
Transparent Incremental State Saving in Time Warp Parallel Discrete Event
Simulation

Robert Rönngren, Michael Liljenstam Johan Montagnat
and Rassul Ayani Ecole Normale Superieure de Cachan
Email: parsim@it.kth.se Cachan (Paris)
SimLab, Dept. of Teleinformatics FRANCE
Royal Institute of Technology
SWEDEN

Abstract

Many systems rely on the ability to rollback (or restore)
parts of the system state to undo or recover from undesired or
erroneous computations. Examples of such systems include fault
tolerant systems with checkpointing, editors with undo capabili-
ties, transaction and data base systems and optimistically syn-
chronized parallel and distributed simulations. An essential part
of such systems is the state saving mechanism. It should not only
allow efficient state saving, but also support efficient state resto-
ration in case of roll back. Furthermore, it is often a requirement
that this mechanism is transparent to the user. In this paper we
present a method to implement a transparent incremental state
saving mechanism in an optimistically synchronized parallel dis-
crete event simulation system based on the Time Warp mecha-
nism. The usefulness of this approach is demonstrated by
simulations of large, detailed, realistic FCA and a DCA-like cel-
lular phone systems.

1. Introduction

Many systems rely on the ability to rollback (or restore)
parts of the system state to undo or recover from undesired or
erroneous computations. Examples of such systems include fault
tolerant systems with checkpointing, editors with undo capabili-
ties, transaction and data base systems and optimistically syn-
chronized parallel and distributed simulations. An essential part
of rollback based systems is the underlying state saving mecha-
nism. This mechanism should not only allow efficient saving of
states, but also support efficient state restoration in case of roll-
back. The implementation of the state saving and restoration
mechanism is in many systems transparent to the user. The reason
for this is obvious: the user should not have to bother with the
intricate details of this mechanism such as whether complete
states are saved or only a list of changes to the state. In this paper
we examine some issues regarding state saving mechanisms in an
optimistically synchronized parallel discrete event simulation
(PDES) system [9] based on the Time Warp synchronization
mechanism [13].

The motivation for PDES is twofold: (i) to increase the exe-
cution speed; and/or (ii) to enable execution of larger simulation
models compared to sequential DES. During the last decade,
researchers have proved the efficiency of PDES methods in a
number of application areas [6, 9, 11]. Today, very challenging
simulation problems are common in the industry and the neces-

sary hardware for PDES is widely available, such as multi-proc-
essor workstations or reasonably efficient networks of
workstations. Taking this into consideration one could expect
PDES methods to be commonly used outside the PDES research
community. This is however not yet the case [11]. One of the
motivating factors for this is that very few, if any, PDES systems
are sufficiently transparent. In most systems the user has to
understand the underlying mechanisms and modify his (sequen-
tial) simulation code accordingly. This situation is by large a con-
sequence of the quest for best possible performance. However,
the execution of a simulation is only part of the simulation life-
cycle [23]. Thus the performance gain from using a non-transpar-
ent PDES system is often outweighed by the additional time and
effort that has to be spent in using the system.

In this paper we examine the possibilities to transparently
implement incremental state saving in a PDES kernel based on
Time Warp synchronization. The kernel is implemented in the
C++ programming language. The rest of the paper is organized as
follows. Section 2 describes several methods that have been pro-
posed to reduce the state saving overhead in Time Warp. In
Section 3 we describe the simulation kernel used in the experi-
ments and in Section 4 a novel method to implement incremental
state saving (ISS) in simulation kernels based on C++. This
method has been implemented and tested in a cellular phone sys-
tem simulator which is described in Section 5. Section 6 presents
experimental results which show the impact on performance of
the ISS method. Section 7 summarizes the contributions of the
work presented in this paper.

2. State saving Issues in Time Warp
A PDES system can be expected to require significantly

more memory than the corresponding sequential DES system to
execute efficiently [20]. In the case of Time Warp based PDES a
naive implementation can use an arbitrarily large amount of
memory compared to the corresponding sequential system [18,
17, 19]. Since the motivation for PDES is to speed up the execu-
tion and/or enable the execution of larger simulation models it is
essential to find mechanisms by which the state saving overhead
can be reduced. We can distinguish between methods that: (i)
reduce the amount of state information that is saved, thus reduc-
ing both execution time and memory consumption; and (ii) meth-
ods that can reclaim memory on demand, including memory of
future objects (i.e. associated with events with timestamps greater
than GVT [13]), limiting the maximum memory needed [14, 17].
In the following we concentrate on the former category.

2.1. State Saving Techniques in Time Warp
The simplest method for state saving in Time Warp is to

copy the entire state of a logical process (LP) each time it exe-
cutes an event message. This is often referred to as copy state
saving (CSS). However, we can expect rollbacks to be relatively
infrequent compared to ordinary event executions in most Time
Warp based simulations [8]. Furthermore, a state of an LP can be
regenerated from an earlier state by re-execution of intermediate
events. Accordingly, an LP does not need to save (or checkpoint)
its state at each event execution but can choose to checkpoint

only every χth state [16]. This is referred to as infrequent (or
sparse or selective) checkpointing. Several methods have been
proposed by which LPs adaptively can select their checkpoint
intervals χ [21, 12]. These methods can easily be made transpar-
ent to the user.

Many challenging simulations, such as battle field simula-
tions or simulations of large communication systems, are charac-
terized by LPs with very large states where only a fraction of the
state is updated in each event execution. In such applications it
may be inefficient or even infeasible to save copies of the com-
plete state which can be in the order of hundreds of kilobytes [6].
In such applications it is often appropriate to use incremental
state saving (ISS) [2, 4, 24, 25, 26], in which only the updated
parts of the state are saved. Thus the state saving mechanism
builds a chain of state changes. In case of rollback the state is
restored by undoing these changes.

Few systems, if any, implement transparent ISS primarily
due to problems associated with identifying which parts of the
state that are updated and when. This could be accomplished by
use of special purpose hardware [10] or by special purpose simu-
lation languages with compiler support for ISS. However, due to
cost issues, a majority of PDES systems are implemented on top
of some general purpose programming language such as C or
C++. Several of these systems implement ISS. The SPEEDES
environment features several interesting and efficient techniques
to implement ISS [24, 25]. Good performance results with ISS in
the context of VLSI simulations [2] and simulations of large tele-
com networks [6] have been reported. ISS has also been imple-
mented using persistent objects [4] in an interesting effort to
achieve a transparent implementation of ISS. However, these
implementations of ISS have the common denominator that they
put the responsibility on the user of writing either special purpose
code for the ISS or calling special functions when updating state
variables or to explicitly save state variables that have been
updated. If the user fails to supply the necessary code for ISS in
these systems, the state restoration in case of rollback may be
corrupted. This is likely to generate non-deterministic, erroneous,
simulation results. Finding this type of programming errors is
often hard, even for a user with a thorough understanding of the
Time Warp mechanism. Hence, we conclude that it is essential
that ISS can be implemented as transparently as possible to the
user. The question is to which extent this is possible.

3. Parallel Simulation Kernel
The Parallel Simulation Kernel (PSK) used in this study is

based on Time Warp synchronization and runs on shared memory
multiprocessor workstations. It is written in C++ and uses static

assignment of the LPs to the processors, aggressive cancellation
of events (i.e. events are cancelled as soon as an antimessage is
received), and the direct cancellation optimization for shared
memory machines described in [8]. The basic synchronization
primitives (such as locks, and barriers) are supplied by the p4
macro library [3] making the PSK portable to a variety of multi-
processors. One modification has been made to this library, how-
ever, the queuing locks supplied in the package have been
replaced by spin-locks.

3.1. PSK Structure
The PSK provides an application independent basis on top

of which discrete event simulations can be built. The system is
object oriented. When creating application specific logical proc-
esses the user inherits from a virtual LP class, see Figure 1. Asso-
ciated with an LP is a StateHandler object which implements the
state saving and restoration method. Through the StateHandler
the LP object is able to save its state and to rollback to a previ-
ously saved state. These mechanisms are transparent to the user.

Figure 1. The LP inside the PSK

Each LP is also associated to an Event Set containing both
executed and un-executed events and a State Set containing cop-
ies of old states to be used for state restoration purposes in case of
rollback, Figure 2. When an event is executed, it usually modifies
the LP state. Thus before an event execution the StateHandler
constructs a data structure containing the information necessary
to restore the old state and links it to the event.

Figure 2. The events and the state set

In the case of incremental state saving, the data structure
storing the state restoration information is a list of back ups of old
values of state variables which have been modified in the execu-
tion of the event. In case of rollback, the StateHandler parses all
executed events backward up to the rollback point. For each event
in the rollback the StateHandler traverses the list of old state var-
iable values in reverse order to restore the state.

4. Transparent Incremental State Saving

ISS can be implemented by identifying all updates to state
variables at runtime and backing up the old values of the state
variables before the state variable in itself is modified. In particu-
lar this could be implemented by changing the semantics of all
side effect operators on state variables. In C++ it is possible to
define data types and change the semantics of the operators on

LP StateHandler

User
defined LP

LP

StateSet

EventSet

Executed events Future events

Event

State

these data types by what is referred to as operator overloading.
Thus, ISS can be implemented by creating special data types to
encapsulate all state variables with overloaded operators that
automatically perform the necessary ISS back up. Introducing
special data types for state variables is not a severe limitation as
many DES systems and most PDES systems require that the user
declares his state variables so that they can be easily identified.
Though this method may appear as straight-forward to imple-
ment there are several aspects of this approach which merit fur-
ther attention.

4.1. Data Encapsulation
Only data which is part of the state of an LP should be

backed up by the ISS mechanism. Hence, it is necessary to be
able to distinguish between state variables and other variables. To
solve this problem, a template class has been created to encapsu-
late any data type used to declare state variables, Figure 3. It is
referred to as the State<> class.

template<class T> class State {
public:

.... // overloaded operators
private:

T m_data;
};

Figure 3. The State class declaration

The user is required to declare his state variables as State<>
encapsulated data. The declaration of a state variable of type inte-
ger:

int m_int;

is thus written as:
State<int> m_int;

This will create m_int as an object for which the operators are
overloaded to backup the data by transparently calling a backup
method of the StateHandler object. The state variable data is
stored in the type int m_data data member of the State<>
object.

4.2. Overloading Operators
The backup method must be called each time a state variable

is modified. Thus any side effect operator must be overloaded. In
C++ this includes the =, ++, --, +=, -=, *=, /=, %=, ^=, &=, |=,
>>= and <<= operators. But to achieve complete transparency, all
other operators on the State <> objects must be overloaded. This
is to allow the user to write expressions such as: m_int + 2 or
2 + m_int or m_int + m_int which perform calls to:

operator+<int>(State<int>&, int);
operator+<int>(int, State<int>&);
operator+<int>(State<int>&, State<int>&);

The proposed State<> template, its associated operators and copy
constructor provide the user with a transparent ISS mechanism
for all simple data types, such as integers, floats etc. However,
arrays and other compound data objects deserve special attention.

Some operators, such as the subscript([]) operator, may be
overloaded using different prototypes. That is, the user can define
compound classes for which he can overload the subscript opera-
tor to return an object of any type of data member. Hence, one

cannot make generic assumptions on the resulting type when
applying subscript. Consequently, the State<> class cannot pro-
vide a generic subscript operator to ensure transparency. A sim-
ple solution is not to declare indexed state variables as State
objects. Instead, each data member of indexed objects or classes
should be State<> objects. This ensures that the state of the LP
will be correctly backed up. An example illustrating this is found
in Figure 4.

4.3. Initialization of Incremental State Saving
A problem related to automatic incremental state saving is

how to initialize the state saving. When the LPs are created, their
data is initialized, i.e. modified. These initializations will cause
calls to the backup method of the StateHandler. This is not desir-
able since the simulation has not yet started and the StateHandler
objects may not yet exist. Consequently, the proposed mecha-
nism must be able to distinguish an initialization from an assign-
ment, though both may use the same methods in C++.

In our PSK this has been solved by performing a call to the
backup method through a pointer. When a State<> object is cre-
ated, the pointer is set to a dummy backup method which does
nothing. Consequently, backup calls performed during the initial-
ization are harmless. When required, each LP enables the backup
ability of all its internal State<> objects by changing the backup
method pointer of these objects. To enable this, the State<>
objects link themselves into a list accessible to the LP when they
are created. Currently, the backup capability of the State<>
objects of an LP is only enabled on the completion of the initiali-
zation of the LP. Hence, the state of an LP cannot be augmented
after the initialization unless special provisions are made to ena-
ble their backup capabilities as these parts otherwise would not
be backed up.

Figure 4. An example of correct data encapsulation
in the proposed incremental state saving scheme

4.4. Temporary Objects
C++ compilers can sometimes create temporary objects

automatically. Consider the example in Figure 4. If the user
writes a statement like:

m_a = A();

a temporary object of type A is created on the stack, this object is
copied to m_a and immediately deallocated from the stack. This
could interfere with the incremental state saving mechanism if
the temporary object contains State<> objects, in which case the
temporary object would backup itself. This should not occur
since the temporary object is not part of the LP state. Further-
more, it could cause the StateHandler to try to restore the state of
non-existing objects in the case of rollback.

LP

User defined LP

State<int> m_int;
A m_a;

A

State<float> m_float;
A& operator[](int index);

Two cases has to be taken into consideration. The temporary
object could be created: (i) during the initialization phase; or (ii)
after the initialization phase. In the first case the backup mecha-
nism is not yet enabled but the temporary object will link itself to
the LP list as described in Section 4.3. Since the temporary object
will be deleted at the end of the LP creation, it should be unlinked
from the linked list when its destructor is called.

If the temporary object is created during the execution it will
not have its backup ability enabled. However, the State<> objects
of the temporary object links and un-links to/from the list of
State<> objects of the LP as described in Section 4.3. This could
potentially be costly if the temporary object contains a large
number of State<> objects. To prevent this a global variable is
used as a flag which is set upon completion of the initialization.
When created, a State<> object checks this flag to see if it should
link to the list or not.

4.5. Pointers and Dynamic Memory Allocation
In a general case the state of an LP may contain pointers to

data objects. These data objects could be dynamically allocated
and deallocated. Our current implementation of ISS does not yet
support these data types. In fact many PDES systems put the
restriction that the state size of an LP has to be staticly defined.
However, we will outline a possible solution to this problem
which we intend to implement in a near future.

Integer arithmetic on pointers has to be supported. To guar-
antee transparency, operators acting both on State<> encapsu-
lated pointers and integers should be overloaded in addition to the
operators overloaded for non-pointer types. Since these operators
do not exist for other objects than pointers, a template subclass of
State<> will be declared, referred to as RefState<>. This will
guarantee that pointers are correctly handled.

Transparent backup of dynamically allocated objects can be
performed with the restriction that such objects only contain data
members declared as State<> objects. To ensure that the backup
capability of these objects are enabled, Section 4.3, the dynami-
cally allocated object has to inherit from a base class where the
constructor enables the backup capability. Furthermore, the
method has to guarantee that a dynamically allocated object is
not deallocated before it can be guaranteed that it will never be
used in a rollback. For this purpose, the new and delete operators
of the base class has to be overloaded. The base class contains a
flag indicating if the user tried to delete the object or not. On a
delete call, the memory block is not really deallocated, only the
flag is set. The block can only be deleted in fossil collection and
if it is tagged as deleted.

4.6. Memory Management Overhead
The proposed method for incremental state saving will

cause the creation of backup objects each time a State<> variable
is modified. Thus it is essential to have an efficient memory han-
dler. We can expect that a majority of the data objects which will
be backed up are small (such as 4-byte integers). Dynamically
allocating and manipulating a large number of such objects in a
list is not efficient. To alleviate this problem an improved mem-
ory manager for ISS has been introduced which treats backup
objects containing less than 8-bytes of data (the size of a double

i.e. the biggest C++ built-in type) in a special way. The memory
manager implements linked lists of arrays of update structures.
Each update structure can hold backup data of up to 8-bytes
length. When an event is executed the StateHandler will request
arrays of update structures to store backups of state variables less
than 8 bytes in from the memory handler on demand. Thus the
linked list operations for small backup objects are replaced by
incrementing an index in an array. This scheme also alleviates the
problem of deallocating the backup structures at fossil collection.
With this method all small backup objects can be deallocated effi-
ciently by returning the update structure arrays to the memory
handler. Only backup objects larger than 8 bytes are dynamically
allocated and stored in the linked list.

4.7. Level of Transparency Achieved
The proposed mechanism is not completely transparent. In

particular, the user has to explicitly declare state variables as
State<> or RefState<> objects. In addition, some minor problems
remain. The compiler is sometimes able to automatically cast
from a user defined type T to a given type X, but not from
State<T> to X, though a cast operator from State<T> to T is pro-
vided in the State<> class. Thus, the user might have to explicitly
make some casts which were not previously needed.

The user should also be cautious when redefining the copy
constructor or the assignment operator of compound classes used
for state variables. If the user defines his/hers own copy construc-
tor and/or assignment operator for such classes, he/she should
call the copy constructor or assignment operator of all contained
State<> declared objects.

The proposed method differs from what can be achieved by
compiler based methods in that there is no way of preventing the
user from, intentionally or not, bypass the backup mechanism by
modifying State<> data through pointers.

5. The Cellular Phone Simulator
In this study we have tested our ISS implementation on a

simulator of a cellular communication system. Good perform-
ance for parallel simulation of similar systems has been reported
in e.g. [5]. Our simulator has previously been described in [15]
and we will limit ourselves to describing some of its general
properties.

5.1. The Cellular Phone Model
A cellular communication system is divided into a number

of cells. To each cell a certain number of radio channels are allo-
cated. Mobile Stations (MSs) residing in a cell can allocate any
of the free radio channels allocated to the cell to send and receive
phone calls. The same channel can be used in several cells that
are sufficiently spaced apart since interference will be negligible.

When a mobile terminal moves from one cell to another it
may become necessary to connect the MS to another base station,
this is called a handover. If an attempt is made to make a call to
or from a MS in a cell where there are no available channels, the
call is blocked. If an ongoing call can not be handed over to a cell
because there are no available channels it may be forced to termi-
nate in which case the call is said to be dropped.

Radio channels can be allocated to cells staticly using Fixed
Channel Assignment (FCA) or dynamically using some Dynamic
Channel Assignment (DCA) scheme.

The simulation model consists of three submodels in a simi-
lar manner to the MaDRAS simulator [1]: the tele-traffic model,
the mobility model, and the propagation model.

The teletraffic model describes the arrival process of new
calls and their duration. The call arrivals form a Poisson process

with a mean arrival rate , and exponential call duration with

mean . The mobility model describes the movements of the
mobile stations (MSs). The propagation model describes distance
dependent propagation loss using a statistical model for corre-
lated log-normal shadow fading. The path losses at a specific
position are regarded as constant over time, so that at a position p
the gain from a transmitting station s is Gs,p forming a two-

dimensional matrix for each base station that describes the geog-
raphy.

Each MS performs a “resource reallocation” procedure
every 500 ms of simulated time. This procedure involves calcu-
lating the uplink and downlink Signal-to-Interference Ratio (SIR)
and comparing it to a “least acceptable”-threshold to determine if
the call should be dropped. Other BSs are also compared against
the current connection and if another BS is found to be signifi-
cantly better a handover is attempted. If a handover can not be
completed due to lack of free channels the MS remains with the
current connection.

Channel selection is done stochastically with equal proba-
bility among the available free channels on the BS. The uplink
and downlink channels are changed at the same time and hence
treated as one unit. Path losses are regarded as equal in both
directions due to reciprocity. The radio channels are assumed to
be orthogonal, so adjacent channel interference has been
neglected.

The positions of the mobiles are updated every time there is
new data to be read from the gain matrix, i.e. each mobile sched-
ules a position update event for itself to occur when it has trav-
elled the distance between two samples in the gain matrix. This
event will cause the mobile to read the new radio gain from the
matrix.

Each channel is a Logical Process (LP) in our model. There
is also one generator LP that creates a mobile station when a new
call arrives and sends it to the first channel assigned to it.
Figure 5 shows an example of the communication patterns in the
model. When a new call arrives to the system, a corresponding
MS is created by the generator. After a BS has been selected, the
new MS then proceeds to make its initial channel selection. A
request is sent to all channels that are available on the selected
BS to find out which channels are free at this time. One of the
free channels is selected (if there is one, otherwise the call is
blocked) and the MS object is sent to that channel. Similarly,
when an MS decides to perform a handover to another BS a new
set of requests are sent out to all channels available on the new
BS and the selection is made. If no free channels are found and
link quality is insufficient the call is eventually dropped.
Requests made for the same channel from different MSs at the
same simulation time is handled through an event priority scheme
ordering the LPs so that one channel selection interaction is

always completed before the next request message is processed.
A channel holds information about all entities (base stations and
mobiles) communicating on that channel.

Figure 5. Basic communication pattern in the
simulation model.

5.2. Characteristics of the models relevant to state
saving issues

With each model we have simulated two scenarios: (i) a sys-
tem of 7 cells; and (ii) a system of 67 cells. These scenarios are
referred to as the small and large area respectively, where the
larger area is closer to a realistic system. Radio signal propaga-
tion is described by a read only matrix which is 0.3 Mb for the
small area and 27Mb for the large area.

Each event will only modify one mobile station out of all the
connections contained in the Channel object. The size of the
Channel state for the FCA case is 1720 bytes and one BS-MS
connection is only 156 bytes. Furthermore, most events are sim-
ple position updates in which case only part of the BS-MS con-
nection is modified. Hence, on average only about 2% of the state
is updated in an event which makes incremental state saving
seem like a good candidate as suggested in [6]. However, the
state saving overhead is only a relatively small fraction of the
total time to process an event due to the large event granularity.
The mean event execution time is about 260 microseconds for the
small area and 750 microseconds for the large area. The higher
event execution time for the large area is primarily due to an
increased cost for interference computations. The state size
remains the same for both areas and the average time to save a
state using copy state saving is about 140 microseconds. This
means that for any improved state saving scheme (compared to
pure copy state saving) we can at most cut the execution time by
at about 45% for the small area and 15% for the large area by
reducing the state saving overhead.

When using states sizes adjusted for a DCA model the situa-
tion becomes quite different. The mean event execution time
increases slightly to about 430 microseconds for the small area
and 830 microseconds for the large area, but the average state
saving time increases to about 2200 microseconds for both mod-
els. This is due to a dramatic increase in state size for the Channel
LP to 42776 bytes. The size of the BS-MS connection increases
to 636 bytes. The most frequent events are still position updates.
Consequently, the average fraction of the state updated in an
event execution is even less for the DCA model than for the FCA
model. In an average event execution less than 0.2% of the state

λ
1 μ⁄

Channel

Channel

Mobile

Channel

Channel

Generator

MS

Channel Channel

(selection)

free / busy
“I want BS i,
is channel free?”

all available channels
on BS i

all available channels
on BS j

Initial channel selection handover

is updated. The state saving overhead is quite severe when using
copy state saving and in this case accounts for about 75 - 85 % of
the total time to process an event. Thus, we hypothesize that the
DCA models will benefit even more from ISS than the FCA
model.

6. Experimental Results

In this study we have compared the impact of four different
state saving mechanisms on the cellular phone simulator for the
FCA and DCA models:

• Copy State Saving (CSS). The state of the LP is saved at each
event execution.

• Sparse State Saving (SSS) with fixed state saving interval. The
best state saving intervals were experimentally determined to
be 5 for the FCA model and 10 for DCA model respectively.

• Transparent Incremental State Saving (TISS) which is the
method described in this report.

• User dependant Incremental State Saving (UISS). This is a
more conventional ISS method in which the user is required to
explicitly call a backup function. The cellular phone models
are such that only a well defined part of the state is updated on
each event execution. Consequently, only a few calls to the
backup function are necessary on each event execution.

An important aspect of the transparency achieved by the TISS
method is that the only changes that had to be made to the user
code of the simulation models was to declare the state variables
as State<> objects. By defining a macro for the State<> declara-
tions exactly the same code could be used for CSS, SSS and
TISS. This has several important implications: i) it is of great
value when selecting the appropriate state saving method for a
particular application also making it possible to support a wider
variety of applications with a single user interface to the simula-
tion system; (ii) it forms a basis for building a system which auto-
matically selects the best state saving method for individual LPs.

The experiments were performed on a SUN Sparcstation 10
with 4 processors, 128 Mb primary memory and 1 Mb cache per
processor. The average rollback length, in these experiments, var-
ies between 3 and 4.

6.1. Speed-up
The performance results in Figures 6 through 9 are shown as

the relative speed of the proposed state saving algorithms com-
pared to copy state saving. Figures 6 and 6 depicts the perform-
ance for the FCA model for small and large areas respectively. As
predicted in Section 5.2 the improvement from reducing the state
saving for this model would be limited to 15% for the large area
and 45% for the small area. The performance results indicate that
such improvements are possible with sparse state saving. To
some extent the reduced memory consumption also results in
improved performance of the memory system. Furthermore, the
ISS methods are outperformed by the SSS method in these exper-
iments. This is primarily due to the lower overhead in execution
time for this method for the relatively small state sizes of this
model.

Figure 6. FCA model, small area simulated on 2 and 4
processors.

Figure 7. FCA model, big area simulated on 2 and 4
processors.

Figure 8. DCA model, small area simulated on 2 and
4 processors.

Figures 8 and 9 show the performance of the state saving algo-
rithms for the DCA model. The DCA model differs from the
FCA model in that the states of the LPs are significantly larger in
the DCA model. Consequently, these figures reveal that the ISS
methods perform significantly better than CSS and SSS. Further-
more, we see that there is a significant cost for the transparency
of the TISS method compared to the UISS. We do, however
believe that this cost is justified in most cases as it alleviates the
user from the burden of having to explicitly deal with the under-
lying state saving mechanism. The speed-up achieved by the ISS
methods are higher than what could be attributed to the reduction
of the state saving overhead alone. Examining Figure 13 we see
that this phenomenon is not due to an increased efficiency. We

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

CSS SSS S5 TISS UISS

Sp
ee

d
co

m
pa

re
d

to
 C

SS
 a

fte
r 5

00
0s

 s
im

ul
at

ed

State saving method

2 processors
4 processors

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

CSS SSS S5 TISS UISS

Sp
ee

d
co

m
pa

re
d

to
 C

SS
 a

fte
r 5

00
0s

 s
im

ul
at

ed

State saving method

2 processors
4 processors

0

2

4

6

8

10

12

14

CSS SSS S10 TISS UISS

Sp
ee

d
co

m
pa

re
d

to
 C

SS
 a

fte
r 5

00
0s

 s
im

ul
at

ed

State saving method

2 processors
4 processors

believe that the additional performance improvement mainly is
caused by an improved locality which improves cache perform-
ance. This hypothesis is supported by the fact that the smaller
model, for which the relative memory consumption reduction is
larger, exhibits a larger improvement.

Figure 9. DCA model, big area simulated on 2 and 4
processors.

Figure 10. Memory consumption for the FCA model

Figure 11. Memory consumption for the DCA model

6.2. Memory Consumption
Figure 10 and 11 show the memory consumption for the

FCA and DCA models respectively for the large area. The mem-
ory consumption was recorded during long runs (5000 seconds of
simulated time) for which the memory used by the simulator sta-
bilized. In both models, the simulator first allocates a 27 Mb data
structure to store the area simulated. Hence, only memory above
27 Mb is significant as far as state saving is concerned. These fig-
ures clearly show that both sparse and incremental state saving

can reduce the memory consumption significantly. UISS per-
forms slightly better than TISS which is explained by the fact that
while TISS saves several small pieces of the state UISS can save
the same information as a single or a few larger pieces reducing
the overhead.

6.3. Efficiency
Changes to one of the mechanisms in a Time Warp system

can sometimes affect the optimistic synchronization substan-
tially. This effect has been demonstrated for event list manage-
ment [22] and other types of memory management policies [7].
Figures 12 and 13 show the impact of the state saving mechanism
on the efficiency, defined as the ratio of committed events to exe-
cuted events (committed events and events that are rolled back).
These figures show that the state saving methods had little impact
on the efficiency for these benchmarks.

Figure 12. Efficiency of the state saving algorithms in
the FCA model

Figure 13. Efficiency of the state saving algorithms in
the DCA model

7. Conclusions

Transparency of the state saving mechanism is essential for
the acceptance of PDES methods by a wider audience as it
relieves the user from the burden of having to understand and
interact with an often intricate mechanism. In this paper we have
discussed a method to implement incremental state saving in a
Time Warp simulation system built on top of the C++ program-
ming language. The method is based on the ability to overload
operators in C++. The most prominent characteristics of this
approach is that it achieves a high degree of transparency with

0

1

2

3

4

5

6

CSS SSS S10 TISS UISS

Sp
ee

d
co

m
pa

re
d

to
 C

SS
 a

fte
r 5

00
0s

 s
im

ul
at

ed

State saving method

2 processors
4 processors

30

40

50

60

70

CSS S5 TISS UISS

M
em

or
y

Co
ns

um
m

ed
 a

fte
r 5

00
0s

 (M
b)

State Saving Method

Memory consumption (2 procs)
Memory consumption (4 procs)

30

40

50

60

70

CSS S10 TISS UISS

M
em

or
y

Co
ns

um
m

ed
 a

fte
r 5

00
0s

 (M
b)

State Saving Method

Memory consumption (2 procs)
Memory consumption (4 procs)

70

75

80

85

90

95

100

CSS S5 TISS UISS

Ef
fic

ie
nc

y
du

rin
g

50
00

s
(%

)

State Saving Method

Efficiency (2 processors)
Efficiency (4 processors)

70

75

80

85

90

95

100

CSS S10 TISS UISS

Ef
fic

ie
nc

y
du

rin
g

50
00

s
(%

)

State Saving Method

Efficiency (2 processors)
Efficiency (4 processors)

acceptable overhead compared to a non-transparent implementa-
tion of ISS.

In the proposed method the only changes required to the
users application code is to use special type declarations of the
state variables. In particular, this allows the same user application
code to be used regardless of whether the underlying state saving
mechanism used is copy state saving, sparse state saving or incre-
mental state saving.

The usefulness of the proposed method has been demon-
strated by simulations of large realistic simulation models of cel-
lular phone systems. The experimental results show that
incremental state saving is important to achieve good perform-
ance in cases where the state vectors are large and only a small
fraction of the state is updated on average. In some cases the exe-
cution time was reduced by more than an order of magnitude
compared to conventional copy state saving.

In future systems we believe that the system should be able
to select the best state saving method for individual LPs at run
time. This will be facilitated if the state saving mechanism can be
made transparent.

8. References
1. Andersin, M., Frodigh, M., Sunell K-E, “Distributed Radio

Resource Allocation in Highway Microcellular Systems”,
Fifth WINLAB Workshop on Third Generation Wireless
Information Networks, Rutgers University, New Jersey, -95

2. H. Bauer et al., “Reducing Rollback Overhead in Time-Warp
Based Distributed Simulation with Optimized Incremental
State Saving”, Proceedings of the 26th Annual Simulation
Symposium, pages 12-20, March 1993.

3. R. Butler, E. Lusk, “Monitors, messages, and clusters: the p4
parallel programming system”, Parallel Computing, 20, April
1994

4. D. Bruce, “The Treatment of State in Optimistic Systems”,
Proceedings of the 9th Workshop on Parallel and Distributed
Simulation (PADS95), pages 40-49, June 1995.

5. C. Carothers, R. Fujimoto and Y.-B. Lin, “A Case Study in
Simulating PCS Networks Using Time Warp”, 9th Workshop
on Parallel and Distributed Simulation, Lake Placid, NY,
1995.

6. J. Cleary, F. Gomes, B. Unger, X. Zhonge and R. Thudt,
“Cost of State Saving & Rollback”, Proceedings of the 8th
Workshop on Parallel and Distributed Simulation, Vol. 24,
No. 1, pages 94-101, July 1994.

7. S.R. Das and R. F. Fujimoto. “A Performance Study of the
Cancelback Protocol for Time Warp Parallel Simulation”,
Proceedings of the 1994 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems. pages
201-210, May 1994.

8. R. Fujimoto, “Time Warp on a Shared Memory Multiproces-
sor”, Transactions of the Society for Computer Simulation,
Vol. 6, No. 3, pages 211-239, July 1989.

9. R. Fujimoto, “Parallel Discrete Event Simulation”, Commu-
nications of the ACM, Vol. 33, No. 10, pages 30-53, October
1990.

10. R. Fujimoto. et al., “Design and Evaluation of the Rollback
Chip: Special Purpose Hardware for Time Warp”, IEEE
Transactions on Computer, Vol. 41, No. 1, pages 53-64, Janu-
ary 1992.

11. R. Fujimoto, “Parallel Discrete Event Simulation: Will the
Field Survive?”, ORSA Journal on Computing, Vol. 5, No. 3,
pages 213-230, Summer 1993.

12. J. Fleischmann and P. Wilsey, “Comparative Analysis of Peri-
odic State Saving Techniques in Time Warp Simulators”,
Proceedings of the 9th Workshop on Parallel and Distributed
Simulation (PADS95), pages 50-59, June 1995.

13. D. Jefferson, “Virtual Time”, ACM Transactions on Program-
ming Languages and Systems, Vol. 7, No. 3, pages 404-425,
July 1985.

14. D. Jefferson, “Virtual Time II: Storage Management in Dis-
tributed Simulation”, Proceedings of the 9th Annual ACM
symposium on Principles of Distributed Computing, pages
75-90, August 1990.

15. M. Liljenstam, R. Ayani, “A Model for Parallel Simulation of
Mobile Telecommunication Systems”, To appear in Proceed-
ings of the International Workshop on Modeling Analysis
and Simulation of Computer and Telecommunication Sys-
tems (MASCOTS), San Jose, CA, February, 1996

16. Y.-B. Lin, B. R. Preiss, W. M. Loucks and E. D. Lasowska,
“Selecting the Checkpoint Interval in Time Warp Simula-
tion”, Proceedings of the 7th Workshop om Parallel and Dis-
tributed Simulation (PADS93), pages 3-10, May 1993.

17. Y-B. Lin and B. Preiss, “Optimal Memory Management for
Time Warp Parallel Simulation”, ACM Transactions on Mod-
eling and Computer Simulation, Vol. 1, No. 4, pages 283-
307, October 1991.

18. B. D. Lubachevsky, A. Schwartz and A. Weiss, “Rollback
sometimes works… if filtered”, 1989 Winter Simulation
Conference Proceedings, pages 630-639, December 1989.

19. B. D. Lubachevsky and A. Weiss, “An Analysis of Rollback-
Based Simulation”, ACM Transactions on Modeling and
Computer Simulation, Vol. 1, No. 2, April 1991.

20. B. Preiss and W. M. Loucks, “Memory Management Tech-
niques for Time Warp on a Distributed Memory Machine”,
Proceedings of the 9th Workshop on Parallel and Distributed
Simulation (PADS95), pages 30-39, June 1995.

21. R. Rönngren and R. Ayani, “Adaptive Checkpointing in Time
Warp”, Proceedings of the 8th Workshop on Parallel and Dis-
tributed Simulation, pages 110-117, July 1994

22. R. Rönngren, R. Ayani, S. Das and R. Fujimoto, “Efficient
Implementation of Event Sets in Time Warp”, Proceedings of
the 7th Workshop on Parallel and Distributed Simulation
(PADS93), pages 101-108, May 1993.

23. R. G. Sargent, “Verification and Validation of Simulation
Models”, 1994 Winter Simulation Conference Proceedings,
pages 77-87, December 1994.

24. J. Steinman, “SPEEDES: A Multiple-Synchronization Envi-
ronment for Parallel Discrete-Event Simulation”, Interna-
tional Journal in Computer Simulation, Vol. 2, No. 3, Pages
251-286, 1992.

25. J. Steinman, “Incremental State Saving in SPEEDES Using
C++”, Proceedings of the 1993 Winter Simulation Confer-
ence, pages 687-696, December 1993.

26. B. W. Unger, J. G. Cleary, A. Convington and D. West, “An
external state management system for optimistic parallel sim-
ulation”, Proceedings of the 1993 Winter Simulation Confer-
ence, pages 750-755, December 1993.

