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Abstract. Asclepios1 is the name of a research project officially launched
on November 1st, 2005 at INRIA Sophia-Antipolis, to study the Analysis
and Simulation of Biological and Medical Images. This research project is
following a previous one, called Epidaure, initially dedicated to Medical
Imaging and Robotics research. These two project teams were strongly
supported by Gilles Kahn, who used to have regular scientific interactions
with their members. More generally, Gilles Kahn had a unique vision of
the growing importance of the interaction of the Information Technolo-
gies and Sciences with the Biological and Medical world. He was at the
origin of the creation of a specific BIO theme among the main INRIA
research directions, which now regroups 16 different research teams in-
cluding the Asclepios one, whose research objectives are described and
illustrated in this article.

1 Introduction

1.1 The revolution of biomedical images and quantitative medicine

There is an irreversible evolution of medical practice toward more quantitative
and personalized decision processes for prevention, diagnosis and therapy. This
evolution is supported by a constantly increasing number of biomedical devices
providing in vivo measurements of structures and processes inside the human
body, at scales varying from the organ to the cellular and even molecular level.
Among all these measurements, biomedical images of various forms play a more
central role everyday.

Facing the need of a more quantitative and personalized medicine based on
larger and more complex sets of measurements, there is a crucial need for devel-
oping 1) advanced image analysis tools capable to extract the pertinent infor-
mation from biomedical images and signals, 2) advanced models of the human
body to correctly interpret this information and 3) large distributed databases
to calibrate and validate these models.
1 Asclepios was a Greek hero who later became the Greek god of medicine and heal-

ing. His most famous sanctuary was located in Epidaurus which is situated in the
northeastern Peloponnese(from Ron Leadbetter)
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1.2 Advanced Biomedical Image Analysis

Tremendous progress has been made in the automated analysis of biomedical
images during the past 2 decades [16, 3]2. For instance, for rigid parts of the body
like the head, it is now possible to fuse in a completely automated manner images
of the same patient taken from different imaging modalities (e.g. anatomical and
functional), or to track the evolution of a pathology through the automated
registration and comparison of a series of images taken at distant time instants
[20, 41] (cf. Figure 1). It is also possible to obtain from a Magnetic Resonance
image of the head a reasonable segmentation into skull tissues, white matter, grey
matter, and cerebro-spinal fluid [42], or to measure some functional properties
of the heart from dynamic sequences of Magnetic Resonance [2], Ultrasound or
Nuclear Medicine images [22].

Fig. 1. Automatic detection of the evolution of multiple sclerosis lesions from a time
sequence of 3-D magnetic resonance images of the head of a patient (from D. Rey et
al. [33]).

Despite these advances and successes, one can notice that statistical models
of the anatomy are still very crude, resulting in poor registration results in
deformable regions of the body, or between different subjects. If some algorithms
exploit the physical modeling of the image acquisition process, only a few actually
model the physical or even physiological properties of the human body itself.
Coupling biomedical image analysis with anatomical and physiological models of
2 One can have a good vision of the state of the art with the proceedings of the most

recent conferences MICCAI’2006 (Medical Image Computing and Computer Assisted
Intervention) or ISBI’2006 (Int. Symp. on Biomedical Imaging) as well as from the
most recent issues of journals like IEEE Trans. on Medical Imaging or Medical Image
Analysis (Elsevier)



3

the human body could not only provide a better comprehension of the observed
images and signals, but also more efficient tools to detect anomalies, predict
evolutions, simulate and assess therapies.

1.3 Computational Models of Anatomy and Physiology

Computational Models of the Human Body constitute an emerging and rapidly
progressing area of research whose objective is to provide a better understand-
ing of the anatomical variability (Computational Anatomy) and of the major
functions of the human body (Computational Physiology), as well as to provide
effective algorithmic tools for their realistic numerical simulations [4, 14, 5].

Quite advanced models have already been proposed to study at the molec-
ular, cellular and organic level a number of physiological systems (e.g. cardiac,
respiratory, digestive, nervous (central and peripheric), reproductive, etc. [23]).
For instance, computational models of the heart have been proposed to interpret
the cardiac electromechanical activity from medical images and electrophysio-
logical measurements [6, 9], or to study the properties of physiological flows in
blood vessels [32], in order to predict the apparition of cardiovascular diseases.
Computational Models have also been proposed to explore the structures and
the activity of the brain from anatomical and functional images and signals in
order to better understand a number of brain diseases (e.g. Alzheimer’s disease,
Multiple Sclerosis, Creutzfeldt-Jakob disease, Epilepsy or Schizophrenia) [13].
Advanced models of abdominal organs including the liver [14] and the intestine
[21] have been developed in the context of image-guided surgery cf. Figure 2 and
surgery simulation (cf. Figure 3). Other models have been developed to predict
the evolution of cancerous lesions in various organs [38, 37, 24].

Not only these models and others need to be developed, refined and validated,
but new methods must be designed to automatically adjust the model parameters
to a given person from the available biomedical signals (in particular medical
images) and also from prior genetic information. Building such patient-specific
models is a challenging goal which requires in particular the development of new
data assimilation methods coping with massive numbers of measurements and
unknowns.

1.4 Large Distributed Databases

Another important milestone to make progress in these directions is the devel-
opment of large databases of subjects and patients including biomedical signals
and images as well as genetic information, and the development of specific tools
to correlate for instance the shape and evolution of anatomical structures (phe-
notype) with the genetic information (genotype) and/or with a certain number
of pathologies. The construction and exploitation of these databases require the
development of specific measurement platforms regrouping cutting edge imaging
facilities with easy access provided to internal and external research teams (e.g.
the Neurospin3 platform of CEA).
3 URL of Neurospin: http://www.meteoreservice.com/neurospin/
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Fig. 2. Augmented reality for image-guided radio-frequency ablation of a liver tumor
(from S. Nicolau, L. Soler et al. [27]

Huge computing power is already required to run advanced computational
models in their direct mode (for prediction) or inverse mode (to adjust to a spe-
cific patient from biomedical measurements). The amount of required computing
power to process large databases will require the development of grid-enabled
algorithms capable to exploit distributed computing power and data in large
international networks.

2 From Epidaure to Asclepios

To address the above issues, the Asclepios research project was launched on
November 1st, 2005 at INRIA Sophia Antipolis after a final approval by INRIA
CEO Gilles Kahn. It was built on the results of the previous research project
Epidaure, initially launched at INRIA Rocquencourt in 1989 and later installed
in Sophia-Antipolis in October 1992 thanks to the strong support of Gilles Kahn
and Pierre Bernhard (at this time respectively VP for Science and Director of
INRIA Sophia-Antipolis). The original scientific objectives were the quantitative
analysis of medical images and the coupling of medical imaging with medical
robotics and surgery simulation.

Some important contributions of the Epidaure project were published in an
invited article of the IEEE Transactions on Medical Imaging in November 2003
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Fig. 3. Surgery simulation with visual and force feedback. (cf. S. Cotin, G. Picinbono,
C. Forest et al. [12, 31, 18])

[3]. One can note that the Epidaure team also contributed with a few other
teams to the establishment of Medical Image Analysis and Simulation as a well
identified discipline in the field of computer science with its own scientific com-
munity, its scientific peer-reviewed journals and conferences; in particular we
contributed to the founding of the Medical Image Analysis journal (MedIA) and
the MICCAI conference (Medical Image Computing and Computer Assisted In-
tervention), again with the encouragements of Gilles Kahn who attended the
precursor conference CVRMed’95 (Computer Vision, Virtual Reality and Robot-
ics in Medicine) organized by INRIA in Nice in April 1995, and the MICCAI’04
conference organized by INRIA in Saint-Malo in September 2004.

2.1 Personalized models for diagnosis and therapy

If several of the problems listed in the 1989 Epidaure research proposal were
solved, some important ones remain unsolved while new challenging problems
have appeared. The research objectives of the Asclepios proposal take into ac-
count this situation and are organized around 5 research directions, namely
1) Medical Image Analysis, 2) Biological Image Analysis, 3) Computational
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Anatomy, 4) Computational Physiology, 5) Clinical and Biological Validation.
Only directions 1 and (part of) 5 correspond to a smooth continuation of the
former research objectives of the Epidaure project, whereas directions 2, 3 and 4
correspond to novel objectives related to emerging problems.

Figure 4 somehow summarizes the overall objectives of the Asclepios project.
The computational models of the human body that we consider often have 4 dif-
ferent main components including geometry, statistics, physics and physiology.
In order to personalize a generic model, it is necessary to identify its parame-
ters by confronting it to a set of patient-specific biomedical images and other
biomedical signals. The personalized model can then in turn be projected back
on the images and signals to better interpret them, and to provide an help for
the diagnosis of diseases. The personalized model can also be used to predict an
evolution, or to plan and simulate an intervention. This provides an help for the
prevention and therapy of diseases.

Computational 
Models 

of
human body

Medical 
Images

and 
Signals

Interpretation
(diagnosis)

Identification
(personalization)

Prediction of
evolution

Therapy
simulation

Therapy
planning

Geometry
Statistics
Physics
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Fig. 4. Objectives of the Asclepios project

In the sequel of this article we provide four illustrations of several aspects of
this current research respectively on a) the automatic measurement of the vari-
ability of the geometry of some brain structures, b) the simulation of the growth
of personalized brain tumors, c) the simulation of personalized electromechan-
ical activity of cardiac ventricles, and d) the construction of large mosaics of
microscopic molecular images acquired in vivo and in situ, before we conclude.
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3 Measuring Brain Variability from Sulcal lines

The objective of Computational Anatomy is the modeling and analysis of bio-
logical variability of the human anatomy4. Typical applications cover the sim-
ulation of average anatomies and normal variations, the discovery of structural
differences between healthy and diseased populations, and the detection and
classification of pathologies from structural anomalies.

Studying the variability of biological shapes is an old problem (cf. the re-
markable book ”On Shape and Growth” by D’Arcy Thompson [39]). Significant
efforts have been made since that time to develop a theory for statistical shape
analysis, one can refer to [15] for a good synthesis, to a specific special issue
of Neuroimage [40] or more recently to the first international workshop on the
Mathematical Foundations of Computational Anatomy organized by Xavier Pen-
nec and Sarang Joshi at MICCAI’2006 [29].

Computational Anatomy lies at the intersection of geometry, statistics and
medical image analysis. A 3 stage approach to compute statistics on anatomical
shapes is proposed by M. Miller in [26]: 1) construction from medical images of
anatomically representative manifolds based on feature points, curves, surfaces
and volumes); 2) assignment of a point to point correspondence between these
manifolds (possibly through a restricted class of geometric transformations, e.g.
rigid, affine, diffeomorphism); 3) generation of probability laws of anatomical
variation from these correspondences.

We provide below an illustration of a similar approach applied to the study
of the variability of some brain cortical structures. Through a longstanding col-
laboration5 with the LONI research group of UCLA (Pr. Paul Thompson), we
developed a method to study the variability of the so called sulcal lines which
are defined by neuroanatomists at the bottom of brain cortical foldings. These
lines can be extracted and labeled manually by experts (this is the case here
on a database of 700 subjects), or automatically by expert systems like the one
developed at CEA by the group of J.F. Mangin [34].

Figure 5 shows a typical set of sulcal lines extracted on the cortical surface of
a brain of the LONI database. With V. Arsigny and P. Fillard we developed an
original approach to register all the images of the database in a common reference
frame after an affine normalization, followed by an individual registration of all
homologous sulcal lines together. This allowed us to compute for each sulcal line
an average sulcal line, and along each of these lines a local measure of variability
under the form of covariance matrix computed at regularly sampled points.

Thanks to new metrics defined in the space of Symmetric Positive Definite
Matrices (also called ”tensors” in our community), we were able to propose a
method to extrapolate this local measures of variability to the whole cortex
in a plausible manner [28, 1]. We see in Figures 6 a color representation of the

4 cf. the summer school organized at UCLA in July 2004 by P. Thompson (UCLA)
and M. Miller (Johns Hopkins) cf. www.ipam.ucla.edu/programs/mbi2004/

5 cf. Associated Teams BRAIN-ATLAS http://www-
sop.inria.fr/epidaure/Collaborations/UCLA/
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Fig. 5. Example of sulcal lines drawn on the cortical surface of one of the brains of the
UCLA database (courtesy of P. Thompson).

variability measured in various regions of the brain which quantitatively confirms
previous observations made on a more qualitative basis by neuroanatomists.
These results are published in [17].

Statistical information about variability can be used to help guiding the su-
perposition of a brain atlas on the brain images of a specific patient. This was
shown with a different statistical database and in an image-guided radiotherapy
context by O. Commowick et al. in [11].

Another study, conducted during the PhD work of Jonathan Boisvert [8],
concerned the statistical analysis of the variability of the scoliotic spine. By using
an articulated model based on the relative position and orientation of successive
vertebrae (through rigid body transformations), we were able to estimate the
variability of the spine shape over a database of more than 300 patients. This
was used to assess the evolution of the deformation during orthopedic treatments;
moreover, the first four modes of variation appeared to be closely correlated to
the usual clinical classification of scolioses, which reinforces the clinical interest
of the chosen approach. Figure 7 illustrates a typical result.

4 Simulation of Tumor Growth

Combining anatomical, physical and physiological models of the human body
is part of the Computational Physiology research field. The next two examples
belong to this field. The first one concerns the simulation of diffusive tumor
growth based on medical images. The objective is to identify the parameters of
a generic dynamic model from a sufficient number of observations on a specific
patient, in order to better characterize the nature of the observed tumor. This
image-based characterization of the tumor aims at better predicting its plausible
evolution, and anticipating the effects of possible therapies (e.g. radiotherapy,
surgery, chemotherapy).

The work described in [10] includes three main levels of modeling: the first
level is geometrical and includes the extraction of the main structures of the head
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Fig. 6. Color maps showing the geometrical variability of the cortical structures ex-
trapolated from the sulcal variability and a mathematical Riemannian framework. Left
column shows the amplitude of the variability (hot colors mean high variations among
subjects). Right column shows the main direction of variability. (color code: Red: left-
right oriented tensor, Green: posterior-anterior oriented, Blue: inferior-superior ori-
ented. Cf. P. Fillard, V. Arsigny et al. [17]

from a set of multisequence magnetic resonance images (MRIs). Among these
structures are 1) the skull, 2) the gray and 3) the white matter of the brain, 4) the
cerebrospinal fluid and 5) the falx cerebri. Figure 8 shows a typical representation
of these structures. The accurate geometric description of these structures plays
an important role as the proliferation and migration of glial tumor cells strongly
depend on the nature of the tissues and also on the orientation of the white
matter fibers.

The second level of modeling refers to biomechanics. The aim is to simulate
the deformation of the brain induced by the tumor growth, also called ”mass ef-
fect”. We build a finite element model of the previously extracted head structures
under the hypothesis of an inhomogeneous isotropic linear elastic behavior of the
biological tissues. Linearity is a reasonable assumption because the amplitude
of the deformations is small. Inhomogeneity takes into account the mechanical
variability of the tissues.
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Fig. 7. Statistical spine model. From left to right: mean spine model reconstructed from
a database of 300 patients with scoliosis, rotation and translation covariance measuring
the local variability of each vertebra (color encodes the determinant of the covariance
matrices). Top: Postero-anterior view. Bottom: lateral view. (cf. J. Boisvert [8])

The third level of modeling concerns the physiopathology of the tumor it-
self. We consider a macroscopic description of the tumor cell density through
a Fisher-Kolmogorov reaction diffusion equation. The reaction component is a
second order polynomial which corresponds to a logistic proliferation law: expo-
nential increase of number of cells followed by a reduced proliferation rate until
an asymptotic value is reached. The diffusion component models the migration of
tumor cells in their neighborhood. Because glioma cell migration is preferential
along the white matter fibers, the main bundles of white matter fibers are in-
cluded in the model, through diffusion tensor MRI. The biomechanical coupling
with the reaction-diffusion equation is introduced in the constitutive equation
through a local pressure proportional to the tumor cell density.

Figure 9 shows an example of the simulation of the progression of a glioblas-
toma during a 6 month period, with a good correspondence between observa-
tions and simulations. The identification of the parameters of the model followed
an interactive and semi-automatic procedure. It is the current PhD work of E.
Konukoglu [25] to identify automatically these parameters from the observations
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at two time points, and to measure the predictive power of the model against a
third time point.

Once validated, we believe that such models could be used to better delin-
eate for instance the dosimetry planning in radiotherapy, by proposing a margin
outside of the visible contours of the tumor which would take into account the ac-
tual proliferation and diffusion parameters of the model, as well as the privileged
directions of the main white matter fibers.

Fig. 8. The different tissues included in the biomechanical model of the head. 1 Skull.
2 Grey matter. 3 White matter. 4 Ventricles. 5 Falx cerebri

5 Personalized Electro-Mechanical Model of the Heart

Building a personalized electro-mechanical model of the heart ventricles is an
important task to simulate and analyze the electrical or mechanical activity of
the heart of a specific patient.

We started the research on this topic at INRIA about 6 years ago through a
collaborative action ICEMA6 funded by the scientific direction of INRIA. This
collaborative action was closely followed and supported by Gilles Kahn. It in-
volved several research project teams at INRIA including Sosso, Caiman, Ep-
idaure, Opale and Macs, and external research groups at NIH (E. Mc Veigh),
Guy’s Hospital (R. Razavi), and Philips (O. Gérard). This collaboration was
even reinforced more recently through a specific INRIA consortium called Car-
dioSense3D7, currently involving the INRIA teams Asclepios, Macs, Reo and
Sosso2, as well as the previous NIH, Guy’s Hospital and Philips research groups.

6 www-rocq.inria.fr/sosso/icema2/icema2.html
7 http://www-sop.inria.fr/CardioSense3D
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(A) (B) (C) (D)

Fig. 9. Six months simulation of a glioblastoma growth. (A) T2 MRI of the patient,
March 2002. (B) Previous MRI with superimposed tumor cell isodensity contours used
for initialization. (C) T2 MRI of the same patient in September 2002 (6 months later).
(D) Previous MRI with superimposed tumor cell isodensity contours simulated with
the model.

The current models include again 3 levels of description [35]. The first level
is a geometrical description of the anatomy of the cardiac ventricles which is
adapted to the specific geometry of a given patient through image processing
methods. The direction of the cardiac fibers is projected onto this geometric
model by automatically mapping an average description which comes from a
previous statistical analysis [30].

The second level of modeling is a macroscopic description of the evolution of
the action potential of cardiac cells, which measures the difference between the
extra-cellular and the intra-cellular electrical potentials. This evolution is mod-
eled through a set of reaction diffusion equations (initially proposed by Fitzugh
and Nagumo, and later refined by Aliev and Panfilov). These equations take
into account a higher conductivity in the direction of the fibers at each point
of the previous geometrical description, and allow a realistic simulation of the
depolarization and repolarization waves within the cardiac tissues.

The third level of modeling is the electro-mechanical coupling which describes
how the action potential variations actually controls the contraction and the re-
laxation of the cardiac fibers. We chose a macroscopic model of Bestel, Clément
and Sorine [7]: a set of partial differential equations combines locally the be-
havior of an active elastic contractile element controlled by the previous action
potential, with in addition two passive elastic elements respectively in parallel
and in series. This model, initially inspired by the model of Hill-Maxwell is based
on a multiscale analysis from the nanoscopic to the macroscopic scale. We see in
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Fig. 10. The simulated displacement of the brain parenchyma due to the development
of the previous tumor model in (left) coronal and (right) transverse views.

Figure 11 an illustration of the realistic simulation of the contraction of a generic
instance of this model.

The personalization of such a generic model must then be done through a
set of specific measurements obtained through cardiac imaging (e.g. Ultrasounds,
Magnetic Resonance, Computed Tomography or Nuclear Medicine Imaging) and
electrophysiology (typically the electrocardiogram or ECG). This is a difficult
inverse problem which can be attacked through several strategies (cf. for in-
stance [36]). Figure 12 shows the personalization of the model obtained through
tagged MRI and specific electrophysiological measurements obtained with an
endovascular procedure.

The future objectives of this research include the simulation of various ther-
apies, like for instance Cardiac Resynchronization Therapy (CRT), or radiofre-
quency ablation procedures, or the effect of stem cells therapy.

6 Building Large Mosaics of Microscopic Images

The last example concerns microscopic imagery. During the past few years, we
have conducted a research activity on the digital processing of microscopic images
acquired in vivo and in situ. This was made possible through the development of
new imaging devices enabling the acquisition of confocal microscopic images at
the end of a very thin optical probe. The probe can be introduced in the operator
canal of an endoscope in order to provide images of the cellular architecture of
suspicious tissues on line. This operation can also be seen as an ”optical biopsy”.

One of the issues with this type of imaging is the limited field of view of the
microscopic images: because these images have a resolution of the order of the
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(a) (b) (c)

(d) (e) (f)

Fig. 11. Short axis (top row) and long axis (bottom row) views of an electromechan-
ical heart model during end diastole (left column), ventricular depolarization (middle
column) and end systole (right column).

micron, the covered field of view is usually limited to a few hundreds of microns.
This is a problem when the analysis of the cellular architecture requires a larger
field of view (this can be the case for instance when observing human colonic
crypts), or when some statistical measurements would require a larger number of
cells or vessels, or simply when it is necessary to reposition the probe exactly in a
given location (when doing a temporal series of images at distant time points to
study a slow dynamic phenomenon for instance). Through a collaboration with
the Mauna Kea Technology company, T. Vercauteren [43] proposed during his
PhD research an original method to build a larger scene from the video sequence
of microscopic images acquired during a smooth motion of the acquisition probe.
The mosaic of images is obtained by replacing all of them in a common reference
frame. This is a difficult problem because of the possible deformations induced
by the motion of the probe and the non-rigid nature of the observed tissues.
Figure 13 shows a typical example of the reconstruction of such a mosaic. Other
work on the construction of large mosaics of 3-D confocal images acquired from
in vitro samples can be found in [19]
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(a)

(b)

Fig. 12. (a) Intervention in the XMR room at Guy’s Hospital (Pr. Reza Razavi) that
allows to combine MRI and Xray acquisition (b)Integration of XMR data providing
anatomy, motion and electrophysiology measurements of a specific patient into the pre-
vious generic electromechanical model to get a personalized electro-mechanical cardiac
model. (cf. [36])
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Fig. 13. Top : in vivo mouse colon vascularization after injection of FITC-Dextran
high MW (300 input frames, Courtesy of M. Booth, MGH, Boston, MA); Middle :
Ex vivo reflectance imaging of the human colon (mosaic includes 1500 input frames);
Bottom : Microcirculation of the peritubular capillaries of a live mouse kidney with
FITC-Dextran high MW (31 input frames). (cf. T. Vercauteren et al. [43])
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7 Conclusion

We described and illustrated in this article the current research objectives of the
Asclepios project at INRIA whose main application areas are in medicine and
biology. The pharmaceutical domain is also an application area, as computational
models of the human body can be exploited to better predict and quantify the
effect of new drugs.

We strongly believe that the development of advanced biomedical image
analysis methods combined with specific computational models of living sys-
tems will allow a more profound understanding of the anatomy and physiology
of the human body, and of the correlation between anatomical or physiological
anomalies with the development of certain pathologies. We also believe that this
research effort will be helpful to better exploit the huge amount of available
biomedical signals (from in vivo molecular and cellular imaging to macroscopic
organ imaging) as well as the genetic information potentially available on each
patient.

An important clinical objective will be to increase significantly the potential
for pre-symptomatic diagnosis and early treatment for a maximum medical ef-
ficiency. This research could also help the simulation and evaluation of various
therapies, in particular traditional or minimally invasive surgery, radiotherapy,
chimiotherapy, and also some currently experimental therapies like genetic or
cellular therapy. It should also contribute to the promotion of image guided
therapies.

Gilles Kahn strongly encouraged this research while he was the scientific
director of INRIA Sophia-Antipolis and later the Vice-President for Science and
finally the CEO of INRIA. Through his numerous scientific interactions with the
involved researchers, through is exceptional vision of the future, he stimulated
this activity and gave the involved scientists the necessary confidence to explore
new directions sometimes far away from their traditional background. For all
these reasons we are proud to dedicate this article to the memory of Gilles
Kahn.
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27. Stéphane Nicolau, Alain Garcia, Xavier Pennec, Luc Soler, and Nicholas Ayache.
An augmented reality system to guide radio-frequency tumor ablation. Computer
Animation and Virtual World (previously the Journal of Visualization & Computer
Animation), 16(1):1–10, 2005.

28. Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Riemannian framework for
tensor computing. International Journal of Computer Vision, 66(1):41–66, January
2006. A preliminary version appeared as INRIA Research Report 5255, July 2004.

29. Xavier Pennec and Sarang Joshi, editors. Proceedings of the First International
Workshop on Mathematical Foundations of Computational Anatomy - Geometrical
and Statistical Methods for Modelling Biological Shape Variability, October 1st,
2006 Copenhagen, Denmark, 2006.

30. Jean-Marc Peyrat, Maxime Sermesant, Hervé Delingette, Xavier Pennec, Chenyang
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