DTI REGISTRATION WITH EXACT FINITE-STRAIN DIFFERENTIAL
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ABSTRACT et al. [5] register tensor images diffeomorphically using an
exact gradient of the PPD reorientation.

For a general transformation, the FS reorientation is de-
ned by the rotation component of the deformation eld. Zlgan

gorithms using full tensor information suffer from dif ctigs . : : :
. . : . . . : et al. [2] propose a novel piecewise af ne registration algo-
in computing the differential of the Finite Strain tensoonie . ; . . . .

rithm to register tensor images using FS reorientation. Be-

entation strategy. We borrow results from computer vision . . . : )
. . . L . cause each piecewise transformation considered is athee, t

to derive an analytical gradient of the objective functi@y. : .

) . rotation component of the deformation needst be com-
leveraging on the closed-form gradient and the one-paemet . L . -

. : : : . puted. Instead, since rotation is already explicitly ot
subgroups of diffeomorphisms, the resulting registratibn . ; ; . . .
: e . ; . . _in af ne registration, the gradient due to FS reorientatiam
gorithm is diffeomorphic and fast. Registration of a pair of . . ; .
e ; be easily computed. These piecewise af ne transformations

128 128 60 diffusion tensor volumes takes 15 mmUteS'are fused together to generate a smooth warp eld. However
We contrast the algorithm with a classic alternative thatsdo g 9 P ’ '

: : o . it is unclear how much of the optimality is lost through the
not take into account the reorientation in the gradient aOMP ¢ ion of the optimal piecewise af ne transformations.

tation. We show with 40 pairwise DTI registrations that gsin In this work, by borrowing results from pose estimation [6],

the exact gradient achieves signi cantly better regigtrat . . .
9 9 y 9 we solve the open problem of computing the differential of
Index Terms— Biomedical image processing, image reg-the FS reorientation with respect to the Jacobian. Indeed,

We propose an algorithm for the diffeomorphic registratibn
diffusion tensor images (DTI). Previous DTI registratidn a

istration, diffusion tensor imaging since the differential of the Jacobian with respect to taagr
formation parameters is usually easy to compute, this solve
1. INTRODUCTION the general problem of nding the differential of the FS re-

orientation for any parametric transformation. We incerpo

Registering scalar images requires a deformation model, d@t€ the exact FS gradient into a diffeomorphic DTI registra
interpolation scheme, a similarity metric and a reguldiiza 10N scheme, extending the recently introduced diffeorhirp
method. For DTI however, one also needs to de ne a tensd#€mons algorithm [7] from scalar to tensor images. The dif-
reorientation scheme in order to warp a tensor image consiéomorphic demons algorithm is a diffeomorphic variant of
tently with the anatomy [1]. The two commonly used reori-the original demons algorithm [8], using a fast exponermtal
entation strategies, the Finite Strain (FS) reorientatiothe ~ Stationary velocity elds [9]. The resulting registratienfast,
Preservation of Principal Directions (PPD) reorientatimve  taking about 15 minutes.
similar empirical performances [2]. We compare our algorithm with an alternative thatignores
Need for reorientation substantially complicates the comthe reorientation during the gradient computation butiesuar
putation of the gradient of the registration objective fime. ~ t€nsors after each iteration. This algorithm is a diffeopfar
Many DTI registration algorithms therefore only use scalaVérsion of the one proposed by Alexander and Gee [4] using
values or features that are invariant to image transfoonaf]. FS reorientation. We show that using the exact gradient re-
Alexander and Gee [4] perform elastic registration of ten-SUltS in signi cantly better registration. In particuléine Sum
sor images by reorientating the tensors after each iteratie  Of Squares Difference (SSD) is improved regardless of the
ing PPD reorientation. The reorientation is not taken irto a Metric (Euclidean or Log-Euclidean) used for interpolatio

count in the objective function. In the more recent work, Cad*Pi€ctive function or evaluation. . o
To summarize, our contributions areé) (erivation of the
This research is funded by the INRIA "associated teams”grogCom-  exact Finite Strain (FS) differential usable in any DTI iegi

puTumor http://www-sop.inria.fr/asclepios/projects/bostorB.T. Thomas : sy : : ol
Yeo is funded by the Agency for Science, Technology and Rebesinga- tration scheme,ii() incorporation of the FS differential into

pore. He did this work while at INRIA. DT data courtesy of Deducreux, & fast diffeomorphic DT_' registration a|90r_ithm'ii0 exper-
MD, PhD, Bicétre Hospital, Paris. iments showing that using the exact gradient leads to better




registration, ¥) an implementation that allows for both Eu- on the transformation.  is a diagonal matrix that de nes

clidean and Log-Euclidean approaches. the variability at a particular voxel. x and 1 provide the
tradeoffs between the terms in the objective function.
2 EINITE STRAIN DIFEERENTIAL This formulation leads to a fast and simple optimization

procedure by alternately optimizing the rst two terms and
Deforming a tensor image by a transformatidinvolves ten-  the last two terms of (3) [7]. ‘Typically, one has dists) =
sor interpolation followed by tensor reorientation [1].Gam- i€ sij andReg(s) = jir sjj°. The regularizations can be
pute a deformed tensor at a voxelone rst computes the in- Modi ed to handle uid-like constraints.

terpolated tenscF (n). In this work, we will use Euclidean[1] ~ F andM can be seen as@N 1 vector by “raster-
and Log-Euclidean interpolation [10]. izing” each of theN (3 3) tensors into a column vector.
According to the FS reorientation strategy [1], we com-But F andM can also be taken as the Log-Euclidean trans-
pute the rotation component of the deformation at pixel forms of the original tensor images (done by converting each
tensorT to its logarithmlog(T) [10]). This applies because
R(n)=(J(n)J(n)") %J(n) 1) log(RTTR) = RT log(T)R for any rotation matribR. This

is convenient, since we only need to perform a one-time log-

whereJ (n) is the Jacobian of the spatial transformation  arithm transformation of the tensor images to work under the
Id+ u at pixeln, u being a dense non-parametric displace-Log-Euclidean framework [10]. The resulting similarity axe
ment eld. The presence of the matrix square root makesure will be referred to as the Log-Euclidean SSD (LOG-
any gradient computation dif cult. The interpolated tenso SSD).
T(n) is then reoriented, resulting in the nal tensbf(n) = Under certain smoothness conditions, a stationary veloc-
RT(n) T(n) R(n). For registration using the nite strain ity eld v parameterizes a diffeomorphism via the exponen-
strategy, we see from the chain rule that we need to comput&l mapexp(v) [9]. Formally,exp(v) is the solution at time
the differential ofR with respecttd. De ning S = (JJ )z 1 of the stationary ODE@c=@%¢ v(x), with ¢(0) =
and using the results of pose estimation methods [6], we gefThus,c(1) = exp(Vv). The scaling and squaring approach [9]

X allows us to compute the exponential without having to ex-

dR= RRT@r(S)I S) 'R (RT); ("), (2) plicitly solve the ODE.

i At each iteration, the diffeomorphic demons algorithm
looks for an update transformation in the space of diffeemor
phisms parameterized by stationary velocity elds and com-
pose the update with the current transformation:

where denotes 3D cross produgt); denotes theé-th col-

umn of () and is the operator that converts aBy 1

vectorm = [my; m, m3]" into the skew symmetric matrix
n?s ms mmz1 :LetJ; be theij -th componentof . @%R 1. Choose a starting spatial transformatiofmepresented

mz m by a displ t eld
is thezn gllven by R in (2) if we setd to O, except for(dJ ); y a displacement eld)

2. lterate until convergence:
which is set tal. 9

(i) Given s, compute a velocity eld update by
minimizing the rst two terms of (3):
Es(v)=j '[F RT(M s exp(v))RJj*+
. Cjidist(s;s  exp(v))jj2 wrtv

(ii) Ifa uidlike regularizationisused,let K ig ?

3. DIFFEOMORPHIC DEMONS FOR DTI

3.1. Algorithm overview

The diffeomorphic demons algorithm for scalar images [7] v. The kernel will typically be Gaussian.
uses a modi ed demons objective function, equivalent ta tha (i) Letc s exp(v)

of the original demons algorithm [8]. We use the same demons (iv) If a diffusion-like regularization is used, let
objective function, but have to incorporate the reorigatat Id+ Kgif ?(c Id) (elselets c¢).

matrix R into the deformation model. . . . -
Steps 2(ii) to 2(iv) essentially optimize the last terms3)f (

E«s)=jj *F R'(M ORj?

: 3.2. Objective Function Derivative

+ dist(s;0?+ -2Reds) (3) )

_ _ _ . _ We now focus on the optimization of step 2(i) of the DTI dif-
F isthe xed tensorimage arid is the moving tensorimage. feomorphic demons algorithm, which objective function can

s is the spatial transformation to be optimizeds an auxil-  be written in a non-linear least-squares form:

iary variable angj jj denotes the Euclidean Sum of Squares h i

Difference (EUC-SSD) similarity measure between the xed Es(v) = IF RT(M s e)R] "l e')
. . . . . S - 1.v 2 \Y
image and warped moving image [4, 2R is the rotation x e (s )
matrix computed for each voxel and is implicitly dependent (4)

2 I 2



The derivative of 2isa3N 3N matrix: D.”(v = 0) =
L11d. D, (0) is aspars@N 3N matrix. It is easier to
interpretD'Sl(O) asN N blocksof9 3matrices. In partic-
ular, the(n; j )-th block[D; " (0)] is equal to%jjf” o -
Using the chain rule and the fact that the derivative of the ex

ponential at the identity is the identity, we get:

1 _ @%(s (Id+u)) (2) Moving Image
[DS (0)]nj - : @) u=0 (5)
Using the product rule, (5) can be decomposed into a sum of:
Anj = @éf(ﬂ) 4o M s(n) R(n)andAj
RT(m) &g i RO

R(n) is a function of the Jacobiah(n) of spatial transforma-
tion at then-th pixel. In practiceJ (n) is de ned numerically
using nite central difference, and depends only on the dis-
placement of the 6 neighbors. Therefore,

ol — 1 T
[DS (O)]”” - (n)R (n)r (M S)(n)R(n) (6) (b) Fixed image and(c) Registered imagd€d) Registered image
zoom (approx. grad.) (exact grad.)
and for neighbor$ of voxeln, we get Figure 1. Qualitative comparison between exact FS gradient and
approximated gradient for registering a pair of subjectens pa-
1 . i . A
Dy ()] = 1(n)(Anj + Alj ) ) rameters) using the Log-Euclidean framework (a) Movingdma

(b) Fixed image. (c) Registration using approximated mgwnage

. . . Rn) gradient. (d) Registration using exact FS gradient. Volimwere
Using the differential oR from (2), we can comput% slightly cropped for better display. Exact gradient ach@better
using the chain rule. alignment of ber tracts with smoother displacement elderBors
In summary, we have corﬁnputed ithe full gradient of ourin the highlighted regions of (b) and (d) are coherently rtée in
a north-east direction. However, in (c), the directionshef tensors
are more scattered. Furthermore, the volume of the tens¢c$ are

3N 3N matrix, whiIeD'S 1(0) isaspars@N 3N matrix. in ated relative to (b) and (d). Numerically, exact FS grl has
lower SSD with a smoother deformation eld (not shown).

o1
objective function:D (0) = Dsz(l? where ,21d is a

3.3. Optimization: Gauss-Newton Method the exact FS gradient, we adapt our algorithm to ignore the re
orientation part of the objective function in the gradieotz
putation. Tensors are treated like vectors, but they ané-reo
AT ented at every resampling step. This approximated-gradien
Es(v) HFORIMOSR) 4 Dj 1(,?,) v (8)  algorithm is thus a diffeomorphic variant of [4], except we
use FS reorientation. In this case, the linear system (8pean
Solving this sparse linear system of equations/f@rovides decoupledint@ 3independent sub-systems. A further sim-
an update for a single iteration of the Gauss-Newton optimiz pli cation of the algorithm uses only the gradient of the de
tion method. At the nest multiresolution level, solvingeh image during the entire registration process, similarlyhi®
sparse linear system requires about 60 seconds. This is th@st common variant of the classical demons algorithm [8].
bottleneck of the algorithm. Due to the fast convergence of  Figyre 1 shows the registration of two subjects. Visually,
the Gauss-Newton method, we typically only need to solVgne exact FS gradient results in better tract alignment with

the linear systems 10 times per multi-resolution level. Thesmqgother displacement eld than the use of the approximated
resulting registration takes about 15 minutes. gradient.

From the previous sections, we can now write

To quantitatively compare the performance of the exact
4. EXPERIMENTS AND DISCUSSIONS FS gradient and the approximated gradient, we consider pair
wise registration of 10 DTI. Among the 90 possible registra-
We consider pairwise registration among 10 DT imad@8(  tions, we randomly select 40 pairs of images. The statistics
128 60, 25 gradient directions). To illustrate the utility of appear to converge after about 30 pairs of registrations.



0.55

0.5

0.45

0.4

——Exact FS gradient

- - - Approximate Gradieift
0.35 - - Fixed Image Gradierjt

——Exact FS gradient
- - - Approximate Gradient
- - Fixed Image Gradierjt

0 0.1 0.2

(a) Average EUC-SSD. Eu-

clidean registration

0.5

0.45

0 0.1 0.2

(b) Average LOG-SSD. Eu-
clidean registration

measure from the one that is optimized (e.g. evaluating EUC-
SSD whereas Log-Euclidean registration is used).

5. CONCLUSION

In this work, we derive the exact differential of the FS reori
tation. We propose a fast diffeomorphic DTI registration al
gorithm using the exact FS differential. We show that the use
of the exact differential improves the image similarity net

by 5 to 10 percent over an entire spectrum of harmonic ener-
gies. The improvements persist even if we evaluate a differe
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similarity measure from the objective function we optimize
Taking the reorientation into account therefore allows the

algorithm to match two tensor images more easily. The re-

orientation also provides an additional constraint: thgse

tration algorithm cannot arbitrarily pull in a far-away reg

for matching because this induces reorientation of ternisors

Figure 2: Average SSD (y-axis) over an entire spectrum of harmonicother regions. This additional constraint acts as a funtbgr

energy (x-axis). Harmonic energy is increased by decrgabmsize
of the smoothing kernel.

As implied by previous literature, comparing registration

ularization, leading to a better solution.
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