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Abstract

This paper presentsdifferent waysto usethe Doppler
Tissuelmaging (DTI) in order to determinedeformationof
the cardiac wall. Asan extra informationaddedto the ul-
trasoundimages, the DTI givesthe velocity in the direc-
tion of the probe We r stshowa wayto track pointsalong
thecardiac wall in a M-Modeimage (1D+t). Thisis based
on enegy minimizationsimilar to a deformablegrid. We
thenextendthe ideasto nding the deformationeld in a
sequencef 2D images (2D+t). Thisis basedon enegy
minimizationincludingspatio-tempaal regularization.

1 Intr oduction

Doppler Tissuelmaging (DTI) is a recentnon invasive
ultrasoundtechniquewhich allows to measurethe veloc-
ity of intramyocardialwall motion. Resultsconsistsof a
color overlay superimposedo the grey-scalecorventional
image(seeFigurel). At rst theframerateandthetempo-
ral resolutiondid not allow a precisestudy of the cardiac
wall velocitiesover a whole cardiaccycle. Thatis why
cardiologistsneedM-mode images(bottom of Figure 1).
In practice,the cardiologistchoosesa sggmenton the 2D
imageandthe M-modeimageshows its evolution through
time. Eachcolumnof theimage correspondso the
sggmentatagiventime . Whereas 2D sequencacquired
with our VINGMED ultrasoundsystemconsistsof about
100imagespersecondan M-modeimageconsistof more
than500framespersecond.

This work follows thework performedby the authorsof
[1] aboutM-modeimages. This work consistsof tracking
the cardiacwall with avariantof active contours.The con-
tour deformsto minimize

and arepotentialswvhich attractrespectrely

Figure 1. 2D and M-Mode DTI images.

to the edgeand closeto the velocity measured
by the DTI. Authorsof [1] have not only shovn the advan-
tageof using DTI in addition of the edgeinformation but
they have alsousedtheir resultsto shav quantitatvely that
velocity of internalwall is higherthanfor externalwall.
We will usedifferentvariationalmethodsto study the
deformationof the heartin M-Mode and2D+t DTI images.

2 Tracking through M-Mode Images

As DTI providesquantitatveinformationaboutintramy-
ocardialwall motion, it helpsto diagnoseabnormaimotion.
But an M-modeimageis ratherhardto usebecausét pro-
videsmary informationandit is not easyto distinguishbe-
tweenclosecolors. An attractive way to presentheresults
is to shaw tracking of differentpoints of the cardiacwall
using DTI. When we began this work, we usedan auto-
matic trackingwhich consistedof integrationover time of



Figure 2. Initialization and result of the steep-
est gradient descent.

velocity measuredby DTI, separatelyfor eachpoint (left
of Figure2). Sincethis trackingwasnot accurateenough,
we improved the methodby tracking simultaneouslysev-
eral pointsthroughthe cardiacwall on the M-Mode image
makinguseof the velocity givenby the DTI image
Pointsare chosenfor the initial time
alongahandgiven segment. They areregularly spacecon
this vertical sggmentasseenon theleft of imagesof gure
2. Let bethe curveswhich per
form the tracking of eachpoint. If thesepointsareclose
enough,the curves must be consistentwith
one another Indeed,all thesepointsarein fact physical
points of the sameorgan. In consequenceye will con-
siderthe setof curves asanelasticactive net:
. Active netsor deformablegrids are
de nedin [3, 4]. The netdeformsaccordingto the mini-
mizationof aneneny. It behaesasasetof active contours
[2] thatevolve togethemwith mutualinteraction.Ourenegy
consistof threeterms.
1. A regularizationtermasin [3, 4],

This term enablesinteraction betweencurves. The rst
derivativesmake the netcontractandthe secondierivatives
enforcesmoothnesandrigidity. Coefcients , arepos-
itive. They were chosenexperimentallyaccordingto the
physicalpropertieof thecardiaowall. Coefcient  should
be smallbecause¢he netshouldnot contracttoo much.

2. An external term which attractsthe derivative close
to the given velocity measuredby the DTI

— . This is an extensionin two

dimensionsof [1].
3. The last term is also an external term,

As DTI

is not sufcient, we wantto keepthe grey level nearlycon-
stantalongeachcurve.
The net is obtainedby the minimization of
, and areposi-
tive coefcients. As we know thatgrey level of a physical
pointis actuallynot quite constanthroughtime in anultra-
soundsequencethe third constraintmustbe very soft, and

shouldbe small comparedo the othercoefcients. We
proceedhsin [1, 5] andusea steepesgradientdescentdis-
cretizationwasdoneby nite differences.The enegy can
have mary local minima. Thereforewe mustuseaninitial-
ization closeto the solution. We choosethe previousalgo-
rithm which consistf theintegrationof the velocity mea-
suredby theDTI ;
for all (left of Figure2). We nally obtainthe resultof
right of gure 2. We obsene that the curvesfollow pre-
ciselythedeformatiorof thecardiacwall comparedo man-
ual tracing of curvesby the cardiologist. So our tracking
algorithmis improvedandhasbeenof muchhelpfor cardi-
ologistsin orderto studyvarioususeof DTI imaged®6, 7].

3 Deformation Field in a 2D Image Sequence

Our next interestis the velocity elds in 2D imagese-
guenceswhich becamepossiblesincewe got more pow-
erful computersaandbetterquality ultrasoundmages.Two
dif culties arisefrom these2D sequencesa low tempo-
ral resolutionandtheincompleteDTI information:the DTI
only measureghe velocity in the direction of the probe.
Humanandrat DTI sequencesvere provided by Drs De-
nis Pellerinand Colette Veyrat from Bicétre Hospital. A
DTI sequenceonsistsof two typesof data: the velocity

measuredy the DTI in the direction of the
probe and the corventional ultrasoundse-
guence . We will usethe seconddatato compen-
satethe gapsof DTI.

Thevelocitymeasuredby DT providesa rst linearcon-
strainton the deformation eld

From the greyscale corventional ultrasoundse-
guence,we can calculatethe optical ow [8, 9], that is
theapparentnotion. Optical o w is basedon the hypothe-
sisthatthe brightnessf a point is constant
throughtime. Using the chainrule for differentiationwe
seethat— — . Theoptical o w equation

becomes , Where — — is
theunknovn ow eld. It doesnot de ne a uniquesolu-
tion. In fact, the optical o w givesthe deformationin the
directionof the gradientof theimage.The methodof Horn
andSchunck( [8] ) consistsof including this constraintin
anenepy with aregularizationterm.

Despitethe fact that the constantbrightnesshypothe-
sisis not strictly obsenedin ultrasoundmagesbecausef
speckle the regularizationterm addedcanovercomethese
problemsf it is strongenough.For example the authorsof
[10] have experimentedptical o w techniquen synthe-
sizedultrasoundsequenc@nddemonstratethe validity of
usingHornandSchunckmethods.

In our casewe alsohave with DTI a secondinearcon-
strainton the deformation eld. But thesetwo linear con-
straintsare not always linearly independent.So the solu-



tion cannotbe the resolutionof the system. Sincemore-
over ultrasoundimagesare very noisy, we proposea So-
lution inspired by Horn and Schunckmethod. The eld

we arelooking for will satisfy when
possibletheoptical o w constrainttheagreementvith the
DTI velocity anda rst orderregularity constraint.We in-
cludethesehreeconstraintsn anenegy minimization.For
eachframe :

where is theimagedomain. Coefcients and are
positive and are chosenexperimentally We minimize this
enegy with asteepesgradientdescent.

Figure 4. Improvement provided by DTI. Opti-
cal Flow without and with DTI

An exampleof resultis givenin Figure3. Theresults
aresatisfyingcomparedwith simpleoptical o w asshavn
in gure 4. Directionis modi ed andwe geta morereg-
ular eld withoutincreasinghe diffusion. But someprob-
lemsdueto the acquisitionpersist.First, gapsin thelateral

wall imply gapsin optical ow for which DTI cannotal-
ways compensatsinceit is alwaysin the direction of the
probe. Secondthe imageof lateralwalls consistsof hor
izontal spotsbecausehe transmittedsignal is oblique to
them, and so the gradientof the imageis not really what
expectedandsois optical o w. However, the deformation
eld is quite accurateandregular aroundthe anteriorand
posteriorwalls.

In orderto Il gaps,we adaptthe ideasdeveloppedin
[9] andincludeatemporalregularization.Thisasssumption
of temporalregularity is relevantsincethetemporalresolu-
tion is high enoughto provide small displacemenbetween
successie images.Theminimizedenegy is then:

Here isa  gradient.lt ensuresnteractionbetweerdif-
ferentframes. An exampleof resultis shavn in gure 5.
Asin [9], theresultis muchmorecoherentWe canseethat
missinginformationis completedby the neighbouringm-
ages.Thevelocity eld is muchmoreregularandcomplete
aroundthe myocardiumwall thanthe rst one.

Figure 5. Velocity eld with a spatio-temporal
regularization.

If the displacementeld is still not satisfying,we have
to useafastalgorithmto improve ultrasoundmagesy en-
hancingedges We chosethe “sticks algorithm”introduced
by [11] to reducespecklenoiseandimprovethe edgeinfor-
mationasshovn in gure 6. We mustcarefully selectthe



Figure 6. The stic ks algorithm. Original Image
and Enhanced Image.

Figure 7. Velocity eld processed.

regularizationso thatthe imageis still texturedfor the op-
tical ow to be efcient. We thenusethe enhancedmage
insteadof the original ultrasoundimagein the algorithms
above. Figures7 and8 showv the improvementof this pre-
processingWe seethattheimpactof the specklenoiseon
thevelocity eld is decreased.

We checledall theseresultsby deforminganimagewith
thevelocity eld andcomparingto thefollowing image.In
every casewe noticedthat the deformedimageis closeto
thefollowing onebothvisually andbasedon meansquare
error. But animportantchallenges arealvalidationof this
velocity eld.

4 Conclusion

We have presentedlifferentwaysto usethe DopplerTis-
suelmaging(DTI) in orderto determinedeformationof the
cardiacwall. We rst shaved a way to track pointsalong
thecardiacwall in aM-Mode image(1D+t), basecdonade-

Figure 8. Velocity eld processed on the same
sequence after enhancement.

formablegrid enegy minimization. We thenshovedhow to
estimatethe deformationeld in asequenc®f 2D images,
basedon enegy minimization including spatio-temporal
regularizatiorandapriori constraints Futurework includes
validationandanalysisof thevelocity eld.
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