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Abstract
Cardiologists assume that analysis of the motion of the heart (especially the left ventricle) can
give some information about the health of the myocardium.
A 4D polar transformation is defined to describe the left ventricle (LV) motion and a method
is presented to estimate it from sequences of 3D images. The transformation is defined in 3D-
planispheric coordinates (3PC) by a small number of parameters involved in a set of simple
linear equations. It is continuous and regular in time and space, periodicity in time can be
imposed. The local motion can be easily decomposed intoa few canonical motions (radial motion,
rotation around the long-axis, elevation). To recover the motion from original data, the 4D polar
transformation is calculated using an adaptation of the Iterative Closest Point algorithm.
We present the mathematical framework and a demonstration of its feasability on a series of gated
SPECT sequences.
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INTRODUCTION

Cardiologists assume that the analysis of the motion of the
heart (especially the left ventricle) can give some information
about the health of the myocardium. A huge effort has been
made in medical image processing to track and analyse the
motion of the LV, but due to the complexity of the modeling,
this topic remains an open research problem.

Modern techniques provide 3D images which describe ei-
ther the anatomy of the heart (MRI, US, for instance) or its
functionality (Nuclear Medicine SPECT or PET imaging, for
instance). It is possible to get sequences of such images over
the whole cardiac cycle; such sequences are real 3D movies of
the motion of the heart. The cardiac motion, like the motion
of any real object must be therefore described as a 4D con-
tinuous and regular transformation of time and space. With
the modality we are using for our experiments (gated SPECT),
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the acquisition of an image lasts over several cardiac cycles;
the gating procedure allows to reconstruct a 3D volume using
information taken at similar times over different cardiac cy-
cles, assuming that all the cycles are identical during the ac-
quisition. In our protocol, we therefore suppose that the heart
beats at a regular pace, this may not be the case for specific
pathologies inducing irregularities of the cardiac pulse rate:
these diseases are not supposed to be studied in this paper.

Many techniques have been proposed to track the LV mo-
tion. All of them attempt to find the correspondence be-
tween pairs of successive images. Most of the proposed
methods in 3D define a model of the shape of LV surfaces
(endocardium and/or epicardium), using classical snake-like
models (McInerney and Terzopoulos, 1995; Shi et al., 1994;
Amini and Duncan, 1992), spring-mass meshes (Nastar,
1994) or more constrained generic surfaces such as free-
deformed superquadrics (Bardinet et al., 1996; Bardinet et al.,
1995) or volumetric superquadrics (Park et al., 1996; Park
et al., 1994). The tracking is processed using conservation
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constraints based on proximity constraints (Bardinet et al.,
1996; Bardinet et al., 1995), differential properties of the
surface (Clarysse et al., 1995; Shi et al., 1994; Amini and
Duncan, 1992; Goldgof et al., 1988) or is directly computed
from displacement or velocity information obtained in some
specific MR imaging techniques: tags (Radeva et al., 1996;
Kraitchman et al., 1995; Young et al., 1995; Denney and
Prince, 1994; Park et al., 1994) or phase contrast (Meyer et al.,
1995; Shi et al., 1995). In other work, no shape model is
computed: the tracking is processed directly from the volu-
metric image using optical flow methods (Gorce et al., 1997;
Song et al., 1994), conservation of differential elements of
isophotes (Benayoun et al., 1995) or using similarities of the
intensity levels (Thirion, 1995).

Unfortunately, because the correspondence is defined be-
tween two successive images, regularity and periodicity in
time is not guaranteed. Only a few studies impose tempo-
ral continuity or periodicity in their model: these studies
deal with segmentation of 2D (O’Donnell et al., 1994) or
3D images (de Murcia, 1996; Matheny and Goldgof, 1995;
Schudy and Ballard, 1979). Some other rare methods in 2D
(Todd Constable et al., 1994; McEachen et al., 1994) or in
3D (Thirion, 1995; Nastar, 1994) perform a posteriori time
filtering. Moreover, all these tracking techniques ((Park et al.,
1996; Park et al., 1994) excepted) do not provide intuitive pa-
rameters describing characteristic motions without non-trivial
computation (Bardinet et al., 1996; Bardinet et al., 1995;
Young et al., 1994). The 4D polar transformation (Declerck
et al., 1997) defined in this article aims to achieve four goals:

1. to define a class of transformation of time and space in
which the temporal continuity and periodicity can be
included,

2. to define a class of highly constrained transformations
in order to have a relevant description of the LV motion
with a reduced number of parameters,

3. to be able to retrieve canonical motions with minimal
computation, providing an easy-to-interpret quantita-
tive analysis of the motion.

4. last, but not least, to be a transformation which combines
the unknown parameters in a linear way to make their
estimation easier and robust.

We shall see that all these points are achieved in the mathe-
matical formulation that we propose below.

The paper is organised as follows: in section 1, we define
the 4D polar transformation and the way to estimate it from a
4D (3D + time) data set. In section 2, a method is proposed
to track in 4D the motion of the LV. Experiments have been
conducted with a synthetic heart model and a gated SPECT

sequence are presented in section 3. Section 4 draws con-
clusions concerning this work, its potential uses and future
perspectives.

1. DEFINITION OF THE 4D PLANISPHERIC
TRANSFORMATION

The idea of this study is to define a continuous and regular
transformation of time and space. This transformation should
also be adapted to describe with a minimum of parameters a
complex motion such as the LV motion. This model of the
deformation of the LV is a crude approximation compared to
complex biomechanical models (Hunter and Smaill, 1988) or
highly descriptive kinematic models (Arts et al., 1992).

Given a point P (x, y, z) in cartesian coordinates and a
time value t, the transformation gives a point Q (x0, y0, z0)
which is assumed to be the location of point P at time t. The
cardiac motion is supposed to be regular in space and periodic
in time. We therefore look for a differentiable function in
spatial variables x, y and z and for a differentiable and a
potentially periodic function in time variable t.

f : IR3� IR �! IR3

(P; t) 7�! Q = f (P; t)

This definition of the 4D transformation yields the definition
of 2 categories of functions which are easier to understand and
which are intrinsically regular (figure 1):

TP = f (P; �) is the trajectory of P over time;
Dt = f (�; t) is the instantateneous deformation

function of the object at time t.

t n
t 0

n

P

f (P ,t   )

Q n
Q 0

model

image sequence

Dt
0

Dt
n

T P

f (P ,t   )0

Figure 1. The model is deformed at every time of the image se-
quence. Point P at time tn is point Qn. Functions of instantaneous
deformation Dtn and the trajectory function TP are illustrated.
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In this paper, f is defined in order to describe locally some
specific motions of points on the myocardium. We approx-
imate the shape of the left ventricle as a stretched sphere in
the long-axis direction. This is, of course, a very crude ap-
proximation as the shape of the heart is much more complex,
however our goal is not a precise definition of the shape of
the muscle, but a plausible discrimination of characteristic
motions.

For that particular purpose, we separate the motion of a
point of the heart into three canonical orthogonal motions
(figure 2):

� motion 1: a radial motion which decribes the contrac-
tion or dilatation of the whole structure towards a “cen-
ter” ;

� motion 2: a apico-basal rotation around the apico-
basal axis which describes the twisting motion of the LV
points ;

� motion 3: a motion (tangential to the surface r = Ct )
which describes the elevation of the LV points in the
apico-basal direction (the shortening along the long-axis
during the systole).

P

C

P

C

P

P

2

3

1

21 3

3

C

C

P

P
1

P
2

Figure 2. The top three frames illustrate the orthogonal motions
described in the text. Bottom, point P is transformed in P1 by the
first motion (radial motion), P1 is transformed in P2 by the second
(apico-basal rotation) and P2 is transformed in P3 by the third one
(elevation).

We describe these motions in a “3D-planispheric” coordi-
nates (3PC) system, which is a combination of spherical and

cylindrical coordinates. Our tranformation function is thus
defined as a composition of three functions:

f = P2C�F �C2P

The function C2P switches from cartesian to 3PC, P2C
switches back from 3PC to cartesian coordinates (of course,
C2P = P2C�1). F is the function which is described with the
three basic motions in 3PC. The next two paragraphs detail the
definitions of these functions.

1.1. Cylindrical or planispheric coordinates ?
The approach is inspired from (Park et al., 1996; Park et al.,
1994): in that study, the equations for the deformation of the
superquadric model is expressed in cylindrical coordinates. In
such coordinates, the decomposition of the local motion in our
three canonical motions does not have the same relevance if
the point where they are estimated belongs to a lateral wall
(where the muscle is roughly cylindrical) or if the point is
close to the apex (where the muscle is roughly spherical).
For instance, a point belonging to a lateral wall and animated
by an axial contraction does effectively contract towards the
cylindrical axis (motion 1), but a point close to the apex ani-
mated with a similar motion does not contract, but undergoes
a shift tangential to the wall. Thus, this motion is a twist
(motion 2) or an elevation (motion 3) rather than a contraction
(motion 1) (figure 3). We find it easier and more relevant to

C

long axis

P

P2

1

HP1

HP2

B

Figure 3. P1 belongs to a lateral wall, P2 is close to the apex, both
points are animated with motion 1. Solid arrows describe the mo-
tion in cylindrical coordinates (contraction towards the apico-basal
axis) and dotted arrows describe the motion in spherical coordinates
(contraction towards the center C). Motion 1 effectively describes a
contraction for P1, but not for P2.

use 3D-planispheric coordinates rather than cylindrical ones
to decompose the local motion of points of the myocardium.
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1.2. 3D-Planispheric coordinates
C2P : in 3D cartesian space, we define a 3D-planispheric
reference system given a center C, a base B and a set of two
orthogonal vectors u and v (figure 7). In order to fit with our
description of the heart, we choose u as a vector parallel to
the apico-basal direction, and v parallel to the septo-lateral
direction. C is chosen in the center of the cavity, and B in the
center of the base.

For each point P (x, y, z), a center point HP is defined on
line (CB). From this center point, a distance and two angles
(latitude θ and longitude φ) are calculated just as in the clas-
sical spherical coordinate system. In the spherical system, HP

is the center C. In the cylindrical system, HP is the orthogonal
projection of P on the line CB. Our purpose here is to define
a combination of both spherical and cylindrical coordinate
systems (figure 4), in order to describe the position of P in
“roughly” spherical coordinates around the apex (where the
shape of the LV is roughly spherical) and in “roughly” cylin-
drical coordinates around the base (where the shape of the LV
is roughly cylindrical). In our system, the position of HP on
the line CB is given by the simple formula:

CHP = (1� cosθ)CB (1)

Cylindrical Planispheric

CC

B

Spherical

Figure 4. 3D-planispheric geometry is a combination of both cylin-
drical and spherical geometries.

� For low values of θ (P around the apex), HP is close to
C and shifts away from C with a distance increasing with

θ2

2
: around the apex, the 3PC system is thus close to the

spherical one.
� For θ around π

2 (P around the apex), HP is close to B,
the distance BHP varies linearly with θ� π

2 , and PHP

is nearly orthogonal to CB: around the base, the 3PC
system is close to the cylindrical one (figure 7).

Of course, (1) is an implicit formula: HP gives the angle θ,
but we need θ to locate HP. appendix A details the method we
have developed to compute the location of HP given a point P
in space.

In our 3PC system, a surface of constant r is represented
as a disk in a plane, like in a classical map projection in
topography (this is why we use the word “planispheric”). The
coordinates X, Y and R in this system are defined as follows:

X =
θ
π

cos(φ)

Y =
θ
π

sin(φ) (2)

R =
r

σr

where σr is a normalization coefficient so that X, Y and R
are dimensionless and vary within a similar range of values.
Figure 5 illustrates the correspondence between the (x, y, z)
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Figure 5. the cartesian coordinates (x,y,z) of point P are converted
into polar coordinates in the 3D-planispheric image, the depth R is
the distance from the point HP in the cartesian image, the position
(X ,Y) in the plane is defined with the two angles θ and φ, like in the
2D-planispheric mapping.

cartesian coordinates and the (X, Y , R) coordinates in the 3PC
system. In this system, apex point (X = 0, Y = 0) is the “south
pole” of the projection, the points on the circle X2 +Y2 = 1
(θ = π) are the same cartesian point, the “north pole” of the
projection, featuring a point in the direction of the base or
of the aorta. Around this point, the distorsion between the
cartesian and our planispheric representation is maximum, but
there should not be any cardiac points in this area (figure 6).
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Figure 6. Left, the myocardium. From the center C, the limit of
the basis draws a cone (dark gray) around the north pole. Right, in
the 3D-planispheric map, the left ventricle (light gray) appears like a
plate, the cone is a circular stripe around the heart.

P2C : conversely, given a point (X, Y , R) in the 3PC system
so that X2 +Y2 � 1, we can compute its cartesian coordinates
(x, y, z) by calculating θ = π

p
X2 +Y2 and φ without ambigu-

ity with the expressions of cos(φ) and sin(φ). The center HP

is calculated with (1).
The coordinate system we use is similar to the prolate

spheroidal coordinates (PSC) system described in the litter-
ature (Waks et al., 1996). The equations are presented in
appendix B, figure 7 shows ten surfaces of constant R in each
of the two systems. There are three minor differences between
the two systems:

1. the surfaces of constant R (for R values around what
they should be to describe an average LV) are narrower
around the apex than in the 3PC system: the shape of
these surfaces is closer to the shape of an average LV;

2. there is an interval of R for which surfaces of constant R
are close to a shape of an average LV. For those values,
the location of point C is closer to the apex in the PSC
system than in the 3PC, potentially yielding to forbidden
intersection of segment [CB] with the myocardial wall;

3. the surfaces of constant θ are cones in the 3PC system,
they are confocal one-sheet hyperboloids in the PSC
system. The local coordinates are orthogonal in PSC,
whereas they are approximately orthogonal in 3PC. On
the other hand, the decomposition of the motion is less
intuitive in the PSC system.

In the sequel of this article, we concentrate on the 3PC system
in order to obtain a closer approximation of the LV shape and
a more intuitive decomposition of the motion.

vC

C’

B

u

P

u

B
HPPH

Prolate spheroidal

vC

P

C’

Planispheric

Figure 7. A representation of ten surfaces of constant R, on the left,
in the 3PC system, on the right, in the prolate spheroidal. The dashed
lines show different curves of constant θ: on one, a point P and its
associated center HP. Figure from (Declerck et al,1997).

1.3. The function in 3D-planispheric coordinates
In the 3D-planispheric system, given a point P (X, Y , R), the
transformed point Q (X 0, Y 0, R0) through F is expressed as
follows:

X 0 = a0X�a1Y +a2

Y 0 = a1X +a0Y +a3 (3)

R0 = a4R+a5

X 0 and Y 0 are defined by a similarity function applied to X and
Y . A similarity is a combinate of a 2D rotation by angle α, a
uniform scaling of ratio k and a translation. R0 is defined as an
affine function of R. The similarity and the affine parameters
ap (p = 0 : : :5) are continuous and differentiable functions of
r, θ, φ and t.

Defining the transformation in the 3PC system allows to
write: a) linear expressions in the parameters ap, b) a simple
computation of the canonical motion decomposition (radial
motion, rotation, elevation) from the ap and, c) a very compact
description of the deformation.

1.3.1. Analysis of the motion in the canonical decomposition
Our canonical motionsare retrieved with the following formu-
lae:

1. the radial motion ratio (motion 1) is given by:

R0

R
= a4 +

a5

R
(4)
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2. the linear relationships between X 0, Y 0 and X, Y define a
2D similarity such that

k =
q

a2
0 +a2

1 (5)

α = atan2(
a1

k
;

a0

k
) (6)

α is the rotation around the long-axis (motion 2) in 3PC;

3. k is the scale factor corresponding to an elevation magni-
fication in latitude, which is our motion 3. In our display,

we compute
θ0�θ

θ
.

The 4D polar transformation is defined once the parameters
ap are determined. Because of the simplicity of (5) and (6), it
is possible to easily analyse the motion using the parameters
ap. Because the variation of the parameters ap is smooth
and regular with variables r, θ, φ and t, the parameters which
describe our canonical motions are also smooth and regular in
time and space.

1.3.2. Degrees of freedom of the parameters, time depen-
dency as a hard constraint

In order to define a smooth and continuous 4D transformation,
the parameters depend on the location of the point and the
instant at which the transformation is calculated. In our for-
mulation, we choose the parameters as polynomial functions
in r and θ and quadratic periodic B-splines (Risler, 1991;
Farin, 1989) in φ and t:

ap(r;θ;φ;t) =
nr�1

∑
i=0

nθ

∑
j = 0
j 6= 1

nφ�1

∑
k=0

nt�1

∑
n=0

Ap
i; j;k;n

0
@ r

σr

1
A

i 0
@θ

π

1
A

j

BΦ
k (φ)BT

n (t) (7)

for p = 0 : : :4. If we keep for a5 an expression like (7), a4 and

a5 are correlated because R =
r

σr
. We therefore simplify a5

as follows:

a5(r;θ;φ; t)=
nθ

∑
j = 0
j 6= 1

nφ�1

∑
k=0

nt�1

∑
n=0

A5
j;k;n

0
@θ

π

1
A

j

BΦ
k (φ)BT

n (t) (8)

with the following notation:

� nr is the number of parameters which define the polyno-
mial function of variable r: the degree of this polynomial
is nr�1.

� nθ is the number of parameters which define the polyno-
mial function of variable θ: to be differentiable in points
for which (θ = 0), the polynomial must have no term
in θ (ap(θ) = a0

p + a2
pθ2 + a3

pθ3 : : :). ap is therefore a
polynomial of θ of degree nθ.

� nφ is the number of control points of the B-spline periodic
curve of variable φ. BΦ are the B-spline basis functions
associated to a classical regularly distributed 2π-periodic
set of knots.

� nt is the number of control points of the B-spline curve of
variable t. BT are the B-spline basis functions associated
to a classical regularly distributed set of knots, this basis
can be periodic or not.

The originality of the transformation is in the fact that the
continuity and potentially the periodicity in time is a “hard”
constraint. We can implicitly look for time-periodic trans-
formations.

Using quadratic B-splines (with a set of regularly dis-
tributed knots in our current implementation) ensures C 1 con-
tinuity in φ and t; the function ap(r;θ;φ; �) is a (potentially
periodic) piecewise polynomial. Due to the definition of B-
splines, the influence of possible outliers remain local (Risler,
1991).

To ensure the continuity for θ = 0, we must impose the
constraint Ap

i;0;k;n = Ap
i;0;0;n for each k. There are thus nφ � 1

equations for each i and n. Finally, we get a number of control
points NCP = (5:nr +1):(nφ:(nθ�1)+1):nt.

The transformation is completely defined given a center C
and two orthogonal vectors (they define the 3PC system) and
a set of NCP control points (real numbers) Ap

i; j;k;n .

1.4. Estimation of a 4D planispheric transformation
1.4.1. The least squares criterion
Having a set of matches (Pl , Qn;l ) for different times tn (n =
0 : : :T�1), we define a least squares criterion to estimate the
4D planispheric transform which could “best” fit the list of
matches:

8n 2 0 : : :N�1; 8m 2 0 : : :M�1;

f (Pl; tn) ' Qn;l (9)

The least squares criterion is therefore written:

J( f ) =
T�1

∑
n=0

N�1

∑
l=0

αn;l :d( f (Pl; tn) ; Qn;l )
2 (10)

where d(�; �) is the distance and αn;l is the weight related to the
reliability of the match (Pl , Qn;l ).
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If we choose the euclidean distance for d in cartesian co-
ordinates, the criterion is not quadratic in the Ap

i; j;k;n, and its
derivatives with respect to the Ap

i; j;k;n are very difficult to lin-
earize. We prefer to choose for d the euclidean distance ex-
pressed in 3PC (X2+Y2+R2). The criterion is then quadratic
in the Ap

i; j;k;n. d is a distance if and only if X2 +Y2 < 1 (i.e. iff
(X,Y) does not belong to the circle of the “north pole” of the
planispheric map). As the center C is well inside the cavity
and the base point B is in the center of the base circle, we are
sure that all data points remain in a “security” cylinder in the
3PC system (maximum expected value for θ is around π=2, so
X and Y are less than 0:5. See figure 6).

1.4.2. Minimization of the criterion
The criterion expressed with d as the euclidean distance in
3PC is quadratic in the control points Ap

i; j;k;n. Differentiating
it with respect to Ap

i; j;k;n gives a linear system which is solved
with a classical conjugate gradient method. The size of the
matrix is (5:nr + 1):(nφ:(nθ � 1) + 1):nt . In fact, the linear
system can be split in two independent subsystems, one for
a0, a1, a2, a3 and the other for a4 and a5.

Assembling the matrix is an operation which obviously de-
pends linearly with the N, the number of matches. Solving the
linear system is an operation which depends on NCP , the size
of the matrix : a classical conjugate gradient needs O(NCP

2)
elementary operations per iteration. In our experiments, the
O(N) operation is much more costly than the O(NCP

2) one
(ratio is approximately 5:1).

2. TRACKING THE 4D MOTION OF THE LV

We define in this section an adaptation of the Iterative Closest
Point algorithm (Besl and McKay, 1992; Zhang, 1994) which
gives an estimation of those matches for the least squares
minimization: it is possible this way to calculate the “best”
function with respect to a distance criterion.

The motion is tracked in a heart image sequence (in our
experiments, gated SPECT). Points featuring the edges of the
heart are extracted and matched. The result of the matches
between pairs of points in the images of the sequence is used
to estimate a 4D polar transformation.

2.1. Matching the feature points
The matching method is an enhancement of the iterative clos-
est point (Besl and McKay, 1992; Zhang, 1994; Feldmar and
Ayache, 1996), adapted to our problem. Given a point P (x,
y, z) in cartesian coordinates and a time value t, the transfor-
mation gives a point Q (x0, y0, z0) which is assumed to be the
location of point P at time t. To estimate a 4D planispheric
transformation f , we therefore need to know the matches be-

tween points Pl of the first image (t = 0) and points Qn;l of the
image at time n (t = tn). We thus look for f so that

f (Pl; tn)'Qn;l

We define a criterion:

C( f ) =
T�1

∑
n=0

N�1

∑
l=0

αn;l :d[ f (Pl; tn) ; CPn( f (Pl; tn)) ]
2: (11)

CPn calculates the closest point to a 3D point among the
feature points FPn extracted in image n. We use kd-trees to
compute this function (Preparata and Shamos, 1985). The
criterion is the sum of the residual distances between the esti-
mated location of the points Pl at time tn and the feature points
extracted in Image n. αn;l is a weighting coefficient which
depends only on (Pl , tn) (figure 8). In our experiments, the
model is the list of data points at end diastole.

t

image sequence

n
t 0

mf (P   ,t   )0

Pm

mf (P   ,t   )n

Q n,m
Q 0,m

model

Figure 8. The matching criterion measures the sum of distances
between f (Pl , tn), the estimated point Pl at time tn and Qn;l , the
closest feature point of Image n, for all existing Pl and tn.

2.2. Minimizing the criterion
The minimization process is iterative, given an initial trans-
formation f0. This initial transformation is chosen in our
experiments to be the identity (nothing moves anywhere !).
Each iteration k splits into three steps:

1. For each 4D point (Pl , tn), we calculate fk�1(Pl; tn)
(which should be the location of point Pl at time tn) and
we identify its closest feature point CPn;l in Image n. We
therefore end up with a list of possible pairs of matched
points.
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2. For each time tn and for each type of boundary (en-
docardium, epicardium), we calculate the residual dis-
tance k fk�1(Pl; tn)�CPn;lk for each pair, and we decide
whether a pair is reliable or not: we first eliminate pairs
for which the residual distance exceeds a fixed threshold.
Second, we compute the mean µ and the standard devia-
tion σ attached to the remaining pairs. We then eliminate
the points for which the distance is greater than another
threshold depending on the distance distribution (µ +
c:σ, where c can be easily set using a χ2 table (Feldmar
and Ayache, 1996; Feldmar, 1995)).

We get for this iteration a list Sk of reliable pairs of
matched points. Notice that if a point is not matched in
this iteration, it may be matched in one that follows.

3. With the filtered list Sk of pairs of points, we calculate fk

which is the best least squares fit for the pairs of points.

The iterative process stops when a maximum number of iter-
ations is reached, or when Sk = Sk�1. (Feldmar and Ayache,
1996; Feldmar, 1995) gives further details about this adapta-
tion of the iterative closest point algorithm, for instance about
the convergence properties.

2.3. Definition of the closest point
The matching function CPn takes into account for each point
its geometric position and the local direction of the intensity
gradient calculated while extracting the edges. Considering 2
oriented points (P;nP) and (Q;nQ), where nP and nQ are the di-
rections of the intensity gradient at point P and Q respectively,
the distance between them is calculated as follows:

d(P;Q)2 = α:kPQk2 +knP�nQk2 (12)

where α is a weighting coefficient for normalisation. The
local direction of the gradient defines which border a points
belongs to: if the gradient is oriented towards the center, the
point belongs to the endocardium. If not, it is assumed to
belong to the epicardium. This separation avoids mismatches
between points of two different boundaries and speeds up the
computation: one kd-tree is more costly to manipulate than
two kd-trees of half size.

This double definition of a point (location + direction) re-
fines the matching criterion and makes it more robust and pre-
cise. We know that such features must be used with caution,
especially when trying to define a distance between two fea-
tures (Pennec and Ayache, 1996). However, the formula (12)
must be written as a sum of squares in order to keep the
convergence properties of the process (Feldmar and Ayache,
1996; Feldmar, 1995).

2.4. Computing an optimal 3D-planispheric coordinate
system

A keypoint in the estimation of the 4D transformation is the
definition of a 3PC system (a center, a base, an apico-basal
vector, a septo-lateral vector and a normalisation factor σr).

2.4.1. The coordinate system
In (Declerck et al., 1996), we define a method to align a
SPECT heart image with a template using a non-rigid trans-
formation. This method gives a transformation from the nor-
malized coordinates of the template to the patient’s case.

As the transformation which deforms the template is suf-
ficiently free (B-spline tensor product), the template can be
chosen as a rough approximation of a LV. Here, we choose
two truncated ellipsoids (one for the endocardium and one for
the epicardium). The parameters have been set manually not
to design a precise shape: the idea is just to have a “good-
looking” one. We define for this template a center, a basis
point and a point in the lateral wall so that all three define a
reference system [C, u, v].

The template is matched with the edges of the image of
the heart at end diastole (largest volume). With this trans-
formation, we deform the reference system of the template to
the patient case (figure 9). Calling S (for “shape”) the spline

P
PL

uP

deformed template

C v

Pw

BP

PC

T

w

Tu

original template

S

T

B

T

TvTL

Figure 9. The template and three points defining the coordinate
system. By the transformation S, they are deformed to match the
shape of the left ventricle of the patient.

transformation deforming the template to the patient’s case,
the reference system is defined as follows:

� For the template

– center: CT

– base: BT

– lateral point : LT

– apicobasal vector : uT =
CTBT

kCTBTk
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– septo-lateral vector : vT =
CT LT

kCT LTk
(LT is such that uT :vT = 0)

– infero-anterior vector : wT = uT � vT

� For the patient’s case

– center : CP = S(CT )

– base : BP = S(BT )

– lateral point : LP = S(LT )

– apicobasal vector : uP =
CPBP

kCPBPk
– septo-lateral vector :

vP =
CPLP�< uPjCPLP > :uP

k : : :k
(so that uP:vP = 0)

– infero-anterior vector : wP = uP� vP

2.4.2. Choosing σr

The normalisation factor σr is used to make the R coordinate
dimensionless, as are the other coordinates X andY . Changing
σr changes the shape of a surface in the planispheric geometry
by a scaling in the R direction (the lower σr, the “higher” the
surface). The closest point in this surface to a given point P
varies with σr (figure 10):

� When σr approaches 0, the R value becomes very large
compared to X and Y , Q0, the closest point to P tends to
a point with the same R (figure 10, left). This implies
that if we use those matches for the least square criterion
on distances, the tangential motions (those which change
only X and Y) are privileged and the radial motion (those
which change only R) becomes negligible.

� When σr tends to infinity, the R value becomes very
small compared to X and Y . Q∞, The closest point to
P is a point with same X and Y (figure 10, right). This
implies that if we use those matches for the least square
criterion on distances, the radial motion is privileged and
the tangential motions are negligible.

Giving a value to this factor therefore amounts to choosing
a weighting between purely tangential and purely radial mo-
tions.

As the latitude of the basal points approaches π=2, the abso-
lute values of X and Y do not exceed 0:5. For an average heart,
it appears that the maximum distance (meaning the r value) of
a point of the myocardium to the axis does not exceed CB. We
thus choose σr = 2:CB, so that R does not exceed 0:5 as for X
and Y .

o

oo

P
o

Q

Q
0

R

Y

X
S

Y

R

Y

S

0
R

X
Q

XS

Q

r
σ 0 r

σ oo

P

P

Figure 10. The surface S is represented in 3PC. In this geometry,
the location of the closest point Q to P of surface S depends on σr.
Q belongs to the curved segment [Q0Q∞], where Q0 and Q∞ are the
closest point to P for σr = 0 and ∞ respectively. Figure reprinted with
kind permission of IEEE Trans. on Med. Imag.

3. EXPERIMENTS

We present here experiments conducted on a series of gated
SPECT image sequences provided by Pr. M.L. Goris, Stanford
University Hospital (California, USA). There are 8 images in
the sequence, the size of the images is 64x64x64, pixel size
is 2.5mm isotropic. The temporal sampling is uniform and
covers the entire cardiac cycle.

3.1. Extraction of feature points
Each image of the sequence is resampled in the polar geome-
try defined in (Declerck et al., 1996). This reference describes
a method to extract edges in nuclear medicine myocardial
perfusion images, we recall here the main ideas: in a polar
geometry with a center well inside the cavity, the heart looks
like a thick plate. We detect edges in this image with a Canny-
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Deriche recursive filter (Monga et al., 1991). Cardiac bound-
ary points are easily detected and filtered in this geometry:
in an ideal situation, where the heart is a volume of pixels
with high intensity values in an image with a high signal-
to-noise ratio, starting from the center of the cavity along a
radius, the first edge is assumed to belong to the endocardium,
the following edge is assumed to belong to the epicardium
(figure 11).

myocardium

2

radius

OUTLIER

EPIC.
ENDOC.

2

1

forbidden cone

other organ

Intensity

1

Figure 11. Intensity profiles along 2 different radii starting from
the center of the image. The black dots show on both curves the
edges detected with the Canny-Deriche filter. On curve 2, the non-
cardiac edge is rejected. Figure reprinted with kind permission of
IEEE Trans. on Med. Imag.

This heuristic constraint is used to filter out the non-cardiac
edges (in SPECT images, there may be some parts of the liver,
or artificial edges generated by binary masks). In (Declerck
et al., 1996), the method is tested on a database of 40 pairs
of images, the proportion of erroneous edges was estimated
satisfactory enough for the matching process to work. Fig-
ure 12 shows the result of the extraction of feature points on
four different times of a gated SPECT sequence of a healthy
heart.

3.2. Retrieval of trajectories
From these data points, we look for a periodic 4D polar trans-
formation with nr = 2, nθ = 3, nφ = 6, nt = 5 (which gives
715 control points, for roughly 50000 data points). Figure 14
shows the surface of a healthy LV (VANN) deformed by the
4D polar transformation. This is the surface of a template
matched with the method defined in (Declerck et al., 1996).
Because the feature points we extract from the images are not
structures, it is difficult to visualise them efficiently. The tra-
jectories of the points are smooth and periodic, as illustrated
by figure 13. Figure 15 shows the surface of a pathological LV
(BOJO, suffering from septal akinesia due to an infarct) de-
formed by another 4D transformation: the akinesia is revealed
by the relative short trajectories of points around the septum
(on the left in each frame of figure 15).

Extracting feature points takes around 20 seconds per im-
age on a DEC Alpha 400 MHz workstation. The computation
of the 4D planispheric transformation takes around 15 minutes
on the same machine.

3.3. Analysis of the motion
We show in figure 16 a display of the physical parameters
values on the surfaces of the heart. On the top, the normal
VANN case and on the bottom, the pathological BOJO case.
For the radial motion, the values vary between 0 and 40 %, for
the elevation, between -5 % and 5 % and for the apico-basal
rotation, from -10 to 10 degrees. The values are computed at
end systole.

In figure 17, we show a display of the amplitude and the
phase of the first harmonic of the radial motion for three nor-
mal hearts (CRIR, HUVM and VANN) and a pathological one
(BOJO). This crude Fourier analysis shows how the parameter
varies over the whole sequence. For the normal cases, there is
a variability in the computed values of the parameters:

1. around the base, the values are hasardous due to a bad
identification of the base, potentially leading to mis-
matches. A better segmentation of the base should avoid
this kind of behaviour;

2. apart from this region, the distribution of amplitude val-
ues is coherent for the three cases, showing that the sep-
tum contracts less than the other walls and that the con-
traction is more important on the endocardium than on
the epicardium. The amplitude reveals potential akinetic
areas;

3. the phase reveals potential dyskinetic regions. The val-
ues distributionshows the septum contracts slightly later
than the other walls. This is particularly visible on cases
VANN and HUVM.

However, those values must be interpreted with caution.
As the matching procedure works with a closest point method,
the tangential motions which are retrieved are not fully reli-
able (elevation and apico-basal rotation). As a matter of fact,
only the radial motion (an “orthogonal” motion) matches what
can be expected from a healthy heart (Park et al., 1996; Young
et al., 1994) and figure 17 shows, for a pathological case, the
sensitivity of this parameter:

� amplitude: the septum appears in dark blue, featuring
low values. The akinesia is thus located and quantified;

� phase: around the septum, the values distribution shows
strong variations, due to the fact that the amplitudes are
low in this area: the approximation of a nearly flat curve
(showing the evolution of the parameter over time) by a
sinusoid is therefore very sensitive.

3.4. Perspectives for the validation
The motion we are able to retrieve and analyse using gated-
SPECT images sequences must be interpreted with caution.
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septum on left, lateral on right .. . lateral on left, septum on right

inferior on left, anterior on right

1
2

Septum Lateral

Inferior

Anterior

4
3

t0

            

t2

            

t4

            

t6

            

Figure 12. Edges (in white) automatically extracted and filtered from images at four different times (one time per row). On each row, we see
central slices resampled from the 3D image by rotation around the apex-base axis, as shown on drawing on the left: this makes easier the display
of the myocardial structure.

            

Figure 13. View of the LV from the apex. The trajectories of some points are drawn over the cycle: they are smooth and periodic (see the
zoomed area on the right). Figure from (Declerck et al,1997).
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t0 t4

t1 t5

t2 t6

t3 t7

Figure 14. The surface of the LV deformed by the 4D transformation
over the 8 times of the sequence. The heart is healthy (VANN).
Trajectories are represented for some points.

t0 t4

t1 t5

t2 t6

t3 t7

Figure 15. Same as figure 14, for a pathological case (BOJO).
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gated SPECT gated SPECT
normal case (VANN) pathological case (BOJO)
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Figure 16. The surface of the heart (the septum is on the left)
colorised with the parameters values at end systole, for a normal case
(VANN, on the left) and for a pathological case (BOJO, on the right):
top, the radial motion, middle, the elevation and bottom, the apico-
basal rotation. The colorscales under the images indicate increasing
values from left to right. Figure from (Declerck et al,1997).
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Figure 17. The surface of the heart (the septum is on the left)
colorised with the amplitude (left) and phase (right) of the first
harmonic of the radial motion. First 3 lines show normal cases
(CRIR, HUVM et VANN), the last line, a pathological one (BOJO).
The amplitude shows how wide the motion is, the phase shows the
synchronisation.
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Due to the low resolution of the images, it is difficult to get a
precise information. Second, any tangential motion cannot be
reliably retrieved using only feature-based techniques without
markers. The parameters we are able to compute may be
useful if there is a possibility to demonstrate that they can be
used for a detection of a pathology, by separating normal and
abnormal hearts into two statistically different classes. This
validation should be processed on a dataset of heart images of
which the pathology or healthy state is known. For a given
database, the sensitivity and the specificity can be calculated
and can show the usefulness of our approach on a quantitative
basis.

Another way to validate our decomposition of the motion
is to check that it corresponds to a real motion. Tagged MRI
yields images in which the motion of soft tissues at a num-
ber of discrete points is easily detectable, can be measured
(McVeigh, 1996; Kraitchman et al., 1995; Young et al., 1995;
Young et al., 1994; Denney and Prince, 1994) and then com-
pared to our computed motion.

These two validation processes are currently under study,
partial results have been obtained (Declerck, 1997) and will
be the subject of a forthcoming article.

4. CONCLUSION

In this work, the mathematical framework for a new class of
transformation is defined: a 4D planispheric transformation
is a differentiable function in space and time coordinates and
potentially periodic in time. A small number of parameters
constrain the definition of the function and there is a sim-
ple relationship between the estimated parameters ap and the
“canonical” motions defined for a moving LV (radial motion,
rotation, elevation). We demonstrated the feasability of the
method on a series of gated SPECT sequences.

This will be the basis for a number of experimental studies
both on nuclear medicine and tagged MR data in collaboration
with Pr. Michael Goris (Stanford University Hospital) and
Dr. Elliot McVeigh (Johns Hopkins University).

In order to refine the tracking procedure, we are also work-
ing on defining feature points inside the myocardium. Those
points added to the edges we have already defined will give
landmarks in the entire myocardial volume and not only on
its boundary.
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A. 3D PLANISPHERIC COORDINATES

This section is dedicated to the problem of finding HP given a
point P in space. In order to avoid cumbersome notation, we
rename HP as H. The problem is, given two points C and B
and a point P, to find a point H on the line CB so that:

(BC;HP) = θ
CH = (1� cosθ):CB

Let us define λ as follows:

CH = λ:CB = λ:l

Because λ is supposed to be equal to 1� cos(θ), λ 2 [0;2].
If we write

CP =

0
@

x:l
y:l
z:l

1
A and u =

0
@

ux

uy

uz

1
A

we have

HP = l:

0
@

x�λ:ux

y�λ:uy

z�λ:uz

1
A

so

u:HP = u:HC+u:CP

= l:[�λ+(x:ux+ y:uy + z:uz)]

On the other hand,

cos(θ) =
BC:HP

kBCk:kHPk

If we call

r = kHPk
= l:

q
(x�λ:ux)2 +(y�λ:uy)2 +(z�λ:uz)2

and

p = u:CP
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we thus have

cos(θ) = �u:HP
r

and the constraint (1) can be rewritten, after some calculation,

λ =
r+ p
r+1

(13)

Let us call f a function of λ

f (λ) =
r(λ)+ p
r(λ)+1

�λ (14)

We look for λ0 so that

f (λ0) = 0 (15)

To solve this equation, we use a Newton method. In the
following lines, we demonstrate that the derivative f 0 is of a
constant sign, which implies a unique solution for (15), if it
exists.

The derivative of the function f with respect to λ is as
follows

f 0(λ) =
r0(λ)(1� p)
(r(λ)+1)2 �1

It is straightforward to prove that

r0(λ) =
λ� p
r(λ)

so we have

f 0(λ) =
(λ� p)(1� p)
r(λ)(r(λ)+1)2 �1 (16)

Let us call P0 is the projection of P on (CB). We have then

λ� p = �HP0

l

1� p = �BP0

l

To prove the constant sign of f 0, we just have to compare
the two distance products CB:HP0:BP0 (the numerator of the

P’     CB

B

H

C

P’

B

C

P

H

P’ P

P’     CB

Figure 18. Two possible configurations for P0.

fraction) and HP:(HP+CB)2 (the denominator of the frac-
tion). If we can prove that CB:HP0:BP0 <HP:(HP+CB)2, the
fraction is lower than 1 and f 0 is negative.

Due to the symmetry of the problem, we can suppose with-
out any loss of generality that P0 is on the semi-line [BC). The
demonstration of the inequality splits in two parts:

� P0 2 [CB] (figure 18, left). We obviously have

P0B < CB < HP+CB
CB:P0B < CB2 < (HP+CB)2

as HP0 < HP,

CB:HP0:P0B < HP:(HP+CB)2

CB:HP0:BP0 < HP:(HP+CB)2

this what we want;
� P0 =2 [CB] (figure 18, right). We have

(HP+CB)2 > (HP0+CB)2

> (CP0+CB)2 = P0B2

> P0B:CB

as HP0 < HP,

CB:HP0:P0B < HP:(HP+CB)2

CB:HP0:BP0 < HP:(HP+CB)2

this what we want.

So, in any configurationof P, for any λ, f 0(λ)< 0. f is then
a decreasing function.
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Obviously,

f (0) =
CP+u:CP
CP+CB

> 0

and, if P0 is on the semi-line [BC),

f (1) =
BP+u:CP
BP+CB

�1

=
u:CP�CB
BP+CB

=
u:BP

BP+CB
< 0

f (0) and f (1) are of opposite signs, the sign f 0 is constant,
there is then a unique solution for (15).

In our implementation, we use a Newton method to find
λ0 solution of (15). Starting from a central position (λ = 1),
after 3 or 4 iterations, the difference between two successive
estimations of λ do not exceed 10�6. The convergence is
extremely fast.

B. PROLATE SPHEROIDAL COORDINATES

We define a center O and two “focal points” F1 and F2, F2
being at the same distance δ from O as F1, but in the opposite
direction. A prolate sphere is defined to have a constant radius
λ (dimensionless number), a point in this prolate sphere is
defined fixing two angles: elevation θ and azimuth φ. From
these three parameters, the cartesian coordinates (x, y, z) of
this pont are calculated using the following formulae:

x = δ sinh(λ) sin(θ) cos(φ)
y = δ sinh(λ) sin(θ) sin(φ) (17)

z = δ cosh(λ) cos(θ)

Conversely, knowing the cartesian coordinates (x, y, z), it is
possible to compute the prolate spheroidal parameters (λ,θ,φ)
using the equations:

r1 =
q

x2 + y2 +(z�δ)2

r2 =
q

x2 + y2 +(z+δ)2

λ = acosh

0
@ r1 + r2

2:δ

1
A

θ = acos

0
@ r1� r2

2:δ

1
A (18)

φ = atan2

0
@ x

δ sinh(λ) sin(θ)
;

y
δ sinh(λ) sin(θ)

1
A

Analogously to our system, F1 would be C, O would be B,
F2 would be C0 (figure 7) and λ would be R. In the end, the
transformation from (R,θ,φ) coordinates to (X,Y ,R) would be
expressed as in (2).
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