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Abgiract—& aey method has been desipned to ddentify and loeate
objects Iving on g Hat surface, The meritof the pppresch I8 o provide
strang robustness te pariial oechusions Gdue for Instance 1o nneven Hyply-
ing eonditions, shadows, highlghts, touchlng sud sverlapping objecty
thuaks to'y loerd wnd compaot deseription of the olijects bownddaries and
oo new fast rectgnition wethod Invelving generation and recursive
cvaination of hypotheses named HYPER (MY potheses Predicied and
Evaduated Recursively), The method has been integrated within g vidon
systems eoupled Toan ndatrial vabot arm, to provide sutomatic picking
ansd repositioning of partinlly overlapping industrisd paris

fndex Termse—Computer viston, occlusions, roboties, scone aaalhsis,
shape vedognition.

Lo Invrropuction

OMPUTER VISION s animportant field whese

ronghly two somewhst conflicting tendencies ¢an be
wdentified. Onthe one hand, a very strong demand for ap-
plications implies that performant solutions 1o concrete
problems have to be quickly developed, On the other hand,
there s aovery natural desire o anderstand human vision
as a problem in itself, boping that this will result in the
development of a general methodology for solving com-
puter vision related tasks.

One may argue that many applications ave either not
sufficiently representative of the whole set of vision prob-
lems or that the people who solved them did not bother
wdentitying the general methods that could be used else-
where, Oncthe other side of the road, vision theoreticians
can- often- be reproached . not to always be enongh con-
cerned with the implementation of thelr findings on “rea-
somable” hardware exceufing “reasonable™ code.

Three main g‘}m} dlems ean be idestified in computer vis
sion. The first is the construction from sensor outputof &
symbolic destription where iformation necessary 1o solve
the ;";r(;bim; at hand 15 explicitely represented. The second
is that of the representation of @ priori knowledge. This
“world model™ is generally very complex and few things
are known about ways of representing and organizing the
corresponding database. The third Lproblem is that of using
these pw structures 1o achiove the task.

Of course, there are many relationships between these
three problems. Nonetheless, separating them sHows us o
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identify a pumber of potential bottdenecks. Problem 1 i
mostly a signal processing problem, problem 1T mostly »
knowledge representation pr{;i} enyand problem I most

a control strategy problem. Their complexity can be de
fined in terms of a number of parameters such as signal
quality of the sensor output, how many and how differen
are the objects or phenomena that can be observed,
what type of @ priori information 1s available

We hope that i we fix one or soveral of these parame
and make the others vary in a controlled manner, we shal
be able to outling o methodology Tor solving the corre
sponding problems oo large variety of sipations.
has been our approach,

We present i this paper the methads we have devek
iy order to solve a very specific problem, that of analy
scenes with randomly oriented and pardally oceculie
dustrial parts. These parts are asstingd 10 be “Hat,” |
one of their dimensions 18 swadl compared 1o the of
two. 1 we attempt to characterize this task in terms of 1
above paramieters, it 1s clear that depending on
gualbity, problem 1 may or may not be simple. On the «
hand, the o prioyi information about the objects s
quantitative geometric nature and'can be made ay 5ot
as needed: as a-direct consequence problems 1 and
should be simpler.

This task ‘hay been tackled by severnd authors
solved in a limited way by some commercially av
systems. Such svstems typically deal with isolated obj
with excellent lighting conditions (see Fig. 1)
problem byery simples Sithoueties of objects are
extracted by a simple luminance thresholding follo
a connectivity gnalysis, Silhouettes are then reps
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it final process, foundury castings wften have spraes amd
da 1y whose mimber and sizeare quile varinble.

Fig, 4. Touching and overlapping obiects,

; global numerical features making problem 1 also
iple, and the recognition and positioning problem
d by nearest-neighbor techniques in feature space
good overview of existing industrial Vision Sys-
the interested reader is referred to [1]).

srong limitation of such systems i5 that they cannot
partial alterations of the observed sithouettes which
be due, for instance,

uneven lighting conditions including variations of
1, shadows, or highlights (see Fig. 2)

o the oceurence on the objects of sprues or dead-
whose sizes and shapes can vary much (see
a2

1o the occurence of touching and overlapping objects
Fig. 4.

iore sophisticated systems can so far be found only n
o taboratory, They can usually deal with obiects under
puor lighting conditions, thanks to sophisticated edge de-
sction techniques, and tolerate partial occlusions by using
structural representation of objects and more elaborate
svmbolic matching technigues. The systems developed by
Perkins [2] and Dessimoz [3] are based upon cross-cor-

refating the tangent angle or the curvature as functions of

O 2y ORIECTS

the curve length between the scene deseription and the
database of models. They have produced good resulis on
complex industrial scenes, butthe praprocessing {(segmen-
tation) is expensive and both methods are not well suited
to seale variations. Another approach is that of Rummel
{4] and Hattich er al. [5] who have developed systems
hased on a representation of objects with line segments,
corners, and circular holes. Model primitives are then
matched with scene primitives with an 4% free-search al-
gorithm, Basic limitations of these systems are the com-
binatorial explosion when the number of primitives in-
creases and the unability to deal with scale variations. A
third approach is that of finding maximal cliques in rep-
resentation graphs as pioneered by Ambler et al. 16} and
further improved by Bolles and Cain [7]. A basic limita-
tion here is the very large complexity of the clique finding
problem. A last approach developed by Davis [8], Bhanu
and Faugeras {9]. and Ayache and Faugeras {10} is based
on the use of relaxation techniques. Objects and scenes
represented by relational graphs and subgraph isomor-
phisms are searched for, A basic Limitation is the very large
complexity of the relaxation algorithm. A fourth approach
is that of the PVV system of Lux and Souvignier {11}
which uses two modules implemented as coroutines: a de-
seription module extracts features in the image in a top-
down or bottom-up mode and a prediction and vertfication
module that interprets features produced by the other
module in terms of a data base of models. More recently,
Segen {121, Turney [13], and Girimson and Lozano-Pérez
[14] proposed new approaches to the problem.

The approach described in this paper is based upon
matching simple descriptions of the scene and the models
by a technique called HYPER (HYpotheses Predicted and
Fvaluated Recursively) of hypotheses generation and ver-
ification coupled with a recursive estimation of the model
1o scene fransformation 1511171, 1t is fast, accurate, 1o~
bust to noise, and can deal with scale changes. It is also
general in the sense that it is basically independent of the
kinds of primitives used to represent the 2-13 shapes and
in the sense that it can be extended without too much dit-
fieulty to the corresponding 3-D problem P18].

In the next section we deseribe how models and scene
descriptions are built, Le., what kind of primitives are
used in our representation and how we compute them from
the input image. We then describe the matching process
that identifies models in the scene description and esti-
mates the corresponding geometric transformation. An
analysis of the complexity of the corresponding algorithms
is then presented, and we conclude with resulis obtained
from g number of difficult scenes.

11, BuiLoing Moppis anp Scesg DESCRIPTIONS

Our system is designed to handle objects with one di-
mension much smaller than the other two, that is flat or
almost flat objects. Partial oceultation is allowed, and no
special care is taken of the iltlumination, i.e., the system
is capable of working under poor lighting conditions. The
acquisition device is a cheap standard Vidicon camera
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The video signal is typt-
fevely and the image size

conneciod 0 an image memory.

cally gquantized using 236 grey

is oither 256%2586 or 5125512,
One key festdre of the system is thal models and scenes

are represented the same way, This makes life a fot easier

for the matching procedures we deseribe later

In-opder to build o model or g scene {?e%cz‘%pi%(}zs the
following sequence of operations is applied o the picture
of the solated object or of the scene:

1y i the contrast is high enough (Le., i the lighting
conditions are perfoctly controlled), threshold the image.
smooth the resulting binary picture using erosions and di-
lations [191

23 if the contrast 13 not high enough (general Highting
conditions), find the edges by combining gradient and sec-
ond order derivative information [20L 211 A Sobelop
erator is firstapplied to the image and the result is7th wh«
olded vielding the major infensity discontinuities with the
standard problenss of contours which are ol conneciud
and of width larger than one pixel. Sccond; the pictue s
low-pass filtered with two filters of different sizes (in the
current implementation wo use 797 and 3%3 arithmetic av-
erpgest. The resulis are subtracted and zero crossings de-
tected. This produces a very accurate detection of all in-
tensity discontinuities. Bdges are connected and of widih
one pixel. By following edges in parallel in the two im-
ages. we can eliminate those corresponding (o low con-
trast variations while keeping the connechivity high.

3y find the List of conmected border pomis [221

4y approximate the connected components with poly-
pons {231

Sh agaﬁw of 213 objec
snal approximations of their borders, This description
has several advant: ages which are as follows,

1y deis local meaning that differentparts of the objects
are ‘described dndependently of each other, allowing for
independent identification.

2y Ivis compact, meaning that most objects can be ae-
curately described using 2 small number of line segments
frypically lesy than 100%

3y HOis general, meaning that 3t can be apphied to any
ranar shape.

43It ds sensitive 1o variations in the position and ore
entation of the obisels and atlows 0 recover those parant:
gters accurately.

1.3 s simple, meaning that the operations used o go
from the fmage to the description arg straightforward and
fasts most of thent can be executed in fractions of a seeond
on commercially available equipment.

Firo 5 shows the sithougties of two mechanieal parts
used in-the French car industry. These parts are foundry
castings. Fig. 6 shows the model description associaied
with these silhopettes and with thelr symmetric homo.
logues. The number of segments involved in these descrip-
1op ranges between 39 and 50, The contrast conditions
are very good and allow for the use of the first method.

Fig. 2 shows some ol the parts of an electromechanical
device made by TELEMEBCANIQUE: Fig 7 shows the

ALYEES

Fig, 6

cts are therefore represented by po-

AR ATADHING YO

INTHLLIGERNCE

Maodals dszaciniod with the paus in Figs
vtk homslogpon.

5 and with their svae

7o Models assoviated with

the pans in Fig, 2

model descriptions associated  with these fséﬁlémﬁiim
(Symmetric homologues are not shown because therr con:
tours are ton similar to the original ones).

The number of segments of these deseriptions
herween 22 and 129, The contrast conditions arg poo
vary from one part to another, and the unpredictable p
ente of reflects (some parts are metallic, others are

of plastic) imposed the use of the second extea
method,

{n the following, we assume that both the model and e
scene descriptions are given by a set of lingar 5 :
respectively, (M3 and (5p of the form: M, = ¢ @)

and S = (L v, fa) where v and v are the coon
of the segment umigsm:t% {1 the xwmm% length,
the segment orientation measured relatively to the
zonial axis.

“In addition, the model deseription will include a




cileged segments: in the current implemen-
arivileged segments are the ten longest seg-
del description. (For justification, see Sec-

o

pim MODELS AanND Soexp DESCRIPTIONS

11 to match in 4 scene one or several models
+ for distorsion by partial occlusions and by
ity transtormation €§§zc product of @ translation. a
ard uoscalingy. The basic ideais, for each pos-
1of, 1o generate (predict) and evaluate a number

simils
 ealon,

i¢ o hypothesis is to predict the position of the
‘he scene: this prediction is made by matching a
syt in the model dedeription (M.D. 3 with
in the scene description (5. by comparing
sic features. Typically, a lfew hundred hy-
> generated and ranked on the basis of a local
merit.
te g hypothesis is 1o take w mmagc of the pre-
sosition of the model w idently additional seg-
veen-the two descriptions, and also refine the
| position of the model (by a Kalman filter). Only
firat hypotheses are evaluated (ypically a few
and the result of each evaluation is a final position
> and a quality measure which accounts for the rel-
sth of the identified segments,
watching ends when a sufficient number of hy-
has been evaluated or when a very high quality
The hypothesis with the highest qual-
examingd before being validated or re-

s reached.
15 then red

shall now describe these different stages in detail,

Generating Hypotheses

- model position is defined by a transformation 77, the
of a rotation, a scaling, and a translation, The
v}, such that the image (0%,
vy of the ML is given by the set

s 8, k- osin b, 1x,
arbitrary point {x,
sations

X by -k coos -y ok oosind {H
ty b Xk ocsin# By kococos b 2

an MDY and $.D ., g hypothesis (e, a prediction
position of the model in the scene) is generated by
hing a privileged segment of the MDD to a compat-
segment of the 8.0, Compatibility is locally defined
IR

M. be a privileged segment of the MDA segment
o of the 8., is defined as compatible with M, iff:
1y the angle A between Mg and its preceding nelg
to the angle between S and its preceding
fihor, (Close means that abs (A4 — A7) is lower than a
wold, typieally 30 degrees),

2y the ratio r between the lengths of 8, and My s close

close

Hhor

to the a priori estimate Ay of the seale factor, when this
estimate iv available (close means that abs {7~ &) 18 be-

ow g threshold, typically 8.3 # &4
When a privileged scgment My 18 matched o & compat-
ible scene segment Sy, and i no a priosd tf';iiﬁ}iﬁ&’ kg of

the scale factor is avzé%izabigx the parametoy veolor vy = (g
cos Hg. ke sin By, 1, 1) of Ty ds computed by resolving
(1y and (2) for ihc wo ‘;?dit‘*& of corresponding endpoints
y S In practice, one sométimes
has a good @ gww; mﬁmmu ko of the seale Tactor & In
s case, the three remdining parameters 0,, v, and 1y,
of Ts are computed by (4-6) only.

ko == ISy My {»
O = alSgy) — a(My) (4)
£y 5= N o koo fxy €08 By vy osin Hg) {53
Py = oo ky ot a0 sindy By 0 cos B )
where 1(8,,), [My). alSgy, and alMy) denote, respec

tively, the lengths and orientations relative to the horizon-
tal axis of Sy and My, and where (), ¥y are the coordi-
nates of the midpoints of the segments 8, and M,
respectively. '

Since the imtial estimate Ty of 7is very bikely in error,
we introduce a measure of this error: 8 18 an error ¢o-
variance matrix defined by
{7

So = Ely ~ vy (i~ o))

where vand g are, respectively, the parameter vectors of
the anknown transformation 7 and s estimate 74 In
practice. Sy is mitialized iar z:m‘a hypothesis with respect
1o the error varances s, s, m and s attached, respoc-
tively, 1o the initial mt;ma{m koo B, f. and 7140 In the
current implementation, these variances are heuristically
estimated. Assuming that 57 and s, are small compared to
{, the clements of 8, are approzimated by

S8, Iy = ﬁ:i i’ sy ’s{ 4 cos” (B - s (%3
So(2. 2y = kg cos” (0y) bosin’ (0, - 9)

Sol1, 2y = 8552, 1) = sin (fg) cos ()~ (sp ~ &G

(1
Si(3. 3 (n
S, (12

the other terms of Sy being equal 1o zero,

W %}w} g piven nu mhu of ivpotheses has been generated
(typieaily a few hundred). the hypotheses are vanked by
mensy fizzgz the compatihility between the pairs of matched
segments (sce above). Then the best hypotheses (usually
a few tens) are evaluated,

O, Evalnating Hypotheses

After computing an initial estimate 7y, of the transtor-
mation, we maich additional segments of the M. DL with
seoments of the $.D., while updating the estimate of the




48 TEER TRANSADTIONS 0N PATTERN AN/

Fig, 8. Onder of seloction of the niodel scgments.

position of the model in the scene and computing a quabity
measure of the resulfing match, We now proceed o de-
seribe in more detatls those three pois,

1} Maiching Addivonal Segments: After having iden-
tified M, with S, the program matches the other seg-
ments of the model by an iterative algorithm: at iteration
i, the program selects among the non yet examined seg-
ments of the MDD, the segiment M which s closest o ‘;?'Q
(see Fig. 8). The choice of sepments M, close to M, s
pecause if the initial estimate Ty of 748 inaccurate; then
{he, grrorin position between the estimated zsm&a TH(M )
of T(M)) increases with the distapce [[Mea 1. This seg-
ment M, is transformed into a segment MF by thecurrent
estimate 7). of the transformation 7. Then a dissimilarity
measure. o, is mmpawd between the image segment MF
and every segrment S; of the 5.1 This dmmmidmw M-
sure is a weighted sum of three positive quantities which,
respectively, account for

1) a;; = the absolute value of the difference between
orientations of M¥ and 5.

2y D, = the Eoclidean distance between the midpoints

of MF and S,
3) Ay o= the absolute value of the relative differencé be
tween lengths of MF and S04, = (IF — 1)/,

Hach of these quantities is upper bounded by duee P
and £, respectively, d;; is then computed as follows:

e if ;01 Dy m* l;; 18 above its corresponding upper
bound, t%zcza di,

e otherwise, d;;. is given by

diy=poagdag g DD LA {131

HEKS

where p. ¢, and r are associated positive weights which
a(ﬁd up to one. In the current implementation, we chose p

< (6, ¢ = 0.3, and v 0.1 values emphasizing the role
of 1h<, segmonts orienfation.

d;; takes a minimum value of zero when MF and §; are
sust xzz;’mzz;;gmmd and increases when the ciwuz,pamx
between MF and § increases: the maximum value of ;I8
I, and this value is reached if and only if one of the qu an-
tities @, /g Dy /D, 0r 1 s i greater than or equal
10 One, ln the current implementation we have ., = 20
degrees. £, = 12 pixels, and = 70 percent,

M, is matched with the segment S, of the $.D. such that
d;; is minimum and lower than one, Otherwise, M, is
matched with NIL, which means that M, has no homo-
logue in the 8.D. with respect to the current hypothesis.

2} Updaring the Model Position: When a segment M,
is matched with a segment §,, a recursive least square

ALYBIS AMD MACHING

FANUIARY. ¥R
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Notgtions e malclung,

technique (Rabman filter) 15 vsed 10 update the estimate
oo 70 The new value of the parameter vector-g iz
,ozzapumc.i as follows. ‘

Basic Method: Given a set of matches [{(M,, §3}, we
look for the ransformation 7 which minimizes the crile
rion

B 8!\1 {i‘é} :

where m; and 3, :
respoctively, Ais Gn usual §u<,i%uaﬁ d;xf ance, mzd bise
the length of segment M. The term /K is here to em
phasize the role of fong segments which are less sensiti
to noise. K is a constant whose value depends on the qual
ity of the observed images (in onr implementation, v
simply computes K = D loeas Where 7., 08 the ¢
erage segment length and D, 15 the quantity delined
Section TH-C-13. ,
{f we represent, as in Section [T1-B, the transformation
T by the vector v = {(kcos 0, & sin §. 1x, 1y), and the point
5, of coordinates x/, v/ by the vector ¥, = (x/, v/), we s
rewrite (14) as

Cooy Wy —

Matrix € i5 given by

] X ¥y 10
O ow
¥ AR L

where x; and ¥, are the coordinate of point m,.
Matrix W, is given by

Wy {}3

W, = with w; =

s

{} w;"}

We would also | zlw 1o controb the varigtion of some ol
the parameters of the transformation 0 This can b2
achieved by adding to R an extra term of the form (v
vy 87 v o~ vy where vy corresponds to the initial
pothesis and S, is the matrix described in Section Hi-
Finally, the eriterion B is writien ag

R = 2 (Y, - oY WY - G

e gy Sy e

R is a quadyatic criterion and can be minimized rect
sively by the standard following equations (¢f. [24} for
starce):
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v initialized for 4 new hypothesis by
ted in Section HI-B, and are recursively
ach new mutch (M, 5,

w0 In the previous approach, the updat-
ransformation T was done by trying (o super-
enters of the matched segments, More accu-
-re obtained by superimposing the center of
sified model segment on the straight line sup-
¢ homologous scene segment. In this case, the
ion of 7 is much less sensitive to the variations
-nt Jengths, as it does not modify the position

§§§‘d&§i |

if im orientation 18 af and
the criferion can be

< , , L .
C g é{iwxiﬁ {aly cos {aDy} Cio + é;f {159

- x! sin (@) ~ ¥/ cos {a]). The minimization is

d exactly in the same way as before,

Computing a Quality Measure: The use of the gual-

asure is 1o discriminate between correct and wrong
5. After each fteration i. Q) measures the

of the idmﬁfﬁcg azm{icé ‘;Cﬂm:’mm s o pm‘cemamﬁ f'sf

: obtained w!mf}m’m‘ the model isa pcrf&cliy and en-
Cidentified in the scene. (O decreases in the presence
Jusions and nonrigid distorstons (noise, tilted ob-
errovs of segmentation, © "L

Ir Eading the Matehing Process

matching ends when the number of hypotheses

‘i have been evaluated is large enough H\,pzmi% a few
. or when a very high quality measure is reached by
aothesis, In each case the hypothests with the highest
; measure is reexamined before being validated or
- the reexamination consists in evaluating a last
fﬂzhg sis, whose g prior] parameters are the o posteriori
estimate and covariance matrix of the best hypothesis.
This reexamination is to check whether some additional
sdel segments could be matched with a more accurate
iitial estimate of 77 When this is the case, the process is
epeated until it converges. The reexamined hypothesis is
then definitely validated if its quality measure is above 4
prespecified threshold, and rejected otherwise,

TR OBIBUES

IV CoMpLEXITY: ANALYSIS
A Computing Time

The average computing time required to match a model
deseription with a scene deseription is equal to the number
of generated hypotheses multiplied by the average evalu-
ation-time of a hypothesis,

The number of generated hypotheses is reduced by hav-
ing a small number of discriminant model segments se-
lected to be used as privileged segments M. The choice
of the long segments is for two reasons. First, long seg-
ments are usually less numerous and therefore more dis-
criminant. Second, the initial estimate of the transtor
mation 7is more accurate with long segments, Of course
at least one of the privileged segments has o be visible
(¢.g., occtuded length < 30 percent of segment fength) in
the scene for the model o be identified. It appeared that
the choice of the 10 longest model segments as privileg
segments never prevented the recognition of reasonal §§x
acculted objects (e.g., total occluded length <60 percent
of model length) in our experiments. This is probably due
to the fact that, in this case, the probability of having all
the priviliged segments occluded stmultaneously 18 very

srratl.

In addition, each privileged segment M, of the MDD is
identified only with compatible segment S of the 5D,
(compatibility is defined in Section V-B). Typically, the
number of scene segments compatible with a privileged
model segment is about 10 percent of the wtal number of
scene segments (allowing a scale variation of about 30
percent), Therefore, if there are 10 privileged model seg-
ments, the number of generated hypotheses is usually close
fo the number of scene segments.

The evaluation time is reduced mainly by three tech-
piques. First, a branch-and-bound technique is used: dur-
ing the evaluation of a hypothesis and at each iteration /.
the program conmputes an upper bound (. on the hinal
quality measure Q(N): this upper bound is computed by
adding to the current partial guality measure Q) the nor-
malized length of the model contours which have not been
examined vet (therefore assuming this remaining part will
be perfectly matched). As Q{0 is a decreasing function of
i. the evaluation of the current hypothesis is aborted early
fand the hypothesis rejected) as soon as Oy, happens 1o
be lower than the quality measure attached 1o a previously
evaluated hypothesis,

Second, the evaluation process is significantly acceler-
ated by imxmg the scene segment orientations «; initially
sorted: in this case. when scarching for the best match %
of an image segment M, {ef. Sectdon BLC-1), the scene

segments 5, whose ori entation a; is compatible with the
orientation of M {i.e., such th at abs (a,) — @ < g, are
selected by a%mmn *«u}ié%i in logurithmic tme. One could
also compute sguare buckets on the S.D. 1o have fast ac-
cess 1o the scene segments close o a predicied location.

Third, all segments whose length is below a fixed limit
(typically 8 pixels for images of size 256 % 2563 are re-
from both the M.D. and the 5.1, before process-

moved
mg.
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To eonclude. one could novce the possibility of gener-

ating and evaluating all hypotheses independently of eacl {2}

other. This property allows Tor an execution of the pro- L N

gram on paratiel hardware 1o still reduce the global com- 13 {777 E

puting time. If several models must be located in the same :

SCOng, §§§g"» can also be PIOCe ssed i pd%;i ol

B Storgpe Beguirements )
e SO RSN

The storage requirements are sinall and-are a linear o
function of the data size one has (0 store essentially the e S
MDD and the 8.B 0 e the vertces coordinares of two P
polygonal approximations {usually a few hundred points),

Adsoyand i order 1o speed upthe evaluation provess {cf,
abovel, one can store the orientations of the segments of

both descriptions. : P
;.WWNMM,»M.. . L e

V. Kesupys %**/*
The recopnition micthod desceribed i this artick has
been integrated withinsa vision system and tested on g
large nunber of different scenes. The ¥ision system has
also been coupled toan indusirial robot arm 10 achieve N S
picking and repositioning of unoriented partially overlap- 9 = yeed
ping industrial parts 1231, We present here some t¥pical
resudts which Hlustraté the capatities of the viston syvstom.
Except for Example 6, prosrams are writton tn Fortran
and run onoa panicompuier Perkin Blmer 32400 Also,
compufing times refer fo the matching process only ex-
cluding the nmage segmentation process; in effect, the
segmentation process s wotally independent of the mutche
ing proeess and should Be performed 1 a fraction of 4
seoomd-on dedicated hardware,

Fxample 1 Hlustrative Example ‘ gf 3 v
N : . ) 3}
We first present o simple didactic example to tustrate €94 f\w,m,}

the major steps of the recognition procedure. Fig, 1011

lastrates the genération and evaluation of a correct hy-

pothesis, while Figo 1 iHlostrates the diseriminagdon he-

tween correct wid wrong hypotheses, @ (b3 fw
Let-us consider the two leli-most drawings of the firy

row of Fig, 10 they show, respectively, the model desorip-

thon associated 10 a car shock absorber and the scene de-

seription associated 1o the Image of & sitnllar part rotated, " ( AR

tramstated, and partially occluded by another pare. Both £ ’}? / A

ia, seriptiohs have been obigined by the miethod described (“‘w’“w,,;;’i;}; §f(5*’m
Seetion | {mwsi Hghting conditions). > ,;W;} ,i?’ﬂN R
The task of the recognition program s to maich and ;} / ’ i}

locate the model within the scene. Among all the by é/“‘\,} (f y»;

potheses generated by the program, o correet hypothesis e

is obtained when the privileged model segment re gm (<l w ' it

sented by g solid Bine 1n the MUD . ds matched 1o the com

patible scene segrmentorepresented by g solid line in the

S first row of Fig, 101 1o this situation, the program
determines an a prioriestimate of the mpdel position which
is shown in the third colump o s first row.

Rows 2, 3 and 4 of Fig: 10 correspond to some steps
of the evaluation process. Columins, Tand 2 show, respecs
tively, in wiid §izze‘; the segments which dre identificd be-
tween the MuDoand the §.D . Column 3 shows the current
estimate of §'_§C model positon. Successive estimates dre
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of .68 0n s 1al, (0,

xﬁpu inposed 1o better exhibit the convergence result, and

visuatize the recursive update of the model posi-
simerically speaking, the parameters (8. A, 1x, 73)
ceansformation 7 vary from an g priori estimate
113, =49 pixels, 281 pixels) to a final estimate
1018, 1567 pixels, 237.52 pixels).

ast row of Fig. 10 shows the final result obtained
. reexamination of this hypothesis: one can notice
cction of some matching errors which were ini-
e to the inacurtate g priori estimate of the model
sination are (—74.07°, 100, —9.55 pixels, 236.34
11 the hypotheses generuted by the program,
Yig. 1 nine hypotheses %nuaw{i when the same

segment is wdentified with nine i liffierent com-

s one) have a guality measure lower than {125 and
jected: the last hypothesis has a quality measure
¢ than 0,60, aad is validated.

ample 2: Castings with Dead-Heads, Variable
Factor

17 shows the result of the identification and posi-

ing of models 3 and 4 of Fig. 6 in four different scenes

aining similar parts in arbitrary planar positions. The

amd {0}, 2

1. The parameters of the final estimate of 7 after

- seene segments. All these hypotheses (except for

party are observe a%/ jus
have spiues and deadsh
E%i”& is a4 scaling belw

t after the casting process and they
eads attached 1o them, tnadditon,
con models and scenes of 0.68 in

s 12¢a), (b)), and {©). and of 1.06 between models and
_This scaling is taken into account by using (3) 10 es-

wmzc fay.

The g);zim ©5 are \»wmm i;z} as deseribed i Sectton il
{good lighting condi The models are correctly de-
tected and located, #nd %1 comiputed posHions v super-
imposed in the pictures, The quality scores vary between
65 and 85 percent, and the computing time is of the order
of one :xg\,a;z}m% per model.

LI

¢ Example 3: Pardially Overlapping Castings

i3 shows the identilication and positioning of
2.3, and 4 of Fig. 6 in a scene containing sim-
ilar parts in arbitary positions {Fig. 13wl In addition,
some of the parts have large sprues and | dead-heads
tached o them, and the parts are partially occluding each
other, The picture is segmented as described in Section i
{(good lighting conditions) and the resulting scene desirip-
Gon s shown in Fig, 13(h) (280 segments). The result of
the matching is shown iae Fig: 1340), where the models
have been superimposed in white on the scene at the lo-
cation determined by the program. We show in Table I the
main parameters of the solution,

Hig
maodels 1.

Gt
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iol Musaber SHES Juutity Measom Computing Time
i 0 LS
B 41 1.25 %
3 34 % pp 1.2% ¢
§ 5 448 pervent s

Do Example 4 Partiglly Overlapping
Electromechanical Pairs

Fig. 1{a) shows a scene with several overlapping parts
of an electromechanical device observed under bad light-
ing conditions {this image corresponds o the seene shown
tn Flg, 330 The seene s segmented by the second method
deseribed in Section T and the resulting scene description
(759 segments) ix shown in Fig. 1(h). Models 5, 6. 7.8,
and 9 of Figo 7 are successfully identified and located in
the scene: the resule of the matching s shown in Fig. 146)
where the models have been superimposed in white on the
scene at the location determined by the program. Note
that when there are several occurences of a model in a
scene, the programsimply selects the hypothesis with the
highest quality measure, which usually corresponds to the
most visible occurence. A minor medification in the pro-
gam would allow for the recognition of all the occurences
ol 4 model corresponding to hypotheses whose quality
measure s above a determined threshold, Table 1 shows
the main parameters of the vesult,

Eo-Exagmple 50 Coupling with a Roboi Arm

The vision system has been coupled to a robot arm o
achieve automatic picking and placing of overlapping
workpieces. Inthis system, the modeling of objects in-

ANALYSIS AND MAURIKE

realistio testbed for the vision system,
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Fig.

ey Or
v s thoo

TABLE

BroooMmon o Mopees 5, 6,7, &, axp 9
Model . Number of Segments - Quality Messure Computing 7
3 73 3% percent 7
& ' 22 36 porcent 4 ¢
. 48 40 pereent 2%
4 134 66 percent, isg
9 #4 38 poroent PA s

¢ udw a list of pommai wmxpmw Snwimns di‘id ‘gha :

the :sat.kmum of an am.gmbie gmspmg iex,atzim ;mm;;@
potential grasping locations.

This robot system is described within details in (i{w?f
article 125] and we shall only present results in the sequ
Fig. 15 shows the potential grasping locations attached
models 8 and 9 of Fig. 7. Fig. 16 shows the accessibl
grasping locations sclected after the recognition of th
models. and Fig, 17 shows the actual picking and repo:
tioning of the corresponding objects.

The result of this coupling has been 1o provide a mo
and afso o ¢
onstrate the feasability of the awtomatic pieking and
positioning of partially overlapping workpieces lying on g

Hat surface using our vision system,

Fo Example 6: Precision Test

It is difficult to compute the accuracy of the «
nation of the transformation 7 in general becanse
pends on many factors such as the nature of the
the quality of the viewing conditions, and the dw
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sioms alpehed o models % and 9of Fig, 7. The syme
re the vertical grojections of the gripper {mggﬂm

for two of e
siwnt projeciions of

erination of aeee
yed i Fig, 140 ther
ripner fugers:

snpiles aie the v

on of the observed objects. At the least, a quali-

timate was derived by having the robot arm safely

ind repositioning several different objects in many

SHIGHONS,

er, a quantitative estimate of the accuracy of the
ined rotation angle # was made on images of me-
sears. The polygonal segmentations extracted
two different images of a gear are shown in Fig. 18.
notice some local alterations of the contours
s are mainly due to unpredictable metallic reflections.
Fhe precision experiment consisted in extracting the de-
ion of g gear in a reference position. This description
as raken as a model deseription. Then,
wis rotated by a precisely measured angle, and the cor-

sponding extracted deseription was taken as a scene de-
s;m*;{ stion. For 300 successive measures, the maximam de-
iation between the estimate and the actual angle was 0.15

2440y OB

the same gear

g and yepositioning of then

ey
Fig, 18 Ik ‘cf‘ip:wm associated with the goars used in the M
ta R -6y Gear rotatend by an anghe of 77

¢

sition of {4} mé {3y by the program,
degrees. The measured standard deviation was 8.7 de-
grees.

For this indusirial application, the program was
ported to a Motorola-68000 based mi g,m;.z,vz&;;};zwxz antd
p;mi:xih‘ translated to machine code. The number of gen-

crated hypotheses was 50, and only the 8 best §zx’§&<>§%‘wwa
Were u&du{; ed. The maximum leagth of non identificd

cgments was upper-bounded by 30 percent of the total
misgiai length, while the average length of nonidentified
segments was 20 percent (due to the lighting conditions
and the lack of stability of the segmeniation algorithm).
The computing time is lower than one second, including
the segmentation process which is done on dedicated
hardware.

Lrans-
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VI Conerusion

P Ambler o

We have described a new method 1or the recognition and
positioning of 2= objects, Thiz method uses segmoented
descriptons of the object contonrs 1o generate and recur
stvelvievalnate a number o selected hyp potheses. The main
features of this method are #s z;&bz;\}iww o -lighting con-
ditions, partial ocolusions (up 10 60 percent typieallyy and
seate variations (20-40 percent typicallyy, 315 acohmey in
locating objects, e high degree of  parallelismy (hy-
potheses can be generatpd in paratlely, and its small stor
age reguirements (essentially the storage of the segments
endpointsy. The method has been experimented on alarge
number o different scenes, and some typical ex ngs e
have been presented, including thercoupling of the )
system g robotarme SR

Retrning 1o problems 40 H; and 111 of the Totroduction,
we Cansay that the existing work 1 compuier vision al-
lows us 1o génerate quickly and accurately the outlines of
flar objects Teven under difficult viewing conditions.
Boundary representations can thon casily be byl by Tune-
ftonal approximation technigques. Hi ot degree polyno- 116
irials were used in this paper but nothing fexcept the come
puting time) would have prevented us from using other
fimctions. Problem © s therefore solved by algorithms
wirich can be implemented by very fast programs or hard-
WaTe.

We have only sergiched the surface of problem . We
represent Gur models the same way as our scenes, 1.e..
with polygonal approximations. The corresponding data-
bage is simply.a sequence of such models and po ways are ademic; 1
provided for smarter model indexing than a simple linear (201 D, Mart. }
scan of that databasc. A lot remains to be done in this
area.

Problem HIL that of matching models with sdens de
seriptions. has been solved in o simple way by exploting
the very important constraint of rigidity. This allows us 1o
work with the wellb-known group of similarity transfor-
mations and to drastically prune our search tree. By cous
pling the search algorithin with g recursive estimation of
the transformation, we have achieved ahigh positional ac-
curacy. ‘We believe that these two feptures (exploiting ri-
gidity and recursive parameters estimation) are basic in
many related applications. In that sense we think our work
is also a contribution 1o establishing the lacking method-
ology we were reforring 1o in the Introduction,
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