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Abstract

In this paper we propose a general approach for per-
forming model-based reconstruction. The task consists in
deforming a reference shape in order to extract a geomet-
ric model from a 3D dataset. To achieve this goal, two
complementary approaches have been widely used. The
deformable model framework locally applies internal and
external forces to fit 3D data. The non-rigid registration
framework iteratively computes the best global transforma-
tion that minimizes the distance between a model and the
data. We first show that applying a global transformation
on a surface model, is equivalent to applying some global
forces on a deformable model. Second we propose a scheme
where we combine the registration framework with the de-
formable model framework. This hybrid deformation model
allows us to control the amount of deformation from the ref-
erence shape with a single parameter. Finally, we propose a
general algorithm for performing model-based reconstruc-
tion in a robust and accurate manner. We have applied this
approach to the reconstruction from both range data and
medical images.

1 Introduction

1.1 Model-based Reconstruction

Model-based reconstruction consists in deforming a
given contour or surface template in order to fit some
dataset. This approach differs from general reconstruction
techniques where no a priori knowledge about the geome-
try or the topology of the object is known. The inclusion of
important prior knowledge for reconstruction is beneficial
when the shape variability of the object remains small or
when the dataset is difficult to segment. The interest of the
method is thus to provide a good initial model while taking
into account some shape variations.

The segmentation of human organs from CT or MRI im-
ages, is a good example where model-based reconstruction
can be applied. In general, a kidney looks very much alike

another kidney, even tough there may be significant shape
variation due to differences of gender or size.
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3D dataset
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Figure 1. The principle of model-based recon-
struction

The model-based reconstruction problem can be summa-
rized in the following manner (see figure 1) : let M be a
contour or surface model of a given object consisting in a
set of vertices fVi � IRdg, (i � �� � � � � n). Let D be a tridi-
mensional dataset (such as range data or a CT-scan image).
The problem is to find a transformation T such that T �M�
is an appropriate representation of the object in dataset D.
A transformation T associates with each vertex Vi a vertex
T �Vi�.

To find the transformation T , two different approaches
have been proposed :

1. The registration framework[2]. In this case, the
transformation T is searched among a restricted class
Treg of transformations defined over the whole Eu-
clidian space IRd :

T � Treg

�P � IRd �� T �P � � IRd (1)



Usually those classes of transformations form a group
of transformations with respect to the composition
operator. Examples of such classes of transforma-
tions Treg are the group of rigid, similarity and affine
transformations. We call this transformation a global
transformation because it is defined on all Euclidian
points. The number of degrees of freedom is lim-
ited : 6 DOF for the group of rigid transformations, 9
DOF for affine transformations... Typical registration
methods[1, 19] iteratively compute the best transfor-
mation through least-squares estimation until some
convergence criterion is met.

2. The deformable model framework[7]. In this case,
the transformation T is only defined for the vertex
position Vi of the model M.

�Vi �M �� T �Vi� � IRd (2)

Because there is no a priori restriction on the type
of transformation, this framework is also called free-
form modeling.

In all cases, finding a transformation T is equivalent to
finding a displacement field D defined as

D�M� � T �M��M (3)

Registration Free-Form Deformation
Generality � � � �

Robustness � � � �

Efficiency � ��

Figure 2. Comparison between the registra-
tion and free-form deformation framework

The characteristics of the registration and free-form de-
formation framework are summarized in table 2. On the one
hand, registration methods describe a transformation with
far less degrees of freedom than free-form deformations.
Therefore their generality of representation, ie their ability
to represent shape variations, is less important than the free-
form deformation approach. On the other hand, because of
their restricted degrees of freedom (DOF), they tend to be
more robust than free-form deformations which require a
very close initial position.

The computation efficiency of either method is depen-
dent on the application. Free-form deformations require the
computation of a closest point thus the computation cost is :

Cfree�form � Cclosest�N� (4)

where N is the number of vertices of the deformed model.
For deformable models the computation time is approxi-
mately proportional to the number of vertices. Registration

requires an additional stage which is a least square estima-
tion of the transformation thus :

Cregistration � Cclosest�N� � CLSE�D� (5)

where D is the number of DOF of the computed trans-
formation. For low degrees of freedom transformations,
CLSE�D� is negligible and registration is as efficient as
free-form deformations. But as the number of DOF rises,
the transformation becomes more complex and the compu-
tation time may become prohibitively high. Examples of
complex transformation are the B-Splines defined over cu-
bic lattices.

1.2 Previous Work

Many approaches have been proposed to combine both
free-form deformation and registration approaches. For in-
stance, Feldmar[6] proposed locally affine transformations
for surface-registration. Similarly, researchers have im-
proved the robustness of deformable models by applying
more global constraints. Terzopoulos and Metaxas consid-
ered in [17, 10] the superposition of a rigid component with
a finite element mesh. A close approach on deformable
contours is proposed in [8]. Modal analysis[13, 18] or
Fourier representation[15, 16] aim similarly at controlling
the amount of deformation.

1.3 Contributions

We first propose a hybrid deformation scheme that inte-
grates both global transformations, local deformations, and
where the user can specify the shape adaptability of the
model with a single parameter. The hybrid scheme has the
advantage to be computationally efficient and simple to im-
plement.

Second, we provide a general framework for model-
based reconstruction that combines both registration and
deformable models approaches. We achieve the reconstruc-
tion by increasing the DOF of the model in an intuitive man-
ner. The hybrid deformation scheme is used as an interme-
diate behaviour between registration and free-form defor-
mations.

2 Deformable Models and Registration
Framework

2.1 Deformable Models Framework

Deformable models evolve under the action of forces
usually resulting from an energy minimizing criterion. At
vertex Vi, the external force f exti is computed from the data



and the regularizing force f inti is computed from the geo-
metric properties of the model. It is possible to control the
internal and external forces relative effect through weight
coefficients � and �. The ratio between � and � is equiva-
lent to the regularization parameter in regularization theory.

Under the fundamental principle of dynamics, the mo-
tion of each vertex is governed by :

m
d�Vi

dt�
� ��

dVi

dt
� �f inti � �fexti

By discretizing time and space with finite differences we get
the following equation� :

V t��
i � V t

i � ��� ���V t
i � V t��

i � � �f inti � �fexti (6)

where V t
i is the position of Vi at time t. The overall scheme

of a deformable model is shown in figure 3.

Compute Internal Forces

Compute External Forces

Update Vertices Positions

Final Model

Initial Model

Figure 3. The iterative scheme for classical
deformable model reconstruction

Between time t and t � �, the displacement field D ap-
plied on the model M corresponds to :

D � f��� ���V t
i � V t��

i � � �f inti � �fexti g

2.2 Registration Framework

The registration framework requires the computation of a
global transformation G which can be evaluated iteratively
using an Iterative Closest Point algorithm [19]. To compute
the transformation G, for each vertex model V i, its closest
point Wi in the dataset is computed. Let Treg be the group
of transformations among which G is searched. At each
iteration, the ICP algorithm finds G � Treg which satisfies
the minimization of the least square error criterion

G � arg min
G�Treg

�
nX
i��

kG�Vi��Wik
�

�
(7)

�The time constant �t has been hidden in the coefficients �� � and �

Equation (7) provides a general criterion to evaluate the
global transformation G. Its resolution depends on the
group of transformations considered.

Best Rigid Transformation. A rigid transformation of
a point P is Trig�P � � RP � O where O is a translation
vector and R a rotation matrix. It can be shown [12] that
O � 	V � R 	W where 	V and 	W are the inertial centers
of fVigi and fWigi, respectively, and that R minimizes the
criterion

Pn

i�� kR

Vi � 
Wik

� with 
Vi � Vi � 	V and 
Wi �
Wi � 	W .

Best Similarity. A similarity (rigid transformation plus
a scale factor) can be written Tsim�P � � SRP � O where
S is a diagonal matrix whose diagonal terms are all equal to
the scale factor s. The optimal rotation and translation are
evaluated as for the rigid case. The scale factor is computed

independently [12] s �
Tr�R�Twv�P

i
kVik

with �wv �
P

iWiV
T
i .

Best Affine Transformation. An affine transformation
can be written in matrix form in homogeneous coordinates
Ta� �P � � AP . It can be shown [12] that A is a closed
form : A � �wv�

��
vv with �vv �

P
i ViV

T
i .

Best B-Spline Transformation. A B-spline transforma-
tion of P is Tspl�P � � �fx�P �� fy�P �� fz�P ��T where fd

is a piecewise polynomial function defined as a tensor prod-
uct of B-spline base functions of a given order. The best
spline transformation, given a set of pair of points �V i�Wi�,
should minimize a criterion sum of residual distances and a
smoothness term C�Tspl� � Cdist�Tspl� � �Csmooth�Tspl�
where � is a weight. Details on solving this system using a
conjugate gradient method can be found in [4].

Axial Constraint. We have developed an axial con-
straint to deform 3D models based on an axial symmet-
rical topology such as vessels. For more details see[11].
As shown in section 5.4 it gives encouraging results in seg-
menting vessels from angiographic images.

Other Global Transformations. Many other global
transformations could be investigated. The use of transfor-
mations with more degrees of freedom (such as high degree
B-splines or radial basis functions) would allow to generate
a wider range of shapes, however, at a greater computation
cost.

The overall scheme of the registration framework is
shown in figure 4.

3 General Framework for Model-Based Re-
construction

3.1 Registration as a Displacement Field

The purpose of this section is to show the link between
computing a global transformation on a model M and ap-
plying an external force field to a deformable model. Let
fV t

i g be the vertex position of a model M at time t.
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Figure 4. The iterative scheme of registration-
based segmentation

In the registration framework, we first compute the clos-
est points fW t

i g, then find the best transformation Gt and
finally apply the transformation at each vertex : V t��

i �
Gt�V t

i �. The displacement field applied between two itera-
tions is thereforeGt�I where I is identity transformation :

D � Gt � I � fGt�V t
i �� V t

i g

In section 2.1, we have seen that the displacement field
applied on a deformable model is equal to

f��� ���V t
i � V t��

i � � �f inti � �fexti g

We can therefore consider that the registration method
based on the ICP algorithm is equivalent to having a de-
formable model without inertial and internal forces (� � �,
f inti � �) and submitted to the global force :

f
global
i � Gt�V t

i �� V t
i (8)

3.2 Link between Global and External Forces

The computation of external forces is dependent on the
type of datasets. In this paper, we suppose that the external
force acting on vertex Vi is of the form :

fexti �W t
i � V t

i (9)

Wi represents the "closest" point on the object where V i
should be attracted. In practise, we have verified that ex-
ternal forces based on the notion of "closest" point lead to
more stable behavior than external forces based on the no-
tion of gradient of potential field. This is because the poten-
tial field extracted from the gradient information may have
steep minima that entail oscillations of the surface around
those minima. To remove those oscillations, it is neces-
sary either to decrease the time-step or blur the image at

the larger scale. The former method has the drawback of
slowing down the convergence whereas the latter removes
and displaces some minima of potential field.

In section 4, we will see different expression of the exter-
nal force for reconstruction from range data and volumetric
images.

By comparing equation 9 with equation 8, we can see
that the displacement field for a registration-based defor-
mation has less DOF than an external force field applied on
deformable model since it is constrained by the nature of
the transformation.

3.3 Hybrid Deformation Scheme

In previous sections, we have demonstrated the equiv-
alence between registration-based deformation and the ap-
plication of a global force to a deformable model. We now
propose a hybrid deformation scheme, where a deformable
model is submitted to global, external and internal forces.
The purpose of this scheme is the following : to have a
computer-efficient deformable model with an easy control
of the number of DOF.

Our approach is to weight with a single parameter 	 the
influence of global forces versus external forces :

V t��
i � V t

i � ��� ���V t
i � V t��

i � � �f inti � (10)

�
�
	fexti � ��� 	�fglobali

�

We call 	, the locality parameter. It controls the number
of DOF of the deformable model. With 	 � �, the model is
under the influence of global forces and internal and there-
fore has very few DOF. With 	 � �, the model is under the
influence of internal forces and external forces and therefore
has a maximum number of DOF. With intermediate values
of 	, we can control the shape variation allowed during the
deformation.

Final Model

Update Vertices Positions

Compute External Forces

Compute Best Transformation

Initial Model

Compute Global and Internal Forces

Figure 5. The iterative scheme for a de-
formable model under hybrid deformation



In figure 5, we show the overall scheme of an hybrid
deformable model. Because we can easily change the de-
formable behavior of the model from global to local, we
can choose a global transformation with few DOF such as
an affine transformation.

The hybrid deformation scheme is efficient because the
search for closest points has to be performed only once for
the computation of the global and external forces. Further-
more, we usually can use transformations with few DOF
since 	 controls model variability. Thus the least square
estimation of the transformation is done efficiently.

3.4 General Model-Based Reconstruction

In section 3.3 we have introduced a hybrid deformation
scheme that allows to control through a single locality pa-
rameter the amount of deformation allowed. In figure 6,
we present the general framework that allows us to achieve
model-based reconstruction. The principle of this frame-
work is to increase the number of DOF during the deforma-
tion in order to combine robustness with accuracy. We first
apply iterative registrations with rigid, similarity and affine
transformations. We then choose values of lambda between
0 and 1 (usually around 0.2) to increase the shape deforma-
tion. Finally, we apply free-form deformation to closely fit
the data.

Rigid Registration

Similarity Registration

Affine Registration

Hybrid Deformation

Free-form Deformation

0 < λ < 1 

λ= 0.0

λ= 0.0

λ= 0.0

λ= 1.0

Figure 6. General framework for Model-Based
Reconstruction

The remaining problem is to determine when to change
the transformation class and therefore increase the num-
ber of DOF. When considering the model-based registration
problem shown in figure 15, we measure the total vertices
displacement between two consecutive iterations of the ICP
registration. Figure 7 shows the results for four different
transformations.
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(b) similarity
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(c) affine
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(d) B-spline

Figure 7. Displacement of model

Due to the fast convergence of the ICP algorithm (notice
the log-scale on the Y axis), the displacement is sharply
decreasing. When the displacement is low, the model does
not evolve significantly anymore. Therefore we can set a
low threshold to stop a deformation stage and increase the
number of DOF by changing the transformation.

We propose two strategies to set the low threshold :

Absolute displacement. An absolute threshold value is
provided by the user.

Relative displacement. The threshold is computed as a
percentage of the initial displacement. We let the
model evolves a few iterations (three for instance),
compute the mean displacement and set the threshold
as a fraction of the obtained value.

We have runned the same face registration experiment
with an automatic thresholding to change transformations :
each deformation stage ends when the model displacement
is lower than 0.1% of the initial displacement. Figure 8(c)
compares the two strategies in term of number of iterations.
The total number of iteration set manually (solid line) is
much higher than the number of iterations needed to meet
the automatic threshold (dashed line). It reveals a signifi-
cant diminution of the total computation time.
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Figure 8. Registration with automatic thresh-
olding

4 Deformable Surface Models : Simplex
Meshes

4.1 Simplex Meshes

Simplex meshes [5] are meshes with constant vertex adja-
cency and have interesting geometric properties. 2-simplex
meshes are a natural extension of active contours in 3D and
they provide a powerful framework to express regulariz-
ing constraints. A 2-simplex mesh of IR� is a 3-connected
mesh. Each vertex position Vi can be expressed as a func-
tion of its neighbors VN��i�, VN��i�, VN��i�, its metric pa-
rameters 
�i , 
�i , 
�i and its simplex angle �i.

Vi � 
�iVN��i��

�
iVN��i��


�
iVN��i��L�ri� di� �i�ni (11)

where

� ni is the normal vector at triangle
�VN��i�� VN��i�� VN��i��.

� ri is the radius of the circumscribed circle at the tri-
angle �VN��i�� VN��i�� VN��i��.

� di is the distance between Fi � 
�iVN��i��

�
iVN��i��


�iVN��i� and the center Ci of the circumscribed cir-
cle.

� L�ri� di� �i� is a function describing the elevation of
Vi above plane �VN��i�� VN��i�� VN��i��.

The metric parameters and the simplex angle are intrinsic
parameters that describe the shape of a mesh with a given
topology up to a similarity.

The simplex mesh framework is computationally very
efficient. Local force computation does not require a mini-
mization step. The example given in figure 9 requires a 50
seconds of computation on DEC Alphastation 500/400Mhz.

4.1.1 Shape Constraint

The metric parameters and simplex angles of simplex
meshes allow us to define smoothness as well as shape reg-
ularizing forces. Without external forces, a simplex mesh
submitted to the shape constraint converges toward its ref-
erence shape. An example of a face model iteratively re-
turning to its reference shape is given in figure 9.

Figure 9. Shape constraint

4.2 External Force Computation

We compute the external force f exti as a vector directed
along the normal direction proportional to the distance of
Vi to the dataset. Whether the force is computed from range
data or volumetric images, the external force is of the form :

fexti � ��ViMi � ni�ni

where Mi represents some data point.

4.2.1 External Force Computation on Range Data

The computation of the external force is dependent on the
notion of closest point. For every vertex V i of the mesh, we
search for the closest data pointMCl�i� and the force is then
computed as :

fexti � �iG

�
kViMCl�i�k

Dref

�
�ViMCl�i� � ni�ni (12)

where �i is a weight parameter, ni is the normal vector of
the mesh at Vi, G�x� is the stiffness function and Dref is a
reference distance.

The force f exti is computed as the projection of the vec-
tor ViMCl�i� along the normal direction. The distance Dref
is the maximum distance of attraction of a data point. The
stiffness function G�x� ensures that the force decreases
sharply when the distance between MCl�i� and Vi is greater
than Dref.

The computation of MCl�i� depends on the nature of the
dataset and can be achieved with two algorithms :

Projection Method On dense range images extracted from
triangulation principles, we restrict the search along
a two-dimensional segment in the image, projection



of the tridimensional line passing through V i and di-
rected along ni. This segment is centered around the
projection of Vi and is only a few pixels long, de-
pending on the value of Dref . Once the closest point
along the segment has been found, we search for the
closest point in a 
� 
 window around that point.

KD-tree When no calibration matrix is available, we com-
pute the closest point with a kd-tree [14]. This data
structure gives the closest point inside a sphere cen-
tered around Vi and of radius Dref, at nearly constant
time.

4.2.2 External Force Computation on Volumetric Im-
ages

On volumetric images, the task of reconstruction usually
consists in isolating regions of consistent intensity values.
Therefore, gradient intensity is the main information on
which is based the external force. As in [3] and [9], we
combine both gradient intensity and edge information for
the computation of f exti :

fexti � f
grad
i � f

edge
i (13)

The gradient intensity is used for local deflection of the
mesh towards the voxels of maximum variation of inten-
sity. The edge information, on the other hand, corresponds
to maxima of gradient and entails larger deformations of the
mesh.

The force f
grad
i at vertex Vi relies on the search in a

neighborhood of Vi, of the voxel of maximum gradient in-
tensity. If V is the voxel containing Vi, then we inspect all
voxels in a m�m�mwindow around V for the voxel cen-
ter Gi, of highest gradient intensity (see figure 10(a)). The
force expression is then :

f
grad
i � �

grad
i �ViGi�ni�ni (14)

The gradient force can be made more specific by incorpo-
rating additional constraints : gradient direction constraint
and intensity value constraint.

The edge image is built by thresholding the gradient in-
tensity values. Our approach consists in finding the closest
edge voxel in the normal direction of the mesh. At vertex
Vi, we find the closest voxel V , and a tridimensional line of
voxels is scanned in the direction of ni (see figure 10 (b)).
The maximum number of voxels scanned is given by the
reference distance Dref, determined as a percentage of the
overall radius of the edge image. If E i is the closest edge
voxel along the normal line, then the edge force is given by :

f
edge
i � �

edge
i ViEi (15)

Similarly to the gradient force, we can add constraints to the
determination of the closest edge voxel.

N i
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G i
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Edge Voxel

i

(b)

Figure 10. (a) Computation of the gradient
force f

grad
i ; (b) Search of the closest edge

voxel along the normal line for the compu-
tation of f edgei .

5 Results

5.1 Estimation of Registration Quality using Hy-
brid Deformations

In this section, we demonstrate the robustness of the hy-
brid deformation scheme. We consider the following ex-
periment : given some range data of a foot, we have built
the model M of figure 11 (a). The model was manually
deformed to get the model M� of figure 11 (b).

(a) (b)

Figure 11. (a) foot model;(b) range data and
deformed model

We then fit the mesh M� on the original range data
for a fixed number of iterations to get model M �. Run-
ning the deformation process with different deformation
schemes, the quality of registration is evaluated as the point-
wise distance between the reconstructed modelM � andM:
d �

P
i kVi � V �

i k
�. A small value of d implies that ver-

tices positions of M� are close to those M and therefore
that the transformation is robust and accurate. Figure 12
shows the values of d for a rigid registration (first point) an



affine registration (second point) or a hybrid deformation
affinely constrained following a first rigid fit (other points).
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Figure 12. Distance of the deformed model

We get the best results for intermediate value of the lo-
cality parameter 	. Therefore, the free-form deformation
(	 � ����) or the global (affine) transformation (	 � ��)
do not give the best fit.

This result can be interpreted in the following manner :
if the model is too constrained, the model cannot deform
enough to fit the dataset. On the contrary, if it has too
many DOF, the surface vertices can be submitted to large
displacements during the deformation. In particular, a point
of high curvature is not necessarily deformed into a point of
high curvature.

5.2 Results on Range Data

(a) (b) (c)

Figure 13. Reference face (left, center) and
range data (right)

We have applied the general reconstruction scheme pre-
sented in section 3.4 for recovering face models. In figure
13 (a) and (b), we show the simplex mesh model that will
be used to fit the range data of figure 13 (c). We will use the
texture of the reference model to study the applied transfor-
mations. For instance, we can check if the vertices lying on

the nose of the reference model will be moved on the nose
of the range image.

We have positionned the reference model in a slightly
different orientation and position than the range data, as
seen in figure 14 (a). With a purely deformable scheme
(lambda � ����), the shape of the face has been recov-
ered but the transformation does not preserve the geometry
(figure 14 (c)).

(a) (b) (c)

Figure 14. Initialization (left) and face recov-
ered using local deformations (center, right)

Using the general deformation scheme, we can first ap-
ply global transformations (first rigid, then affine) to pro-
vide a better initialization. The model is then deformed
with hybrid and local constraints. Figure 15 (a) (b) (c) il-
lustrates a few stages of the reconstruction. The texture of
figure 15 (d) clearly shows that the geometry of the face was
preserved.

(a) (b) (c) (d)

Figure 15. rigid, affine, hybrid deformations
and textured result

We now compare the computation time for global, hybrid
and free-form deformation (see figure 16 (a)). In this chart,
we can see that global transformations with few DOF such
as affine transformations have the same computational cost
than free-form deformation despite its high level of DOF.
On the other hand, more complex global transformations



such as B-Spline transformations require a much high com-
putational cost. The cost of globally constrained deforma-
tion is marginally higher than free-form deformation. This
is because the cost the computing the external force (or the
closest point) is much higher than computing the best global
transformation (here with affine transformation).
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Figure 16. Computational cost of global, hy-
brid and free-form deformation

5.3 Results on Volumetric Images

Model-based reconstruction is well-suited for the extrac-
tion of anatomical structures from 3D medical images. Be-
cause most organs have similar shapes between patients, it
is often a good strategy to use an a priori information on the
shape to extract. Furthermore, this method allows to recover
parts that are hardly visible in the original images.

We show three examples of human organs with which
our general reconstruction scheme has been successful :
liver, brain ventricles and kidney. The recovered geometric
models can then be used for surgery planning or diagnosis.

Figure 17 (a) (c) and (e) show the original liver, kidney
and ventricle models of complex shape and topology. The
reference template of the kidney does not have any cav-
ity because of the large variation between patients. The
datasets consist in abdominal CT-scan and MRI data of the
head.

CT-scan images have a low contrast and therefore the
model must be robust enough to deform smoothly even in
presence of low gradient regions. However, it must be de-
formable enough to fit the drastic inter-patient variability of
abdominal organs.

We performed the segmentation following the general
deformation scheme presented in section 3.4. The model
is first registered rigidly then affinely (locality parameter
	 � �). As the fit improves and the model is less sensitive
to outliers, degrees of freedom are added by smoothly in-
creasing 	 up to �
�. Segmentation of the brain ventricles
is performed in a similar way (	 is released up to ���). For
kidney segmentation, we refine the mesh based on an area
criterion in order to recover the cavities.

(a) (b)

(c) (d)

(e) (f)

Figure 17. Models of the liver (top) brain ven-
tricles (middle) and kidney (bottom)

The recovered models are shown in figure 17 (b) (d) and
(f). Figures 18 (a) (b) and (c) demonstrates the goodness of
segmentation by showing the intersection of the deformed
models with an image slice. The segmentation of liver mod-
els have been validated on 15 cases with the help of medical
experts.

Figure 18. Slices of the recovered shapes



5.4 Vessels Segmentation

Segmentation of vessels around an aneurism is impor-
tant for diagnosis and pathological understanding. Using
deformable axially constrained models (see [11]) we per-
form a segmentation of the aneurism and the surrounding
vessels. The extracted model is easy to visualize and it al-
lows one to perform quantitative measures such as volumet-
ric evolution.

Figure 19 (a) shows the initialization of deformable mod-
els inside a volumetric image. The aneurism is modeled by
a sphere affinely constrained through the hybrid deforma-
tion scheme. Vessels are initialized as cylinders restricted
by a hybrid axial constraint. The result of the deformation
process is shown in figure 19 (b) and the final model ob-
tained after topological operations is shown in figure 19 (c).

Figure 19. Vessel models

6 Conclusion

We have introduced a general reconstruction framework
that encompasses both deformable models and registration
approaches. The hybrid deformation scheme is an efficient
and simple algorithm for controlling the amount of allowed
deformation.

In the future, we plan to incorporate some additional sta-
tistical information in the reference model, in order to con-
strain further the deformation.
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