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Abstract
The state saving mechanism constitutes an essential part

of any system in which erroneous or undesired executions
can be undone by rolling back the system state. One such
application is optimistically synchronized parallel discrete
event simulation (PDES) systems based on the Time Warp
Synchronization mechanism. In this type of systems the state
saving and restoration mechanism is essential to the perfor-
mance. Consequently, several mechanisms which could
reduce the state saving overhead in Time Warp based PDES
have been proposed.

In this study we investigate the performance of several
such mechanisms, including both transparent sparse and
incremental state saving methods, in the simulation of large,
realistic cellular communication simulation models. We also
investigate the applicability of two analythical methods pro-
posed to guide the choice of state saving mechanism. Our
empirical results indicate that the best choice of method
depends on the characteristics of the simulation model. Fur-
thermore, the cost of transparent state saving methods is
found to be low. We also show the need to further investigate
analythical methods to better understand how to make the
selection of state saving mechanism.

1. Introduction

Optimistic synchronization methods such as Time Warp
[9] have, during the last decade, proved to be among the
most promising protocols for Parallel Discrete Event Simu-
lation (PDES). In PDES the physical system is modelled as a
set of logical processes (LPs) which communicate by send-
ing time stamped event messages. The timestamps of the
messages denote when, in simulated time, the event is to
occur at the receiving LP. To execute such a system in paral-
lel the underlying execution mechanism must guarantee that
all events, eventually, are executed in casually correct order
before any output from the simulation is committed to the
user. To achieve casual correctness it is sufficient that all
LPs, eventually, execute their input events in non-decreasing
timestamp order. Optimistic synchronization for PDES is
based on the assumption that there exists some inherent syn-
chronization in the simulated system and that this is implic-

itly maintained in the simulation model. In Time Warp
synchronized PDES, this assumption is used to allow LPs to
execute events as soon as they are available. If a causality
error is detected, i.e. an event with a lower timestamp than
that of the most recently processed arrives at the LP, an error
recovery mechanism is invoked. This mechanism is referred
to as the rollback mechanism. In a rollback, the LP restores
an earlier state and undoes any effects of the premature exe-
cution of events by sending anti-messages to cancel events
generated as a consequence of the causality error. Some of
the main advantages of this scheme are that the LPs never
have to block to guarantee that causality errors cannot occur
and that the mechanism easily can be made transparent to the
user. The disadvantages are primarily additional costs for
book keeping to enable the rollback mechanism. Many stud-
ies indicate that the advantages of optimistic synchronization
often are greater than the disadvantages when compared to
conservative, causality error avoiding, methods [6, 7].

An essential part of a Time Warp synchronized PDES
system is the state saving mechanism. To support the state
saving mechanism it is necessary for the system to save
enough state information to guarantee that any state which
could be necessary to restore in case of rollback could be
regenerated. A naive implementation of the state saving
mechanism could, not only be costly in terms of memory
consumption, but also in terms of execution time. This can
contradict the two major motivations for PDES: (i) to enable
the execution of larger simulation models; (ii) and/or to
increase the execution speed of the simulation. Conse-
quently, much effort has been spent on designing more effi-
cient state saving methods for Time Warp. These methods
are not only of interest in the context of PDES. Optimistic
synchronization schemes or methods based on the ability to
roll back and recover earlier states are used in a number of
commonly encountered parallel and sequential systems.
Examples of such systems include fault tolerant systems
with checkpointing, editors with undo capabilities, transac-
tion and data base systems. In this study we investigate the
impact of several of the most promising state saving mecha-
nisms for Time Warp PDES proposed in the literature on the
performance of large, realistic, simulations of cellular com-
munication systems. The rest of this paper is organized as



follows. Section 2 describes the state saving methods
investigated in this study. Section 3 presents the experi-
mental framework and the experimental results are dis-
cussed in Section 4. Finally, Section 6 summarizes our
conclusions.

2. State Saving Methods
State saving is one of the critical issues in Time Warp

based systems and several methods have been proposed
which address this issue. The simplest method for state
saving is to copy the complete state of the LP each time the
LP executes an event. This is often referred to as copy state
saving (CSS). However, the optimistic synchronization is
often successful and in many cases the number of events
rolled back are low compared to the total number of events
executed. A consequence of this is that it is often wasteful
to save a complete copy of each state since most state cop-
ies never will be used for rollback purposes. Several meth-
ods have been proposed to reduce the state saving over-
head. These methods can be roughly classified in two cate-
gories which we refer to as: (i) sparse state saving (SSS);
and (ii) incremental state saving (ISS).

2.1. Sparse State Saving Methods
In sparse (also referred to as infrequent or periodic)

state saving copies of complete states are saved (check-
pointed) [11]. However, the state is not saved each time the
LP executes an event. In case of rollback the state is
restored by retrieving the last state checkpointed before the
rollback point and then re-executing the intermediate
events. During the re-execution phase, which is referred to
as a coast forward phase, no event messages are sent. This
is because the re-execution of events in the coast forward
phase only serves to restore the state. Sparse state saving
can reduce both execution time and memory consumption.
Moreover, sparse state saving can easily be made transpar-
ent to the user. Several methods have been proposed in the
literature. In this study we concentrate on three of these
methods which adaptively determine the checkpoint inter-
val for each individual LP. The selection of these methods
is based on earlier studies [8, 14].

2.1.1. Static Checkpoint Interval. Sparse state saving is
implemented by saving only every χth state. χ is referred to
as the checkpoint interval. In the simplest method, a static
checkpoint interval which is the same for all LPs is used.
This method works best for simulations where the LPs
have homogeneous characteristics and where the rollback
characteristics do not change during the execution. In our
experiments the checkpoint intervals were selected using
the manual regression method by Lin et. al. [11].

2.1.2. Rönngren’s Execution Time Based Method. In
[14] Rönngren and Ayani perform an analysis of the over-
head caused by the state saving as a function of the check-
point interval. Based on the analysis they propose the

following equation for the checkpoint interval which mini-
mizes the execution time:

(EQ 1)

Where Robs is the number of observed event executions,
kobs is the number of rollbacks observed during the observa-
tion interval Robs. δs is the average time to save a state of the
LP and δc is the average coast forward execution time of an
event. Based on (EQ 1) a method which iteratively refines
the approximation of χmin is presented. The next iterate of χ
after the nth observation interval is:

(EQ 2)

In our implementation the following values for the
parameters of this method have been used: the length of the
observation interval Robs is 200 event executions, the maxi-
mum checkpoint interval χmax is 30, χinitial is 4,and ρ is 0.4.
The system transparently measures δs and δc during the
first 200 event executions of each LP or until at least 30
measurements of δc have been reached.

2.1.3. Rönngren’s Memory Consumption Based
Method. In many simulation problems execution speed is
not the limiting factor, but rather resource consumption in
the form of memory. Many researchers have independently
reported that the checkpoint interval which gives the larg-
est reduction in execution time not necessarily is the same
as the best checkpoint interval in terms of memory con-
sumption [11]. In [14] an analysis of the impact of the
checkpoint interval on the memory consumption is made.
The memory optimal checkpoint interval according to this
analysis is:

(EQ 3)

Where Ms is the state size of the LP, Me is the average
size of event messages that the LP receives and n is the
maximum number of processed event messages in the LPs
event set. The initial value for the checkpoint interval in
these experiments was 4.

2.1.4. Fleischmann-Wilsey’s Method. In an empirical
study on SSS methods where digital system simulations are
used as benchmarks Fleischmann and Wilsey present a
heuristic algorithm for adaption of the state saving interval
[8]. In this method the time for an LP to execute N events is
measured. If the execution time has not significantly
increased, the checkpoint interval is increased by one oth-
erwise it is decreased by one. From the description in [8] it
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is not clear what a “significant” increase is. In our imple-
mentation we have empirically determined that a relative
change of 5% in the measured execution time to base deci-
sions wether to increase or decrease the checkpoint interval
gives the best results for this algorithm. The initial value of
the checkpoint interval is set to 4.

2.2. Incremental State Saving Methods

In many challenging simulations, such as large commu-
nication systems simulations or battlefield simulations, the
state sizes can be very large while it is often the case that
only a fraction of the state is updated on an event execu-
tion. For such applications it may be inefficient or even
infeasible to save copies of complete states [4]. In such
cases it is often appropriate to use incremental state saving
(ISS) techniques. The idea behind ISS is to back up only
the old values of the parts of the state that are changed. To
restore a state, the changes to the state are undone by
retrieving the old values. A design issue in ISS methods is
wether the unit backed up are individual state variables or
aggregates of state variables. We will refer to the backup
unit as an “increment”.

Several PDES systems implement ISS. The SPEEDES
environment features several interesting and efficient tech-
niques to implement ISS [15, 16]. Good performance
results with ISS in the context of VLSI simulations [1] and
simulations of large telecom networks [4] have been
reported. ISS has also been implemented using persistent
objects [3] in an interesting effort to achieve a transparent
implementation of ISS. However, all these systems require
that the user supplies special code for the ISS methods,
either in the form of explicit calls to state saving functions
or code which copies user defined objects. From a user
point of view it is highly desirable that the state saving
mechanism is transparent. Failure to implement correct
state saving in an optimistically synchronized PDES sys-
tem can have severe effects on the simulation. In a worst
case scenario, it can result in non-deterministic erroneous
outputs where the origin of the error may be very hard to
find. Transparent ISS implementations have been proposed
based on special purpose hardware [5] or compilation tech-
niques. However, such solutions are in many cases too
costly. In [12] an interesting technique to implement ISS in
a highly transparent way is presented.

2.2.1. Non-transparent Incremental State Saving. Most
PDES systems implementing ISS use non-transparent
methods. Our current implementation of non-transparent
ISS requires that the user calls a special state saving func-
tion when updating state variables. An advantage of this
method is that the user sometimes can arrange his state
variables in such a way that the number of calls to the state
saving function can be kept to a minimum by backing up
several state variables by a single call to the state saving
function.

2.2.2. Transparent Incremental State Saving. Our imple-
mentation of transparent ISS is based on the method
described in [12]. It uses the ability to overload operators in
C++. This method only requires the user to declare all state
variables as encapsulated by a special template class. The
template class transparently overloads the assignment oper-
ator and all side-effect operators so that the old value of a
state variable is automatically backed up before the state
variable is modified.

2.3. Issues Related to State Saving Mechanisms

An important issue in most systems is to what extent the
underlying mechanisms can be made transparent to the
user. In our PDES system all state saving mechanisms are
transparent to the user in the sense that the user can use the
same code without providing special code for the state sav-
ing with one exception which is the non-transparent ISS
mechanism. This is an important feature as it will facilitate
an implementation of an automated mechanism by which
the system can choose an appropriate state saving method
for each individual LP. To our knowledge no such mecha-
nism has yet been proposed. Today, the choice of state sav-
ing mechanism is the responsibility of the application
programmer. Consequently, it is desirable for the user to
have some method to support this decision making. In the
following sections we briefly describe two methods pre-
sented in the literature to guide the choice of sparse vs.
incremental state saving. An interesting point to note
regarding these methods is that neither accounts for the
cost of state restoration in ISS.

2.3.1. Palaniswamy and Wilsey’s Method to Select State
Saving Mechanism. In [13] Palaniswamy and Wilsey
present an analysis of ISS versus SSS. In the analysis they
assume that the state of an LP can be divided into B equal
parts. For ISS to outperform SSS they propose that the fol-
lowing inequality holds:

(EQ 4)

Where μinc is the average number of increments saved in
an event execution, α is the ratio of the average state saving
time in SSS to the average event execution time, β is the
ratio of committed events to the number of rollbacks and γ
is the average rollback length. If B = 1 the inequality will
give the fraction of the state which can be updated by ISS
to still outperform SSS. This model does not account for
the cost to save an increment, nor to restore it in case of
rollback.

2.3.2. Method to Select ISS or CSS by Cleary et. al. In
the analysis presented by Cleary et. al. in [4] an equation is
given which expresses how to choose between CSS and
ISS in terms of the average fraction of the state updated in
an event execution. The execution of an LP is studied in
execution cycles between rollbacks. In an average execu-
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tion cycle x events are executed followed by the rollback of
r events. The time to save an average sized increment of the
state in incremental state saving is denoted by a. Similarly,
the time to copy an average increment (referred to as a
location in [4]) in CSS is denoted by c. The fraction of the
state modified when the costs for ISS and CSS are equal is:

(EQ 5)

In many simulations the ratio of events rolled back to
the number of executed events, r to x, is low. Thus, this
equation can often be approximated with the ratio c to a,
the cost to save a location in CSS to that of saving a loca-
tion when ISS is used.

3. Experimental Framework

The Parallel Simulation Kernel (PSK) used in this study
is based on Time Warp synchronization and runs on shared
memory multiprocessor workstations. It is written in C++
and uses static assignment of the LPs to the processors,
aggressive cancellation of events (i.e. events are cancelled
as soon as an antimessage is received), and the direct can-
cellation optimization for shared memory machines
described in [6]. GVT calculations and fossil (garbage) col-
lection is performed once every second. The basic synchro-
nization primitives (such as locks, and barriers) are
supplied by the p4 macro library [2] making the PSK porta-
ble to a variety of multiprocessors. One modification has
been made to this library, however, the queuing locks sup-
plied in the package have been replaced by spin-locks.
When creating application specific logical processes the
user inherits from a virtual LP class. Associated with each
LP is a state handler object which implements the state sav-
ing and restoration mechanism. This facilitates the imple-
mentation of different state saving methods. All
experiments in this study were made on a SUN Sparcsta-
tion 10 with 4 processors and 128 MB of internal memory.

3.1. Benchmarks

As benchmarks for this study we have used large, realis-
tic models of cellular communication systems. We believe
that these models are well suited to serve as benchmarks
for this study for a number of reasons: (i) primarily because
they represent real simulations problems which are hard to
simulate with sequential methods; (ii) the communication
pattern of these models are encountered in many other sim-
ulation applications; (iii) they span a wide range of model
characteristics which are important to this type of study,
such as event granularity and state sizes. These models
have previously been described in [10] and we will limit
the description of the models to the aspects relevant for this
study.

In a cellular communication system the principal actors
are mobile stations (MSs) and base stations (BSs). A MS

sends and receives phone calls by communicating with a
BS on a radio channel. The area which is covered by a BS,
i.e. in which a MS can communicate with the BS, is
referred to as a cell. The shape of the cell depends on the
radio signal propagation. When a call is set up, the MS tries
to allocate a free channel from the BS from which it
receives the strongest radio signal. If no channel is availa-
ble the call is blocked. When a MS finds another BS with
better signal strength than the current BS plus a certain
margin, it tries to allocate a new channel from that BS to
continue the call. This sequence is referred to as a hando-
ver. If the signal strength (i.e. link quality) drops below a
certain level for an extended period of time and the MS
fails to find a better channel, the call is eventually dropped.
One goal for the designer of cellular communication sys-
tems is to reduce the dropping and blocking probabilities.
An abstract model of a cellular communication system can
be divided into three sub-models describing the mobility,
signal propagation and teletraffic respectively, see Figure 1.
This model is, however, not suitable to map directly to a
parallel simulation model.

Figure 1. The three submodels of the
abstract cellular communication system
model

A specific problem in cellular communication systems
is that two actors communicating on the same radio chan-
nel or on adjacent channels can cause calls to be dropped
due to interference if not sufficiently geographically sepa-
rated. Two methods for allocating radio channels to base
stations exist. Most current systems use a Fixed Channel
Allocation scheme (FCA), in which channels are statically
allocated to base stations so that interference problems are
avoided. Better resource utilization can be achieved if base
stations can dynamically allocate channels on demand
while adhering to certain conditions regarding interference.
The latter scheme is referred to as Dynamic Channel Allo-
cation (DCA).

In our simulation model each channel is modelled as an
LP. There is also an LP which generates new mobile sta-
tions when new calls arrive and sends them to the channel
selected for the call. The channel LP maintains relevant
information on all mobile and base stations which use the
channel. This information is sub-divided on a base station
basis to MS-BS connections. The signal propagation char-
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acteristics as a function of the geography is maintained in a
read only data object available to all LPs.

In the simulation model the mobility of the mobile sta-
tions causes the channel objects to schedule events for
themselves corresponding to position updates for the
mobile stations communicating on the channel. The posi-
tion updates are scheduled to occur whenever the mobile
station reaches a new position in the signal propagation
grid. A position update only modifies part of one MS-BS
connection, 20 to 40 bytes on the average, in the state of
the LP. At regular time intervals, each 0.5 sec, a MS checks
its received signal strength. If it finds a better BS it triggers
a handover attempt. In a handover the MS randomly selects
a new channel among the available channels, i.e. channels
available at adjacent base stations which can provide a suf-
ficient signal quality. In particular this causes the LP to
communicate with all eligible channels.

The experiments have been performed with an FCA
model and a DCA-like model. In all experiments the num-
ber of channels has been fixed to 21. Two different areas
have been simulated, a small area with 7 base stations and a
large area with 67 base stations. Table 1 presents the most
important characteristics of the respective models. In our
current implementation the state size does not change
between the small and large areas.

4.  Experimental results

In this section we present the experimental results from
applying the state saving mechanisms described in
Section 2 to the benchmarks presented in Section 3. The
performance measures which we are interested in are: (i)
the execution speed compared to copy state saving; and (ii)
the memory consumption. The execution speed is pre-
sented as the relative execution speed to copy state saving.

In order to better understand the results we also present the
checkpoint intervals which the SSS algorithms use and the
efficiency defined as the total number of committed events
to the total number of events executed (including events
which are later rolled back). A state saving/restoration
mechanism has a direct impact on the execution time in
terms of changing the state saving and state restoration
costs. Moreover, this can change the relative speed of dif-
ferent LPs which in turn may affect the inherent synchrony
of the simulation model, see Section 1. Since this is
exploited by the optimistic synchronization it could affect
the number of rollbacks in the system which is measured
by the efficiency. In the graphs, the algorithms are referred
to by the following acronyms:

•CSS, Copy State Saving, Section 2.

•SSS Sx, Sparse State Saving with static checkpoint inter-
val x, Section 2.1.1.

•SSS R, Sparse State Saving, Rönngren’s execution time
based method, Section 2.1.2.

•SSS M, Sparse State Saving, Rönngren’s memory con-
sumption based method, Section 2.1.3.

•SSS F, Sparse State Saving, Fleishmann-Wilsey’s heuris-
tic method, Section 2.1.4.

•UISS, User dependent Incremental State Saving, non-
transparent ISS method Section 2.2.1.

•TISS, Transparent Incremental State Saving,
Section 2.2.2.

All experimental results have been measured for simula-
tions of 5000 seconds of traffic in the simulated systems.
This is a sufficiently long period for the simulations to
reach a stable behaviour in terms of efficiency and memory
consumption. The relative error in the measured values are
less than 5%. Performance figures are, primarily, reported
for executions on 4 processors. The 2 processor perform-
ance figures are only presented in cases where the behav-
iour of the state saving mechanisms deviated from the
corresponding 4 processor case.

4.1. Expected Performance

From a users perspective it is desirable to have some
method to base decisions on how to choose the state saving
method which will give the best performance results. In
particular, the user has to choose between copy, sparse and
incremental state saving. To be able to use the methods
proposed in [13] (EQ 4) and [4] (EQ 5) we have measured
the following parameters, Table , for the different bench-
marks using CSS. For UISS the increment (or location)
size is the size of a MS-BS connection, Table 1
(Section 3.1). In the TISS case the average increment size
is 4 bytes. Furthermore, the following measured values are
necessary to use the method by Cleary et. al. (EQ 5): the

Table 1. Event granularity and state size charac-
teristics for the benchmark models

FCA
small

FCA
large

DCA
small

DCA
large

Average event execution
time, μs

260 750 430 830

State size, bytes 1720 1720 42776 42776

Time to copy a state, μs 140 140 2200 2200

MS-BS connection, bytes 156 156 636 636

Average fraction of state
modified in an event exe-
cution

< 1.8 % < 2.3 % < 0.1 % < 0.15 %

Fraction of total execu-
tion time spent in state
saving when using CSS

~ 35 % ~ 15 % ~ 84 % ~ 72 %

Radio propagation data ~ 0.2Mb ~ 27Mb ~ 0.2Mb ~ 27Mb

Minimum memory
requirement: 21 LP states
+ radio propagation data

~ 0.5Mb ~ 27.3Mb ~ 1Mb ~ 27.8Mb



time to backup a MS-BS connection in UISS is 45 μs in the
FCA case and 76 μs in the DCA case; the time to backup
the average increment size 4 bytes in TISS is 15 μs. Based
on these measurements and those of Tables 1 and 2, the fol-
lowing predictions on the choice between sparse state sav-
ing and incremental state saving are obtained.

The predictions on the largest average fraction of the
state updated for which ISS will outperform CSS given by
the method of Cleary et. al. [4] (EQ 5) is presented in
Table 3. When compared to the figures in Table 1 we see
that this method predicts that both TISS and UISS should
outperform CSS for all benchmarks with one exception
when TISS is used for the large FCA model. The experi-
mental results of Section 4.2, Figures 2 through 9, support
these results. Palaniswamy and Wilsey’s method [13] (EQ
4) predicts that TISS and UISS will outperform SSS if the
number of increments saved in an average event execution
is lower than the values in Table 4. The best choice is given
by a comparison to the measured number of updates from
our experiments also found in Table 4. When compared to
the experimental results, Section 4.2, it is evident that this
method fails to capture the relation between ISS and SSS
correctly. In particular it predicts that the ISS methods
should perform better for the FCA models than for the
DCA models. The experimental results, Figures 2 through
9, contradicts this theory. In particular, this can be attrib-
uted to the fact that the method predicts that ISS performs
better for simulations where the ratio of the event execution
time to the time to copy a complete state is high. However,
the success of ISS depends more on the state size and in
particular the fraction of the state updated on average.

4.2. Speed-up and Checkpoint Intervals

One of the primary goals of selecting a state saving
method other than CSS is to improve the execution speed.
In this section we present the execution speed of the meth-
ods described in Section 2 on the benchmarks relative to
the execution speed when CSS is used. Furthermore, the
checkpoint intervals selected by the SSS methods are pre-
sented since these are key factors to asses the performance
of these methods.

Figure 2 presents the relative speed of the state saving
mechanisms for the small FCA model. For this model the
SSS mechanisms perform better than the ISS methods.
This is explained by the fact that for the relatively small
state sizes of the FCA models the overhead of the ISS
mechanisms is higher compared to the overhead of the SSS
mechanism. Sparse state saving with a fixed checkpoint
interval of 5 results in a reduction of the execution time of
more than 30% (corresponding to a relative speed-up of
nearly 1.5) compared to CSS. When contrasted to the frac-
tion of the total execution time spent on state saving using
CSS, Table 1, we see that this is a near optimal result. The

a. One MS-BS connection plus 2 integers are saved on aver-
age

Table 2. Rollback characteristics using CSS exe-
cuting on 2 and 4 processors respectively

FCA
small

FCA
large

DCA
small

DCA
large

Committed events 414271 1349609 414271 1349609

Number of rollbacks
2 processors

28262 59340 30912 54359

Number of rollbacks
4 processors

54668 115119 51843 99960

Total number of events exe-
cuted 2 processors

448711 1466868 460843 1454762

Total number of events exe-
cuted 4 processors

516807 1675415 514733 1633349

Average rollback length
2 processors

1.2 2.0 1.5 1.9

Average rollback length
4 processors

1.9 2.8 1.9 2.8

Table 3. Fraction of the state which can be
updated for ISS to outperform copy state saving
according to the method by Cleary et. al. [4]

FCA
small

FCA
large

DCA
small

DCA
large

UISS 2 processors 28% 28% 41% 42%

UISS 4 processors 27% 27% 39% 39%

TISS 2 processors 2% 2% 2% 2%

TISS 4 processors 2% 2% 2% 2%

Table 4. Predictions by Palaniswamy and Wilseys
method for ISS to outperform SSS

FCA
small

FCA
large

DCA
small

DCA
large

estimated μinc UISS 2 proc. 6.0 8.0 14.0 13.1

estimated μinc UISS 4 proc. 7.3 9.1 17.4 15.9

estimated μinc TISS 2 proc. 234 315 2250 2090

estimated μinc TISS 4 proc. 285 357 2772 2530

Fraction of state which can
be updated while ISS out-
performs SSS

54 - 66 % 73 - 83 % 21 - 26 % 20 - 24 %

TISS average number of
increments saved in an
event execution

3.9 4.8 6.0 7.4

UISS average number of
increments saved in an

event execution a

1 1 1 1



fact that SSS with fixed checkpoint interval in general per-
forms best of the SSS methods, Figures 2 to 9, can be
explained by the homogeneous nature of the LPs and the
communication pattern of the benchmarks.

Figure 2. Speed-up for the small FCA model
on 4 processors

Figure 3 shows the minimal, maximal and average
checkpoint intervals selected by the SSS mechanisms.

Figure 3. Checkpoint interval for the small
FCA model on 4 processors

 When compared to Figure 2 it is clear that the SSS
methods which achieves the best performance in terms of
execution speed are those that make the best approxima-
tions of the execution speed optimal checkpoint interval.
For this model the optimal interval is close to 5. We can
also see that the SSS method targeted to reduce the mem-
ory consumption, “SSS M”, selects significantly larger
checkpoint intervals than the other methods. This is not
surprising since larger checkpoint intervals could be
expected to give larger reduction of the memory consump-
tion. The performance figures for the large FCA model,
Figure 4 speed-up and Figure 5 checkpoint interval, further
emphasise the results for the SSS methods obtained for the
small FCA model, Figures 2 and 3. Figure 5 reveals that

Rönngren’s method, “SSS R”, derives better estimates of
the execution time optimal checkpoint interval than the
other adaptive SSS algorithms. Fleischmann-Wilsey’s
method, “SSS F”, tends to over-estimate the checkpoint
interval and also shows a larger variation in the intervals
selected. Consequently, Rönngren’s method performs bet-
ter than Fleischmann-Wilsey’s, Figure 4. These figures also
shows that the high checkpoint intervals selected by the
“SSS M” method without regard to the execution time can
cause the execution time to increase, Figure 4. This is a
consequence of an increased rollback cost in terms of long
coast forward phases.

Figure 4. Speed-up for the large FCA model
on 4 processors

Figure 5. Checkpoint interval for the large
FCA model on 4 processors

The DCA models features radically different character-
istics compared to the FCA models, Table 1. In particular
the state size is much larger and the fraction of the state
modified in an event execution is much smaller. Intuitively
this should favour the ISS methods. The speed-up figures
for the small DCA model, Figure 6, clearly indicate that
this is the case. The ISS methods outperform the SSS
methods by a factor 3 to 4. It is interesting to notice that the
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performance improvement compared to CSS is much larger
than what could be attributed only to the reduction of the
state saving overhead. As indicated by Table 1, the fraction
of the execution time spent on state saving when CSS is
used is 84% for this particular model. A complete reduc-
tion of this overhead cannot account for more than a 6.25
relative speed-up. Since the efficiency is not significantly
affected (compare Figure 13) this has to be attributed to
other factors.

Figure 6. Speed-up for the small DCA model
on 4 processors

Figure 7. Checkpoint interval for the small
DCA model on 4 processors

We believe that this effect can be explained by an improved
performance of all layers of the memory system. The large
reduction of the memory consumption from the ISS meth-
ods could improve performance of the built in memory
management schemes of the simulation kernel, the virtual
memory system of the operating system and the cache
behaviour. In particular, we believe that the cache perform-
ance is crucial. Any data item written is moved into the
caches, possibly at the expense of some other data being
moved out of the cache. For the DCA models the state sizes
are so large that saving even a few complete states could
evict other, more useful data from the caches. By using ISS

techniques this effect could be reduced. For the SSS mech-
anisms it is worth noting that they show similar perform-
ance, Figure 6, though the checkpoint intervals differ by
more than an order of magnitude, Figure 7.

For the large DCA model, Figures 8 and 9, the perform-
ance difference between the SSS mechanisms and the ISS
mechanisms is not as pronounced as for the small model,
Figure 6. This can be explained by the larger event execu-
tion times for this model, Table 1. Furthermore, the maxi-
mum speed-up is close to the 5.56 speed-up which could be
attributed to a complete reduction of the state saving over-
head of 72% when CSS is used. The main difference
between the small and the large DCA model is in the size
of the signal propagation matrix, which is 0.2Mb for the
small model and 27Mb for the large model. Since the cache
size is 1Mb on the target computer we can expect cache
performance to be worse for the large model while it can be
reasonable for the small model if the memory consumption
in terms of state saving overhead can be kept low.

Figure 8. Speed-up for the large DCA model
on 4 processors
It is interesting to see that the performance difference

between the non-transparent, “UISS”, and the transparent,
“TISS”, methods for ISS is not very large. Thus we con-
clude that for many practical applications transparent ISS
is preferable to non-transparent ISS given the drawbacks of
the latter, Section 2.2.

Another general tendency which was observed is that
the speed-up obtained by the improved state saving mecha-
nisms compared to CSS is higher for the same models
when the number of processors used is increased. In other
words, these methods tend to improve the parallelism. The
states are allocated from private memory. Consequently,
the improvements cannot be explained by reduced cache
coherency problems. However, the reduced memory con-
sumption, Figures 10 and 11, could reduce the traffic on the
system bus which could make it easier to efficiently send
event messages between LPs allocated to different proces-
sors improving the parallelism.
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Figure 9. Checkpoint interval for the large
DCA model on 4 processors

4.3. Memory consumption

The amount of memory allocated by the system has
been measured for simulations of the large FCA and DCA
models. Approximations of the minimum memory require-
ments for these models are 27.3 Mb and 27.8 Mb respec-
tively, Table 1. Thus only memory consumption over these
figures are due to state (or event) saving. Figures 10 and 11
depicts the measured memory consumption for these mod-
els.

Figure 10. Memory consumption for the
large FCA model

 The larger memory consumption for the DCA model is
a consequence of the larger state sizes. All methods drasti-
cally reduce the memory overhead due to state saving. In
particular the ISS and the “SSS M” methods perform best
for both models. However, the fact that the “SSS M”
method can severely degrade the execution speed,
Section 4.2, makes it a less attractive

5. Efficiency

The efficiency of a Time Warp system, defined as the
ratio of committed events to the total number of executed

events, could potentially be affected by the state saving
methods. In general, the investigated state saving methods
result in an increased speed in forward execution and a
higher state restoration cost in case of rollback. Both these
factors could result in a different timing of the delivery of
events in the simulation which could affect the efficiency.
Figures 12 and 13 depicts the efficiency for simulations of
the large FCA and DCA models. For the FCA model there
are no significant differences in the efficiency except for
the “SSS M”, method. The drastically larger checkpoint
intervals of this method makes rollbacks costly. This can
cause an LP subject to rollback to lag behind other LPs
executing on other processors. The LP lagging behind can
in turn cause these LPs to rollback when it resumes for-
ward execution.

Figure 11. Memory consumption for the
large DCA model

Figure 12. Efficiency for the large FCA model

For the DCA model all SSS mechanisms show a degra-
dation of the efficiency. In this model the cost to restore a
state by copying it is high due to the size of the states. In
particular this together with the increased state restoration
cost due to the larger checkpoint intervals, Figure 9, is suf-
ficient to cause the same type of “lagging behind” behav-
iour as the “SSS M” method cause in the FCA model.

0

50

100

150

200

250

300

CSS SSS S10 SSS R SSS F SSS M

C
he

ck
po

in
t i

nt
er

va
l a

fte
r 

50
00

s

State Saving Method

Mean
min

max

28

30

32

34

36

38

40

CSS SSS S5 SSS R SSS F SSS M TISS UISS

M
em

or
y 

C
on

su
m

m
ed

 a
fte

r 
50

00
s 

(M
b)

State Saving Method

Memory consumption (2 procs)
Memory consumption (4 procs)

30

40

50

60

70

CSS SSS S10 SSS R SSS F SSS M TISS UISS

M
em

or
y 

C
on

su
m

m
ed

 a
fte

r 
50

00
s 

(M
b)

State Saving Method

Memory consumption (2 procs)
Memory consumption (4 procs)

60

65

70

75

80

85

90

95

100

CSS SSS S5 SSS R SSS F SSS M TISS UISS

E
ffi

ci
en

cy
 d

ur
in

g 
50

00
s 

(%
)

State Saving Method

Efficiency (2 processors)
Efficiency (4 processors)



The ISS methods show consistently good behaviour in
terms of efficiency for both models. In particular the small
fractions of the states saved by these methods makes state
restoration cost effective which prevents “lagging behind”
behaviour.

Figure 13. Efficiency for the large DCA model

6. Conclusions

In this paper we have studied the effect of several state
saving mechanisms on the simulations of large, realistic
cellular communication systems. Of the investigated adap-
tive SSS mechanism the method proposed by Rönngren
and Ayani [14] consistently gave the best results. Two
methods for incremental state saving have also been stud-
ied, one transparent and a more traditional non-transparent
method. The experimental results indicate that incremental
state saving mechanisms are preferable to SSS when the
state sizes are large and only a small fraction of the state is
updated in an event execution. Furthermore, the empirical
study shows that the cost to achieve transparency for incre-
mental state saving is negligible for many practical applica-
tions. We believe that transparency is an important aspect
of a state saving mechanism as it will help increasing the
acceptance and usability of PDES mechanisms based on
optimistic synchronization by alleviating the user of the
burden of understanding the often intricate underlying exe-
cution mechanism.

The performance results indicate that the choice
between sparse and incremental state saving mechanisms
depends on the characteristics of the simulation model in a
way that is often not obvious to the user. Thus, it is useful
to have analythical methods to guide such decisions. Two
such methods have been investigated. A method by Cleary
et. al. [4] to guide selection of incremental state saving
compared to ordinary copy state saving gave useful results
despite its simplicity. However, we believe that this is a
field which merits further investigation.

For future PDES systems based on Time Warp we
believe that it is essential that the underlying simulation
kernel automatically can select the best state saving mecha-

nism. In particular, different LPs in the same simulation
model may exhibit different characteristics which makes a
SSS mechanism appropriate for some LPs while others
would benefit more from incremental state saving. This
emphasises the importance of transparent mechanisms as
this is a prerequisite for fully automated methods to select
sparse or incremental mechanisms. In this context, our
study of analythical methods for such a selection clearly
indicates that this is an area which deserves further investi-
gation.
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