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Abstract

This paper presentsdifferent waysto usethe Doppler
TissueImaging (DTI) in order to determinedeformationof
thecardiac wall. Asan extra informationaddedto theul-
trasoundimages, the DTI givesthe velocity in the direc-
tion of theprobe. We �r st showa wayto track pointsalong
thecardiac wall in a M-Modeimage (1D+t). Thisis based
on energy minimizationsimilar to a deformablegrid. We
thenextendthe ideasto �nding the deformation�eld in a
sequenceof 2D images (2D+t). This is basedon energy
minimizationincludingspatio-temporal regularization.

1 Intr oduction

DopplerTissueImaging(DTI) is a recentnon invasive
ultrasoundtechniquewhich allows to measurethe veloc-
ity of intramyocardialwall motion. Resultsconsistsof a
color overlaysuperimposedto the grey-scaleconventional
image(seeFigure1). At �rst theframerateandthetempo-
ral resolutiondid not allow a precisestudyof the cardiac
wall velocitiesover a whole cardiaccycle. That is why
cardiologistsneedM-mode images(bottom of Figure 1).
In practice,the cardiologistchoosesa segmenton the 2D
imageandtheM-modeimageshows its evolution through
time. Eachcolumnof the image
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correspondsto the
segmentatagiventime

�

. Whereasa2D sequenceacquired
with our VINGMED ultrasoundsystemconsistsof about
100imagespersecond,anM-modeimageconsistsof more
than500framespersecond.

This work follows thework performedby theauthorsof
[1] aboutM-modeimages.This work consistsof tracking
thecardiacwall with a variantof activecontours.Thecon-
tour �
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deformsto minimize
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Figure 1. 2D and M­Mode DTI images.

�

�	��


to the edgeand
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closeto the velocity measured
by theDTI. Authorsof [1] have not only shown theadvan-
tageof usingDTI in additionof the edgeinformationbut
they have alsousedtheir resultsto show quantitatively that
velocityof internalwall is higherthanfor externalwall.

We will usedifferent variationalmethodsto study the
deformationof theheartin M-Modeand2D+t DTI images.

2 Tracking through M-Mode Images

As DTI providesquantitativeinformationaboutintramy-
ocardialwall motion,it helpsto diagnoseabnormalmotion.
But anM-modeimageis ratherhardto usebecauseit pro-
videsmany informationandit is noteasyto distinguishbe-
tweenclosecolors.An attractive way to presenttheresults
is to show trackingof differentpointsof the cardiacwall
using DTI. When we began this work, we usedan auto-
matic trackingwhich consistedof integrationover time of
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Figure 2. Initialization and result of the steep­
est gradient descent.

velocity measuredby DTI, separatelyfor eachpoint (left
of Figure2). Sincethis trackingwasnot accurateenough,
we improved the methodby trackingsimultaneouslysev-
eralpointsthroughthecardiacwall on theM-Mode image
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makinguseof thevelocity givenby theDTI image
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. Pointsare chosenfor the initial time
� ���

alonga handgivensegment.They areregularly spacedon
this verticalsegmentasseenon theleft of imagesof �gure
2. Let � �
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bethecurveswhich per-
form the trackingof eachpoint. If thesepointsareclose
enough,the curves � �
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must be consistentwith
one another. Indeed,all thesepoints are in fact physical
points of the sameorgan. In consequence,we will con-
siderthesetof curves � �
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asanelasticactive net:
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. Active netsor deformablegridsare
de�ned in [3, 4]. The net deformsaccordingto the mini-
mizationof anenergy. It behavesasasetof activecontours
[2] thatevolvetogetherwith mutualinteraction.Ourenergy
consistsof threeterms.
1. A regularizationtermasin [3, 4],
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This term enablesinteractionbetweencurves. The �rst
derivativesmakethenetcontractandthesecondderivatives
enforcesmoothnessandrigidity. Coef�cients

�

,
�

arepos-
itive. They were chosenexperimentallyaccordingto the
physicalpropertiesof thecardiacwall. Coef�cient

�

should
besmallbecausethenetshouldnot contracttoomuch.
2. An external term which attractsthe derivative close
to the given velocity measuredby the DTI
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. This is an extensionin two

dimensionsof [1].
3. The last term is also an external term,
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. As DTI

is not suf�cient, we wantto keepthegrey level nearlycon-
stantalongeachcurve.

The net
�

is obtainedby the minimization of
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,
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and
2

areposi-
tive coef�cients. As we know thatgrey level of a physical
point is actuallynotquiteconstantthroughtime in anultra-
soundsequence,thethird constraintmustbevery soft, and

0

shouldbe small comparedto the othercoef�cients. We
proceedasin [1, 5] anduseasteepestgradientdescent,dis-
cretizationwasdoneby �nite differences.Theenergy can
havemany local minima.Thereforewe mustuseaninitial-
izationcloseto thesolution. We choosethepreviousalgo-
rithm whichconsistsof theintegrationof thevelocitymea-
suredby theDTI :
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for all
�

(left of Figure2). We �nally obtainthe resultof
right of �gure 2. We observe that the curves follow pre-
ciselythedeformationof thecardiacwall comparedto man-
ual tracingof curvesby the cardiologist. So our tracking
algorithmis improvedandhasbeenof muchhelpfor cardi-
ologistsin orderto studyvarioususeof DTI images[6, 7].

3 Deformation Field in a 2D ImageSequence

Our next interestis the velocity �elds in 2D imagese-
quences,which becamepossiblesincewe got morepow-
erful computersandbetterquality ultrasoundimages.Two
dif�culties arisefrom these2D sequences:a low tempo-
ral resolutionandtheincompleteDTI information:theDTI
only measuresthe velocity in the direction of the probe.
Humanandrat DTI sequenceswereprovided by Drs De-
nis Pellerin and ColetteVeyrat from Bicêtre Hospital. A
DTI sequenceconsistsof two typesof data: the velocity
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measuredby the DTI in the directionof the
probe
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and the conventionalultrasoundse-
quence
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. We will usetheseconddatato compen-
satethegapsof DTI.

ThevelocitymeasuredbyDTI providesa�rst linearcon-
strainton thedeformation�eld
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� . From the greyscale conventional ultrasoundse-
quence,we can calculatethe optical �o w [8, 9], that is
theapparentmotion. Optical �o w is basedon thehypothe-
sis that thebrightnessof a point
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is constant
throughtime. Using the chain rule for differentiationwe
seethat ;
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is
the unknown �o w �eld. It doesnot de�ne a uniquesolu-
tion. In fact, the optical �o w givesthe deformationin the
directionof thegradientof theimage.Themethodof Horn
andSchunck( [8] ) consistsof including this constraintin
anenergy with a regularizationterm.

Despitethe fact that the constantbrightnesshypothe-
sis is not strictly observedin ultrasoundimagesbecauseof
speckle,the regularizationtermaddedcanovercomethese
problemsif it is strongenough.For example,theauthorsof
[10] have experimentedoptical �o w techniqueson synthe-
sizedultrasoundsequenceanddemonstratedthevalidity of
usingHornandSchunckmethods.

In our case,we alsohave with DTI a secondlinearcon-
strainton thedeformation�eld. But thesetwo linear con-
straintsarenot always linearly independent.So the solu-
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tion cannotbe the resolutionof the system. Sincemore-
over ultrasoundimagesare very noisy, we proposea so-
lution inspiredby Horn and Schunckmethod. The �eld
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we arelooking for will satisfy, when
possible,theoptical�o w constraint,theagreementwith the
DTI velocity anda �rst orderregularity constraint.We in-
cludethesethreeconstraintsin anenergyminimization.For
eachframe
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where � is the imagedomain. Coef�cients
�

and
�

are
positive andarechosenexperimentally. We minimize this
energy with a steepestgradientdescent.

Figure 3. Velocity �eld with our method.

Figure 4. Impr ovement provided by DTI. Opti­
cal Flow without and with DTI

An exampleof result is given in Figure3. The results
aresatisfyingcomparedwith simpleoptical �o w asshown
in �gure 4. Direction is modi�ed andwe get a morereg-
ular �eld without increasingthediffusion. But someprob-
lemsdueto theacquisitionpersist.First, gapsin thelateral

wall imply gapsin optical �o w for which DTI cannotal-
wayscompensatesinceit is alwaysin the directionof the
probe. Second,the imageof lateralwalls consistsof hor-
izontal spotsbecausethe transmittedsignal is oblique to
them,andso the gradientof the imageis not really what
expected,andsois optical �o w. However, thedeformation
�eld is quite accurateandregular aroundthe anteriorand
posteriorwalls.

In order to �ll gaps,we adaptthe ideasdeveloppedin
[9] andincludeatemporalregularization.Thisasssumption
of temporalregularity is relevantsincethetemporalresolu-
tion is high enoughto providesmalldisplacementbetween
successive images.Theminimizedenergy is then:
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Here
�

is a ��� gradient.It ensuresinteractionbetweendif-
ferent frames. An exampleof result is shown in �gure 5.
As in [9], theresultis muchmorecoherent.Wecanseethat
missinginformationis completedby theneighbouringim-
ages.Thevelocity �eld is muchmoreregularandcomplete
aroundthemyocardiumwall thanthe�rst one.

Figure 5. Velocity �eld with a spatio­temporal
regularization.

If the displacement�eld is still not satisfying,we have
to usea fastalgorithmto improveultrasoundimagesby en-
hancingedges.We chosethe“sticksalgorithm” introduced
by [11] to reducespecklenoiseandimprovetheedgeinfor-
mationasshown in �gure 6. We mustcarefully selectthe
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Figure 6. The stic ks algorithm. Original Image
and Enhanced Image.

Figure 7. Velocity �eld processed.
regularizationso that the imageis still texturedfor theop-
tical �o w to be ef�cient. We thenusetheenhancedimage
insteadof the original ultrasoundimagein the algorithms
above. Figures7 and8 show the improvementof this pre-
processing.We seethat the impactof thespecklenoiseon
thevelocity �eld is decreased.

Wecheckedall theseresultsby deforminganimagewith
thevelocity �eld andcomparingto thefollowing image.In
every casewe noticedthat the deformedimageis closeto
the following onebothvisually andbasedon meansquare
error. But animportantchallengeis a realvalidationof this
velocity �eld.

4 Conclusion

Wehavepresenteddifferentwaysto usetheDopplerTis-
sueImaging(DTI) in orderto determinedeformationof the
cardiacwall. We �rst showed a way to track pointsalong
thecardiacwall in aM-Mode image(1D+t),basedonade-

Figure 8. Velocity �eld processed on the same
sequence after enhancement.

formablegridenergyminimization.Wethenshowedhow to
estimatethedeformation�eld in a sequenceof 2D images,
basedon energy minimization including spatio-temporal
regularizationandapriori constraints.Futurework includes
validationandanalysisof thevelocity �eld.
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