations
corresponds to linearizing the (curved) a�ne group around the identity, while
conserving excellent theoretical properties (invariance with respect to inversion
in particular). This allows to perform Euclidean (i.e. vector-based) operations
on a�ne transformations via their logarithms.

This representation of a�ne transformations by vectors allows the direct gen-
eralization of classical vector-based regularization techniques. For example, we
can de�ne a Log-Euclidean �uid-like energy between the a�ne transformation
corrections (which is similar to the second regularization term of Eq. (3)):

EReg =
N∑

i=1

N∑

j=1

pi,j‖ log(δAi)− log(δAj)‖2, (6)

where we have pi,j =
∑

x∈R wi(x).wj(x)/
∑

x∈R wi(x), which takes into account
the spatial extensions of the components. The regularization is then done using
a one �xed step gradient descent on this energy: δÃi = δAi+dt

∂EReg

∂δAi
. The step

dt is de�ned to balance between the transformation corrections estimation and
the regularization term: dt = λ 1

N

∑N
i=1 ‖ log(δAi)‖. In the sequel, ‖.‖ is set to

‖M‖2 = Trace(M.MT ) (Frobenius norm), which has the advantage of being
rotationally invariant.

Furthermore, one can de�ne an elastic-like energy which is similar to the �rst
regularization term of Eq. (3)) by regularizing the transformations Al

i instead
of the transformations corrections δAi in (6). As we have two regularization
terms, we de�ne two λ parameters: λel ∈ [0, 1] for the elastic regularization
and λfl ∈ [0, 1] for the �uid regularization.

Using this regularization scheme improves greatly the smoothness in the in-
terpolation areas (see Fig. 3). We have used for this example a transformation
composed of two areas on the cerebellum. The �rst locally a�ne registration
was done without any regularization, while the second uses both elastic and
�uid regularization (λel = 0.3 and λfl = 0.2). This example clearly shows the
importance of the regularization. The cerebellum does not have the shape we
would expect when not using regularization: there is indeed a lack of coherence
between the two components yielding a result which is not consistent from an
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Fig. 3. Contribution of the regularization in the registration. From left to
right: Patient image registered without regularization (λel = 0, λfl = 0) and with
regularization (λel = 0.3, λfl = 0.2). Top row: coronal slices. Bottom row: corre-
sponding deformed grids. The discrepancies in the deformation on the left image are
removed thanks to our new regularization scheme. (See text for details).

anatomical point of view. The errors also propagate to the rest of the brain.
Our regularization technique solves this problem and provides consistent re-
sults all over the brain. Furthermore, the regularization energies we propose
here are very e�cient to use in practice.

2.5 Invertible Transformation

We have detailed so far a fast method to obtain a locally a�ne transformation
matching the image on prede�ned areas. This is achieved thanks to the use of
separated optimization and to the use of the second method of interpolation
(M2) we describe in appendix section A.2. We chose this method of interpo-
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lation, called direct averaging, as it is fast to compute and can be e�ciently
optimized thanks to the existence of a closed form. However, as we point in
Appendix A, the transformation obtained using this method is smooth but
not always invertible. This does not cause problems for the registration algo-
rithm, as the singularities appear generally in the interpolation areas, outside
the Ri. However, this can be a problem for resampling the reference image R
on the �oating image F , which can be of great use in some cases. We thus
need to be able to invert the transformation. To ensure a smooth and invert-
ible transformation everywhere, we therefore choose to use the third method
of interpolation (Log-Euclidean polya�ne M3, appendix section A.3) to build
the �nal transformation and invert it. This approach is consistent with our
estimation method. It has indeed been shown in [26], that this method gives
almost the same fusion as with direct averaging in regions without singular-
ities, while removing the singularities elsewhere. However, we only use this
method to compute the �nal transformation as it would be much more com-
putationally expensive to use it directly for the estimation of T .

2.6 Evaluation Methodology

2.6.1 Existing Registration Methods

We have presented so far a complete framework to register images on prede-
�ned regions using a locally a�ne transformation. In the following, we will
present experiments on two applications: atlas-based brain critical structures
segmentation and lower abdomen registration. In order to compare our algo-
rithm with existing dense registration methods, we used for each application
an existing dense registration algorithm.

For brain registration (section 3.1), we used a method which was speci�cally
designed for this task [14], named Runa. This method is very similar to the
"Demons" method [35] and to Pasha [10]. The main improvement of Runa
with respect to these methods is the use of an inhomogeneous visco-elastic
regularization. It minimizes in an iterative process the following energy:

E = S(R,F ◦ T ) + β
∑

α∈{x0,x1,x2}

∫
[1− k(x)]

∥∥∥∥∇
∂Tα

∂t

∥∥∥∥
2

+γ
∑

α∈{x0,x1,x2}

∫
D(x)‖∇Tα‖2 (7)

where S is a similarity term, typically the SSD. The �uid regularization (sec-
ond term) is weighted by a con�dence term k(x) giving more importance to
displacements where the image gradient is high. The elastic regularization
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(third term) is also weighted by a term D(x), which depends of the type of
tissue in the reference image. The white matter will thus have an elastic behav-
ior, while cerebro-spinal �uid will have a �uid behavior). This allows them to
obtain very precise deformations and to be more independent of regularization
parameters. More details on this algorithm can be found in [14].

We could not use Runa directly in the case of bone registration. Runa is indeed
designed speci�cally for brain registration and its use for lower-abdomen im-
ages would have needed further studies on the inhomogeneous regularization
to use. Cachier et al. [10] instead parameterizes the transformation as a dense
deformation �eld and uses homogeneous elastic regularization. This method
derives from the Demons method [35] and minimizes iteratively the following
energy:

EPasha = S(R,F ◦ C) + σ‖C − T‖2 + σλEel(T ). (8)
where C and T correspond to two transformations estimated alternatively and
S is again the similarity term of the equation, typically a SSD. The last term
is here an homogeneous regularization over the whole image. The second term
ensures that the regularized transformation T and the estimated transforma-
tion C do not go too far from each other during the registration process. This
method will be named DT in section 3.2

2.6.2 Quantitative Validation Method: STAPLE

In order to compare quantitatively the brain segmentations obtained by each
registration method, we have used a dataset of six images where manual de-
lineations of the brainstem have been done by seven experts separately. To
evaluate our results and compare them to all these manual delineations, we
have used a widely used method in the literature: STAPLE [27]. This method
allows to compute from several segmentations both the underlying ground
truth and the performance parameters of the experts.

This is done using an Expectation Maximization algorithm, where the under-
lying ground truth is the hidden parameter. First, the probability for each
voxel to belong to the ground truth is computed, knowing the current es-
timates of the performance parameters and the manual delineations. Then,
the performance parameters are evaluated, knowing these new probabilities.
War�eld et al. use sensitivity and speci�city as parameters for each expert.

We have chosen in our experiments to use STAPLE to get the performance
parameters of the manual delineations as well as the underlying ground truth.
We then used this ground truth to compute a posteriori the performance
parameters of each automatic segmentation method. All those computations
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were done on a dilated mask of the union of the manual image segmentations
and all the automatic segmentations. This therefore ensures a larger variation
range for the speci�city than when using all the background voxels as true
negatives, and the same number of true negatives is used for the evaluation of
each automatic segmentation method.

3 Experiments and Results

We present the evaluation of our new registration framework on two di�erent
applications. First, we show some qualitative and quantitative results on brain
atlas registration for atlas-based segmentation. Then, we present results on the
registration of bones in the lower abdomen area.

3.1 Brain Critical Structures Segmentation for Radiotherapy Planning

The �rst application considered here takes place in the frame of conformal
brain radiotherapy. The planning of this treatment requires the accurate de-
lineation of the tumor and of the critical structures, in order to de�ne precisely
the irradiation beams during the treatment. This task is very tedious to do
manually, and also not reproducible.

The use of a brain atlas as the one proposed in [7] can then be very useful
to automatically delineate the critical structures in the brain. This atlas is
composed of two images: a simulated MRI from the BrainWEB 2 [36�39] and
its segmentation, which was done manually by an expert.

The method we follow here consists of bringing the patient image on the sim-
ulated MRI and then applying the inverse transformation to the segmentation
image to get the critical structures. We �rst globally position the patient on
the atlas using an a�ne transformation. The second step is then to re�ne the
result locally by using a non linear registration algorithm.

We will show examples of segmentation results and their evaluation on two
image databases. The �rst database, coming from the Centre Antoine Lacas-
sagne (CAL) in France, consisted of about 50 T1 patients acquired with 2 mm
slice thickness. Among these patients, six had the brainstem delineated manu-
ally by seven di�erent experts. This database was then used to perform a �rst
qualitative evaluation (section 3.1.2) followed by a quantitative evaluation on
the brainstem (section 3.1.3).

2 See web site: http://www.bic.mni.mcgill.ca/brainweb/
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A second database of images was then used to validate our method in clinical
conditions at the Institut Gustave Roussy (IGR) in France. This database
consisted of 22 T1 images injected with gadolinium and had a larger slice
thickness (3 mm). As the atlas was made from a T1 image without injection,
this may introduce errors in the segmentation. This database was used to
perform a semi-quantitative study [40]. We will report the results obtained on
this database in section 3.1.4.

3.1.1 Registration Parameters

The �rst task to use our algorithm is to de�ne the areas to register. This
is easy in this case and done once and for all, as we can use our atlas as
the reference image for all the patients. In the following example, we register
twelve critical structures: the cerebellum, the eyes, the optic chiasma, the gray
nuclei (pallidum, putamen, caudate and thalami) and the brainstem.

The atlas provides us with an e�cient way to select the local regions to register.
For small structures such as the eyes, the optic chiasma or the gray nuclei,
an a�ne behavior can reasonably be assumed between the images. We thus
simply dilated each related label in the atlas and used it as a region. For
bigger structures, like the cerebellum or the brainstem, the deformations are
more complex. One a�ne transformation per structure is not su�cient. We
therefore choose to split arbitrarily each of these structures into two areas. We
thus register these structures using two a�ne transformations.

This gives a total of twelve registered regions (two on the brainstem, two on
the cerebellum, one on the chiasma, on each eye and on each gray nucleus)
prede�ned on the atlas. Some of these prede�ned regions are shown in section
2.2 in Fig. 1.

For all the experiments presented in this section, we have used the same pa-
rameters for the registration algorithms. One of our goals for this application
is indeed to get a method that can be used on images from di�erent centers
and acquired using di�erent parameters, without needing the optimization of
the parameters for each patient. The best set of parameters for each method
was determined qualitatively on the 50 patients by looking for parameters that
gave good results everywhere on all patients.

We have thus chosen for the dense registration method (Runa [14]) parameters
(α = 1 and β = 0.1 in (3)) that gave qualitatively good results for all images.
The same was done for the locally a�ne framework. All these experiments use
a single set of parameters (block size: 7x7x7, one block every 3 voxels in each
direction, λel = 0.3, λfl = 0.2 and a LTS cut at 70 %).
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3.1.2 Qualitative Comparison with Runa [14]

Our �rst experiment was to compare the registration results (images and de-
formed grids) obtained using a globally a�ne registration, a dense registration
algorithm (Runa), and our algorithm.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4. Qualitative comparison of the registration results on one patient.
Top row: (a): Atlas reference image. Patient resampled on atlas using (b): a global
a�ne registration, (c): a speci�c dense algorithm (Runa) [14], (d): our algorithm.
Bottom row: Deformation grids of the non linear part of the registration using
(e): a global a�ne registration, (f): a speci�c dense algorithm (Runa) [14], (g): our
algorithm. We can see that we obtain a much smoother and realistic deformation
with our method than with a dense registration.

We show on Fig. 4 one example of a �oating (a patient selected from the CAL
database) image resampled to match the reference (atlas) image, with the
contours of the atlas superimposed. This example was selected as it illustrates
well the registration problems that can arise with dense registration when
using only one set of parameters for all patients. We can �rst see that the
two non linear methods perform well from a qualitative point of view on the
brainstem and the cerebellum. The transformed structures are indeed well
delineated by the reference contours. The eyes seem not quite as good for
the dense registration method (arrows on Fig. 4). We can also see that, by
constraining the transformation using the anatomical a priori available in the
atlas, we have been able to remove strong local deformations (see the deformed
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grids on Fig. 4), which may result in irregular contours when applying the
transformation to the atlas structures for segmentation.

(a) (b)

(c) (d)

Fig. 5. Qualitative comparison of the segmentation results on one patient
from CAL. Contours obtained using a dense transformation (top row) and using
our new framework (bottom row). The contours obtained with our method are more
regular and do not include the arteries in front of the brainstem. The eyes and gray
nuclei contours are also less noisy.

We then use the obtained transformations for each algorithm (dense regis-
tration: Runa, locally a�ne registration: LAF) to resample the segmentation
image and get the structure contours on the patient image. We show the qual-
itative results in Fig. 5. Again, the contours are much smoother, with our
method than with a dense registration, for example on the eyes or on the gray
nuclei. They are also more precise, mostly on the brainstem and the eyes.
This fact was not obvious on the �rst registration results. The behavior of the
obtained dense transformation is due to the fact that the dense registration
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algorithm does not take into account any prior on the structures present in the
images. This can lead to irregular contours when some structures are missing
in the atlas (e.g. the artery in front of the brainstem). Our framework is better
adapted as it is able to take into account priors on the structures to register.
The transformation is also, by construction, less sensitive to local minima of
the similarity measure. Finally, the computation time is faster (10 minutes as
opposed to 40 minutes on a 3 GHz computer) than with the dense registration.

We also present here qualitative results obtained on the images from the IGR
database. These images are much more di�cult to delineate than the images
from the CAL because of their larger slice thickness and of the injection of
gadolinium that is not present in our atlas. These results, shown in Fig. 6,
were obtained using the same set of parameters as for the patients from the
CAL.

Again, better delineations are obtained using the locally a�ne method when
compared to Runa. This is particularly true on small structures. The optic
chiasma for example is only seen on one or two slices in the patient and is
therefore very di�cult to segment, even more when using one parameter set
for all patients. On this structure, the results obtained by the locally a�ne
are visually better thanks to the a priori constraint on the transformation.

3.1.3 CAL Database: Qualitative and Quantitative Evaluation

The 50 images of the CAL database were used for a �rst qualitative validation.
These segmentation results have been presented to an expert (a radiothera-
pist) who visually inspected them and considered them as very satisfactory. In
addition to this qualitative evaluation, we also perform a quantitative study on
the six patients, for whom we have the brainstem delineated by seven experts.
These patients were registered on the atlas using the two non linear registra-
tion methods. We have then used the atlas to get the binary segmentation of
the brainstem for each image. For each one, we have compared this automatic
segmentation with the seven manual segmentations performed by the di�erent
experts using the STAPLE algorithm [27], described in section 2.6. We show
the associated sensitivity and speci�city results in Table 1. We also report, for
each sensitivity/speci�city couple, the distance to the best achievable result
(Sens. = 1, Spec. = 1) to give a quick overview of the quality of the result.

These �gures con�rm that the results obtained using our method are similar to
the ones obtained using the dense transformation algorithm. We indeed obtain
only one distance which is a not quite as good with our algorithm while the
others are better than with dense registration.
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(a) (b)

(c) (d)

Fig. 6. Qualitative Segmentation Results on a patient from IGR. Com-
parison of the segmentations obtained using Runa ((a), (b)) and our locally a�ne
framework ((c), (d)) on injected T1 images with 3mm slice thickness. Left column:
axial slices ; right column: sagittal slices.

3.1.4 Semi-quantitative Validation in Clinical Conditions

Finally, this work on atlas-based brain critical structures segmentation is also
currently being validated in clinical routine [40]. A semi-quantitative valida-
tion has been performed on the IGR database described in section 3.1. An
expert rated the automatic segmentations by assigning for each structure a
qualitative indice of conformation. This index varies between 0 and 5:

• 0 corresponds to a total disagreement of the expert with the automatic
delineation
• 1 or 2 corresponds to a partial agreement (< 50% of the volume)
• 3 or 4 corresponds to a better agreement (> 50% of the volume)
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Patient # 1 2 3 4 5 6

Sensitivity (Runa) 0.88 0.86 0.84 0.79 0.85 0.78

Speci�city (Runa) 0.86 0.91 0.79 0.94 0.89 0.91

Distance to (1,1) (Runa) 0.19 0.17 0.27 0.22 0.19 0.24
Sensitivity (LAF) 0.86 0.85 0.82 0.84 0.84 0.76

Speci�city (LAF) 0.89 0.91 0.83 0.92 0.90 0.93

Distance to (1,1) (LAF) 0.18 0.17 0.25 0.18 0.19 0.25
Table 1
Quantitative registration results on the brainstem with a dense method
(Runa) and our method (LAF). Sensitivity and speci�city obtained using STA-
PLE algorithm based on seven experts segmentations for six patients. The results
we obtain are at least similar to the results obtained with a dense registration.

• 5 corresponds to a perfect agreement.

The agreement was visually evaluated on the basis of the shape of each struc-
ture, on the contours regularity and on their distance to the expected contours.
This index is called ASC index in Fig. 7. The average results of this evalua-
tion, done in clinical conditions on the 22 patients, are presented in Fig. 7 on
the following structures: the optic chiasma, the eyes, the pituitary gland, the
cerebellum, the optic nerves and the brainstem. Again these results con�rm
that the results are better using the locally a�ne framework when compared
to Runa, particularly on small structures such as the pituitary gland and the
optic chiasma. More details on this validation can be found in [40].

This study is intended in a near future to include more patients and use
quantitative measures of quality. However, it already con�rms that, thanks to
its robustness and e�ciency, the locally a�ne method is particularly adapted
to the delineation of brain structures, even in di�cult cases such as the images
from IGR.

3.2 Bone Registration in the Lower Abdomen Area

The second application also takes place in the frame of conformal radiotherapy
planning. The aim is to develop an automatic method to localize the bladder
and the prostate in the lower abdomen area. This will be based on CT images,
as it is the classical image acquired for this area. However, the organs we want
to delineate have a very low contrast on CT images. They also exhibit a high
variability in shape, size and contrast, depending on its emptiness and on
the presence or not of a contrast agent. Using an anatomical atlas as for the
brain is thus not adequate in this case and it is very di�cult to automatically
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Fig. 7. Semi-quantitative comparison of Segmentation Results. Comparison
using the ASC index performed at IGR between Runa method (called elastic) and
the locally a�ne framework (called multi-a�ne). The error bars superimposed show
the standard deviation of the results.

determine their position with accuracy.

One possible method to achieve this goal is the use of deformable models.
These methods however require a precise initialization of the model. This can
be done using an atlas where a reference image is associated to an initial
position of deformable models. We thus present in this application a �rst step
to estimate automatically the initial position of the bladder and prostate in
the lower abdomen area. For that purpose, we must initially bring the patient
image into the space of the reference image. As the variability of the organs we
are looking for is high, we would prefer to bring the patient in this common
space while not deforming too much the surrounding tissues; thus avoiding
misregistrations that may appear when comparing a bladder fully contrasted
to a bladder half contrasted for example.

We therefore established a set of salient points in the pelvic and leg bones and
aim at registering these stable surrounding structures. We present here a fea-
sibility study on this step, using �ve areas (the two femoral heads, the sacrum
and the two lower ischiatic tuberosities). The regions around these points are
used as a�ne component localizations in our algorithm. The evaluation will
then be performed on these reference points to assess this registration step.

We present here results of inter-patient registration on �ve patients using these
anatomical landmarks. All the patients' images are registered with respect to
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Registration result on the pelvis with femoral heads contours su-
perimposed. First row: axial slices. Second row: coronal slices. (a), (d): Reference
image, (b), (e): �oating image registered on atlas using a global a�ne transforma-
tion, (c), (f): �oating image registered using our framework. Our method achieves a
good positioning of the structures.

a sixth image which is taken as the reference image. The process consists of
two stages: a global a�ne registration is performed using a block-matching
algorithm [28], and then our algorithm is applied. We compare qualitatively
the results of one of those registrations in Fig. 8. We can see a signi�cant
qualitative improvement of the registration result with respect to a global
a�ne registration. The right femoral head is indeed misplaced with the global
transformation and is well registered with our method (arrows on Fig. 8).
Moreover, the information contained in the images outside the regions used in
the registration remains consistent from an anatomical point of view.

We also compare the results we obtain using our method with results obtained
using a dense registration algorithm [10], described rapidly in section 2.6. We
will call this method DT in our experiments.

Qualitatively, we obtain very similar results. We thus performed a quantitative
evaluation of the results on the position of the femoral heads in the images.
To do that, we apply for each method the obtained transformation to the
femoral heads centers of the reference image and compare them with the ones
in the �oating images. We show in Table 2 the norm of the Euclidean distance
between the transformed landmarks and the corresponding landmarks in the
�oating images.

We can see in this table that the results obtained using our method are at least
as good as the results obtained through dense elastic registration. We obtain
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Patient # 1 2 3 4 5

Left head (AFFI) 6.22 11.40 2.02 4.41 13.68
Left head (DT) 4.12 3.10 1.91 2.32 3.55
Left head (LAF) 3.00 3.22 0.55 1.82 2.63

Right head (AFFI) 3.72 0.87 7.75 4.59 7.00

Right head (DT) 2.55 1.52 2.16 1.28 3.95

Right head (LAF) 1.34 1.38 1.14 0.79 2.93
Table 2
Registration results on femoral head centers. Distances in millimeters between
the expected femoral head centers and those obtained from the registration (a�ne:
AFFI ; locally a�ne: LAF ; dense transformation: DT). These �gures show the
ability of our method to cope with large deformations similarly or even better than
with a dense registration.

also a stronger di�erence between the two non linear methods. This is due to
large deformations in soft tissues surrounding the bones. These deformations
indeed propagate when using a dense transformation in the elastic registration,
leading to poorer results. Our algorithm computation time is also much lower
(3 minutes as opposed to 10 minutes). Moreover, the goal was to place all
the patients in a common space while deforming the soft tissues as little as
possible. Our method performs the registration based on speci�c areas and
ensures consistent results all over the image. It is then much more adapted to
this type of application than a dense transformation solution, which tries to
match the entire �oating image.

4 Conclusion and Future Work

We have introduced in this article a novel framework for locally a�ne regis-
tration of anatomical structures. This allows us to adapt the transformation
complexity to the speci�c registration task to perform. This method is also
more robust, thanks to a more constrained transformation, and can there-
fore deal with images coming from di�erent centers, as demonstrated in [40].
Thanks to our novel Log-Euclidean regularization framework, we ensure a
smooth and coherent transformation. Finally, the use of the Log-Euclidean
polya�ne framework at the end of the algorithm ensures a smooth and invert-
ible transformation everywhere on the image.

We have used this framework so far on two applications, for which this frame-
work is well adapted. On those applications, we have shown a signi�cant quali-
tative improvement with respect to a dense registration method. The contours
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are indeed much more regular, while delineating well the structures. Our algo-
rithm is also much less dependent of the parameters, as we have always used
the same parameters for all the experiments on the brain. Finally, we have
shown quantitative results using sensitivity and speci�city, showing results at
least similar to the ones obtained using a dense registration algorithm.

In our experiments, we have chosen to use for each method one parameter set
for all patients. This set was determined qualitatively on several patients, in
order to get a good result everywhere. An interesting study would be to deter-
mine these parameter sets by using quantitative measures on many structures
everywhere in the brain. Moreover, in order to have a better idea of the depen-
dency of the algorithms to their parameters, it would be interesting to study
the variations of the quantitative measures when the parameters are varying.
This would add a robustness criterion to the evaluation of the methods.

The quantitative results on the brain have shown the limits of using only
voxel-based overlap quantitative measures. We have indeed some segmenta-
tions that look visually better than the dense registration, because of the less
irregular contours and that give nearly the same quantitative results as with
the dense registration. Thus, one future work will be to introduce a measure
of smoothness in the quality measures. This could be of great interest, as this
is one of the important points for medical doctors. We will also extend our
validation, mainly on brain critical structures segmentation. The goal will be
to add more patients and also to extend this validation to more structures.

An other �eld of experiments will be to estimate the in�uence of the areas
on the registration result. They are indeed prede�ned and not re�ned during
the registration algorithm. It would be interesting to see �rst the in�uence
of small changes in the prede�ned areas. Then, we could study the in�uence
of the number and shape of the areas (for example by de�ning several areas
using di�erent methods on the cerebellum). An other point to look at is the
re�nement of the areas during or after the registration. We could use the
clustering of the obtained deformation �eld over our regions as in [21]. We
could also de�ne a measure of the goodness of the registration inside an area
and use it for re�ning the prede�ned regions.

Finally, this algorithm can be used as a link between global registration and
dense non linear registration. This can be done by de�ning areas all over the
image, register the images and splitting the regions that are misregistered. By
looping over these two last steps, we would have an algorithm getting closer to
the dense transformation while keeping smooth transformations. Another way
could be to register the images using three steps instead of two: global regis-
tration followed by our algorithm and, to get the small residual deformations,
a dense registration. As the residual deformations will be smaller, we will then
be able to regularize substantially more and get smoother deformations.
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A Locally A�ne Transformation

We detail in this appendix how to create a global locally a�ne transformation
from a set of N a�ne transformations Ai de�ned on regions Ri. The main idea
is that we want to have a global transformation keeping the properties of the
local a�ne transformations on their areas of de�nition. We detail here three
methods to achieve this goal.

These three methods require for each region Ri an a�ne transformation Ai

and a non-negative weight function wi(x). This function wi can be of any
form like a Gaussian or a distance function. Furthermore, we assume that the
weights are normalized, i.e. for all x, ∑N

i=1 wi(x) = 1.

A.1 Transformation Incorporating Rigid Structures

This method has �rst been proposed by [20] and is also used in [21]. Weight
functions wi(x) are basically de�ned as an inverse distance to the region Ri

and renormalized to give the wi. In this approach, pairs of rigid structures
are selected in the input images, along with linear transformations. A number
of pairs of outer landmarks further constrain the interpolation scheme, which
uses Hardy multi-quadric basis functions to interpolate in between the areas.
This results in applying the a�ne transforms to the user-de�ned structures
while ensuring a smooth interpolation in between them.

This scheme has the advantage to keep an exact a�ne transformation inside
the Ri. However, it does not ensure always the invertibility of the �nal trans-
formation, which is desirable when using the registration for the delineation
of structures. Furthermore, it has been used so far in 2D and seems complex
to use and to optimize in full 3D.

A.2 Direct Averaging Method

In this case, having de�ned the weight functions, the way to fuse the a�ne
components has been given in [41]. The transformation T = M2(Ai) is simply
computed as the weighted average of the displacements generated from each
Ai with respect to the weights wi(x):

T (x) =
N∑

i=1

wi(x)Ai.x. (A.1)
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The transformation obtained using (A.1) is smooth. Using an inverse distance
function as in section A.1 allows us to get roughly a�ne transformations in-
side the regions Ri. However, as pointed in [25], the resulting transformation
obtained is not invertible in general. Nevertheless, this method is fast and
simple to implement. Moreover, optimizing the a�ne transformations in this
framework is very easy and e�cient.

A.3 Log-Euclidean Polya�ne Framework

To remedy the problem of invertibility in the preceding method and ensure an
invertible transformation all over the image, [25] proposed a polya�ne frame-
work, which was improved and rendered faster thanks to the Log-Euclidean
framework recently in [26].

This method, noted T = M3(Ai), consists in averaging in�nitesimal displace-
ments generated from the Ai according to the weights wi(x). The value of the
transformation at point x is then obtained by integrating the trajectory of
point x between time 0: x(0) = x and time 1: x(1) = T (x). This results in an
Ordinary Di�erential Equation (ODE):

ẋ =
∑

i

wi(x) log(Ai).x. (A.2)

The Log-Euclidean polya�ne transformations are, by construction, always in-
vertible, and their inverse can be very e�ciently computed. With this method,
the estimation of the a�ne transformations is however computationally expen-
sive and much more complicated than with the direct averaging. Moreover, the
results are very close to the preceding method except in interpolating areas
where non invertible parts of the transformation were present.
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