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Abstract

Cardiologists assume that analysis of the motion of the heart (especialy the left ventricle) can

give some information about the health of the myocardium.

A 4D polar transformation is defined to describe the left ventricle (LV) motion and a method
is presented to estimate it from sequences of 3D images. The transformation is defined in 3D-
planispheric coordinates (3PC) by a smal number of parameters involved in a set of simple
linear equations. It is continuous and regular in time and space, periodicity in time can be
imposed. Thelocal motion can beeasily decomposed intoafew canonica motions(radial motion,
rotation around the long-axis, elevation). To recover the motion from original data, the 4D polar
transformation is cal culated using an adaptation of the Iterative Closest Point agorithm.

We present the mathematical framework and ademonstration of itsfeasability on aseries of gated

SPECT sequences.
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INTRODUCTION

Cardiologists assume that the analysis of the motion of the
heart (especially theleft ventricle) can give someinformation
about the health of the myocardium. A huge effort has been
made in medical image processing to track and analyse the
motion of the LV, but due to the complexity of the modeling,
this topic remains an open research problem.

Modern techniques provide 3D images which describe & -
ther the anatomy of the heart (MRI, US, for instance) or its
functionality (Nuclear Medicine SPECT or PET imaging, for
instance). It ispossible to get sequences of such images over
thewholecardiac cycle; such sequences arereal 3D movies of
the motion of the heart. The cardiac motion, like the motion
of any rea object must be therefore described as a 4D con-
tinuous and regular transformation of time and space. With
themodality weareusing for our experiments(gated SPECT),
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the acquisition of an image lasts over several cardiac cycles,
the gating procedure allowsto reconstruct a 3D volume using
information taken at similar times over different cardiac cy-
cles, assuming that dl the cycles are identica during the ac-
quisition. In our protocol, we therefore suppose that the heart
beats at aregular pace, this may not be the case for specific
pathologies inducing irregularities of the cardiac pulse rate:
these diseases are not supposed to be studied in this paper.

Many techniques have been proposed to track the LV mo-
tion. All of them attempt to find the correspondence be-
tween pairs of successive images. Most of the proposed
methods in 3D define a model of the shape of LV surfaces
(endocardium and/or epicardium), using classical snake-like
models (Mclnerney and Terzopoulos, 1995; Shi et al., 1994,
Amini and Duncan, 1992), spring-mass meshes (Nastar,
1994) or more constrained generic surfaces such as free-
deformed superquadrics(Bardinet et al., 1996; Bardinet et al .,
1995) or volumetric superquadrics (Park et al., 1996; Park
et al., 1994). The tracking is processed using conservation
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congtraints based on proximity constraints (Bardinet et al.,
1996; Bardinet et al., 1995), differential properties of the
surface (Clarysse et al., 1995; Shi et al., 1994; Amini and
Duncan, 1992; Goldgof et al., 1988) or is directly computed
from displacement or velocity information obtained in some
specific MR imaging techniques. tags (Radeva et al., 1996;
Kraitchman et al., 1995; Young et al., 1995; Denney and
Prince, 1994; Park et al., 1994) or phasecontrast (Meyer etal.,
1995; Shi et al., 1995). In other work, no shape model is
computed: the tracking is processed directly from the volu-
metric image using optical flow methods (Gorce et al., 1997;
Song et al., 1994), conservation of differential elements of
isophotes (Benayoun et al., 1995) or using similarities of the
intensity levels (Thirion, 1995).

Unfortunately, because the correspondence is defined be-
tween two successive images, regularity and periodicity in
time is not guaranteed. Only a few studies impose tempo-
ral continuity or periodicity in their modd: these studies
dea with segmentation of 2D (O’'Donnéll et al., 1994) or
3D images (de Murcia, 1996; Matheny and Goldgof, 1995;
Schudy and Ballard, 1979). Some other rare methods in 2D
(Todd Constable et al., 1994; McEachen et al., 1994) or in
3D (Thirion, 1995; Nastar, 1994) perform a posteriori time
filtering. Moreover, all these tracking techniques ((Park et al .,
1996; Park et al., 1994) excepted) do not provideintuitivepa-
rameters describing characteristic motionswithout non-trivial
computation (Bardinet et al., 1996; Bardinet et al., 1995;
Young et al., 1994). The 4D polar transformation (Declerck
et al., 1997) defined in thisarticle aims to achieve four goals:

1. to define a class of transformation of time and space in
which the temporal continuity and periodicity can be
included,

2. to define a class of highly constrained transformations
in order to have areevant description of the LV motion
with areduced number of parameters,

3. to be able to retrieve canonica motions with minimal
computation, providing an easy-to-interpret quantita-
tiveanalysisof the motion.

4. lat, but not least, to be atransformation which combines
the unknown parametersin a linear way to make their
estimation easier and robust.

We shall see that all these points are achieved in the mathe-
matical formulation that we propose bel ow.

The paper is organised as follows: in section 1, we define
the 4D polar transformation and the way to estimateit from a
4D (3D + time) data set. In section 2, a method is proposed
to track in 4D the motion of the LV. Experiments have been
conducted with a synthetic heart model and a gated SPECT

sequence are presented in section 3. Section 4 draws con-
clusions concerning this work, its potential uses and future
perspectives.

1. DEFINITION OF THE 4D PLANISPHERIC
TRANSFORMATION

The idea of this study is to define a continuous and regular
transformation of time and space. Thistransformation should
also be adapted to describe with a minimum of parameters a
complex motion such as the LV motion. This modd of the
deformation of the LV isa crude approximation compared to
complex biomechanical models (Hunter and Smaill, 1988) or
highly descriptive kinematic models (Arts et al., 1992).

Given a point P (X, y, 2) in cartesian coordinates and a
time vaue t, the transformation gives a point Q (X, Yy, Z)
which is assumed to be the location of point P at timet. The
cardiac motionissupposed to be regular in space and periodic
in time. We therefore look for a differentiable function in
spatial variables x, y and z and for a differentiable and a
potentialy periodic functionin time variablet.

fiIRPxIR — IR
(Pt) — Q=f(Pt)

This definition of the 4D transformation yields the definition
of 2 categories of functionswhich are easier to understand and
which areintrinsicaly regular (figure 1):

T = f(P)
Do = f(.1

isthetragjectory of P over time,
isthe instantateneous deformation
function of the object at timet.

.

t0 t
image sequence
Figure 1. The model is deformed at every time of the image se-

guence. Point P at time t, is point Q. Functions of instantaneous
deformation Dy, and the trajectory function Tp areillustrated.
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In thispaper, f isdefined in order to describe locally some
specific motions of points on the myocardium. We approx-
imate the shape of the |eft ventricle as a stretched sphere in
the long-axis direction. Thisis, of course, a very crude ap-
proximation as the shape of the heart is much more complex,
however our god is not a precise definition of the shape of
the muscle, but a plausible discrimination of characteristic
motions.

For that particular purpose, we separate the motion of a
point of the heart into three canonical orthogonal motions
(figure 2):

e motion 1: aradial motion which decribes the contrac-
tion or dilatation of the whole structure towards a * cen-
ter”;

e motion 2: a apico-basal rotation around the apico-
basal axiswhich describes the twisting motion of the LV
points;

e motion 3: a motion (tangential to the surface r = C!)
which describes the devation of the LV points in the
apico-basal direction (the shortening a ong thelong-axis
during the systole).

@ @ ®

=0
=0
=0

o

S @ .

-

1

@o P3
P .@’ P,
N

P

Figure 2. The top three frames illustrate the orthogonal motions
described in the text. Bottom, point P is transformed in P, by the
first motion (radial motion), P; is transformed in P, by the second
(apico-basal rotation) and P; is transformed in P; by the third one
(elevation).

We describe these motionsin a*3D-planispheric”’ coordi-
nates (3PC) system, which is a combination of spherica and

cylindrical coordinates. Our tranformation function is thus
defined as a composition of three functions:

f = P2CoFoC2P

The function C2P switches from cartesian to 3PC, P2C
switches back from 3PC to cartesian coordinates (of course,
C2P = P2C™1). F isthefunction which is described with the
threebasic motionsin 3PC. The next two paragraphsdetail the
definitions of these functions.

1.1. Cylindrical or planispheric coordinates?

The approach isinspired from (Park et al., 1996; Park et al.,
1994): inthat study, the equations for the deformation of the
superquadric model isexpressed in cylindrical coordinates. In
such coordinates, the decomposition of thelocal motioninour
three canonical motions does not have the same relevance if
the point where they are estimated belongs to a lateral wall
(where the muscle is roughly cylindrical) or if the point is
close to the apex (where the muscle is roughly spherical).
For instance, a point belonging to alatera wall and animated
by an axia contraction does effectively contract towards the
cylindrical axis (motion 1), but a point close to the apex ani-
mated with a similar motion does not contract, but undergoes
a shift tangential to the wall. Thus, this motion is a twist
(motion 2) or an e evation (motion 3) rather than acontraction
(motion 1) (figure 3). Wefind it easier and more relevant to

long axis

Figure 3. P; belongsto alateral wall, P, is close to the apex, both
points are animated with motion 1. Solid arrows describe the mo-
tion in cylindrical coordinates (contraction towards the apico-basal
axis) and dotted arrows describe the motion in spherical coordinates
(contraction towards the center C). Motion 1 effectively describesa
contraction for Py, but not for Ps.

use 3D-planispheric coordinates rather than cylindrical ones
to decompose the local motion of points of the myocardium.
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1.2. 3D-Planispheric coordinates

C2P : in 3D cartesian space, we define a 3D-planispheric
reference system given a center C, a base B and a set of two
orthogonal vectors u and v (figure 7). In order to fit with our
description of the heart, we choose u as a vector parallel to
the apico-basal direction, and v pardlel to the septo-lateral
direction. C ischosen in the center of the cavity, and B in the
center of the base.

For each point P (X, y, 2), a center point Hp is defined on
line (CB). From this center point, a distance and two angles
(latitude 6 and longitude ) are calculated just asin the clas-
sical spherical coordinate system. Inthe spherical system, Hp
isthe center C. In thecylindrical system, Hp isthe orthogonal
projection of P on the lineCB. Our purpose here isto define
acombination of both spherical and cylindrical coordinate
systems (figure 4), in order to describe the position of P in
“roughly” spherical coordinates around the apex (where the
shape of the LV isroughly spherical) and in “roughly” cylin-
drical coordinatesaround the base (where the shape of the LV
isroughly cylindrical). In our system, the position of Hp on
theline CB isgiven by the simple formula:

CHp = (1—cos9)CB (1)

Cylindrical Soherical Planispheric

Figure 4. 3D-planispheric geometry is a combination of both cylin-
drical and spherical geometries.

o For low vaues of 8 (P around the apex), Hp is closeto
C and shiftsaway from C with adistance increasing with

2
%: around the apex, the 3PC system isthus close to the

spherical one.

e For 8 around 5 (P around the apex), Hp is close to B,
the distance BHp varies linearly with 6 — 7, and PHp
is nearly orthogonal to CB: around the base, the 3PC
system is close to the cylindrical one (figure 7).

Of course, (1) isanimplicit formula: Hp givestheangle6,
but we need 6 to locate Hp. appendix A detailsthe method we
have devel oped to compute the [ocation of Hp given apoint P
in space.

In our 3PC system, a surface of constant r is represented
as a disk in a plane, like in a classical map projection in
topography (thisiswhy we use theword “ planispheric”). The
coordinates X, Y and R in thissystem are defined as follows:

X = Soosio
Y = Jan) @
R T

Oy

where oy is a normalization coefficient so that X, Y and R
are dimensionless and vary within a similar range of values.
Figure 5 illustrates the correspondence between the (X, v, 2)

Figure 5. the cartesian coordinates (x,y,z) of point P are converted
into polar coordinates in the 3D-planispheric image, the depth Ris
the distance from the point Hp in the cartesian image, the position
(X,Y) inthe planeis defined with the two angles 8 and @, like in the
2D-planispheric mapping.

cartesian coordinatesand the (X, Y, R) coordinatesin the 3PC
system. Inthissystem, apex point (X =0, Y = 0) isthe* south
pole’ of the projection, the points on the circle X? + Y2 = 1
(6 = ) are the same cartesian point, the “north pole” of the
projection, featuring a point in the direction of the base or
of the aorta. Around this point, the distorsion between the
cartesian and our plani spheric representati onis maximum, but
there should not be any cardiac pointsin thisarea (figure 6).
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North pole Ant.

Lat.

myocardium

South pole North pole circle

Figure 6. Left, the myocardium. From the center C, the limit of
the basis draws a cone (dark gray) around the north pole. Right, in
the 3D-planispheric map, theleft ventricle (light gray) appearslikea
plate, the coneis a circular stripe around the heart.

P2C : conversaly, givenapoint (X, Y, R) inthe 3PC system
S0 that X2+ Y2 < 1, we can computeits cartesian coordinates
(X, Y, 2) by calculating 6 = T1v/X2 + Y2 and @without ambigu-
ity with the expressions of cos(@) and sin(¢). The center Hp
is calculated with (1).

The coordinate system we use is similar to the prolate
spheroidal coordinates (PSC) system described in the litter-
ature (Waks et al., 1996). The equations are presented in
appendix B, figure 7 shows ten surfaces of constant Rin each
of thetwo systems. There arethreeminor differencesbetween
the two systems:

1. the surfaces of constant R (for R values around what
they should be to describe an average LV) are narrower
around the apex than in the 3PC system: the shape of
these surfacesis closer to the shape of an average LV;

2. thereisanintervd of R for which surfaces of constant R
are close to a shape of an average LV. For those values,
the location of point C is closer to the apex in the PSC
system than inthe 3PC, potentialy yielding to forbidden
intersection of segment [CB] with the myocardia wall;

3. the surfaces of constant 6 are cones in the 3PC system,
they are confocal one-sheet hyperboloids in the PSC
system. The loca coordinates are orthogona in PSC,
wheresas they are approximately orthogona in 3PC. On
the other hand, the decomposition of the motion isless
intuitivein the PSC system.

Inthe sequel of thisarticle, we concentrate on the 3PC system
in order to obtain a closer approximation of the LV shape and
amore intuitivedecomposition of the motion.

Planispheric

Prolate spheroidal

Figure 7. A representation of ten surfaces of constant R, on the left,
inthe 3PC system, ontheright, in the prolate spheroidal. Thedashed
lines show different curves of constant 8: on one, a point P and its
associated center Hp. Figure from (Declerck et al,1997).

1.3. Thefunction in 3D-planispheric coordinates

In the 3D-planispheric system, given apoint P (X, Y, R), the
transformed point Q (X', Y/, R) through F is expressed as
follows:

X' = gX—aY+a
Y = aX+aY+as (3
R = aR+as

X" and Y’ are defined by asimilarity function applied to X and
Y. A similarity is a combinate of a 2D rotation by angle a, a
uniformscaling of ratio k and atransation. R isdefined asan
affine function of R. The similarity and the affine parameters
ap (p=0...5) are continuous and differentiabl e functions of
r,0, gandt.

Defining the transformation in the 3PC system allows to
write: @) linear expressions in the parameters ap, b) asimple
computation of the canonical motion decomposition (radial
motion, rotation, €l evation) fromtheap and, ¢) avery compact
description of the deformation.

1.31. Analysisofthemotioninthecanonical decomposition
Our canonical motionsare retrieved with thefollowingformu-
lae:

1. theradial motion ratio (motion 1) is given by:

(4)

pe ]
I
IS
+
0|8
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2. thelinear relationshipsbetween X/, Y and X, Y definea
2D similarity such that

k = ,/a§+a2 (5)

a = atan2(?1 %) (6)

o istherotation around thelong-axis(motion 2) in 3PC;

3. kisthescalefactor corresponding to an el evation magni-
ficationinlatitude, whichisour motion 3. Inour display,

/

we compute A

The4D polar transformationisdefined oncethe parameters
ap are determined. Because of thesimplicity of (5) and (6), it
is possible to easily analyse the motion using the parameters
ap. Because the variaion of the parameters a, is smooth
and regular with variablesr, 0, ¢ and t, the parameters which
describe our canonical motionsare also smooth and regular in
time and space.

1.3.2. Degrees of freedom of the parameters, time depen-
dency as a hard constraint

In order to defineasmooth and continuous4D transformation,
the parameters depend on the location of the point and the
instant a which the transformation is calculated. In our for-
mulation, we choose the parameters as polynomial functions
inr and 6 and quadratic periodic B-splines (Rider, 1991;
Farin, 1989) in @and t:

ne Np—1ln—1

- 33, 5 5 e

j#1

[ j
(OL) (%) HCEHONNG

forp=0...4. If wekeep for ag an expressionlike(7), a4 and

ap(ra ea (pa

ag are correlated because R = T We therefore simplify as

Oy

as follows:

ne Np—1ln—1

j
kZ) Z)Ajkn (F[) ((P) Bl(t) (8)
j=0

j#1

as(r,8,,t)

with the following notation:

e N, isthenumber of parameters which define the polyno-
mial function of variabler: the degree of thispolynomial
isn, — 1.

e ngisthenumber of parameters which define the polyno-
mial function of variable 0: to be differentiablein points
for which (6 = 0), the polynomial must have no term
in6 (ap(6) = a+a36%+a36%..). ap istherefore a
polynomial of 6 of degree Ng.

¢ nyisthenumber of control pointsof theB-splineperiodic
curve of variable ¢. B® are the B-spline basis functions
associated to aclassica regularly distributed 21eperiodic
set of knots.

e n; isthenumber of control pointsof the B-splinecurve of
variablet. BT arethe B-splinebasis functions associated
to aclassical regularly distributed set of knots, this basis
can be periodic or not.

The originality of the transformation isin the fact that the
continuity and potentially the periodicity in timeis a “hard”
constraint. We can implicitly look for time-periodic trans-
formations.

Using quadratic B-splines (with a set of regularly dis-
tributed knotsin our current implementation) ensuresC* con-
tinuity in @ and t; the function ap(r, 6, @,-) is a (potentially
periodic) piecewise polynomia. Due to the definition of B-
splines, theinfluence of possible outliersremain local (Rider,
1991).

To ensure the continuity for 8 = 0, we must impose the
constraint A", o0k n for each k. There are thusny— 1
equationsfor each [ and n. Finally, we get anumber of control
pointsNep = (5.0 4 1).(Ng.(Ng — 1) + 1) 1.

The transformation is completely defined given a center C
and two orthogonal vectors (they define the 3PC system) and
aset of Np control points (real numbers) A i kn-
1.4. Esimation of a 4D planispheric transformation
1.41. Theleast squares criterion
Having a set of matches (R, Qy,) for different timest, (n =
0...T—1), wedefine aleast squares criterion to estimate the
4D planispheric transform which could “best” fit the list of
matches:

vYneO0...N—-1, Yyme0..M—-1
f(A,t) >~ Qn 9)
The least squares criterion istherefore written:
T—-1N-1

= n;) |;) un,I ~d( f(Hatn) ; Qn,l )2 (10)

whered(-; -) isthedistanceand oy, istheweight related to the
reliability of the match (R, Qn)).
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If we choose the euclidean distance for d in cartesian co-
ordinates, the criterion is not quadratic in the AlpJ kn’ and its

derivatives with respect to the A? K aevery difficult tolin-
earize. We prefer to choose for d the euclidean distance ex-
pressed in 3PC (X2 4 Y2+ R?). Thecriterionisthen quadratic
intheA’; | . disadistanceif and only if X*+Y? < 1 (i.e. iff
(X,Y) does not belong to the circle of the “north pole” of the
planispheric map). As the center C is well inside the cavity
and the base point B isin the center of the base circle, we are
sure that all data pointsremainin a“security” cylinder in the
3PC system (maximum expected valuefor 8 isaround /2, so
XandY arelessthan 0.5. See figure 6).

1.4.2. Minimization of thecriterion

The criterion expressed with d as the euclidean distance in
3PC is quadratic in the control points AlpJ kn- Differentiating
it with respect toAI Kn givesalinear system which is solved
with a classica conj ugate gradient method. The size of the
matrix is (5.ny 4 1).(ng.(ng — 1) + 1).n. In fact, the linear
system can be split in two independent subsystems, one for
ap, a1, &, az and the other for a4 and as.

Assembling the matrix isan operation which obvioudy de-
pendslinearly with the N, the number of matches. Solvingthe
linear system is an operation which depends on Nep, the size
of the matrix : aclassical conjugate gradient needs O (Ncp?)
elementary operations per iteration. In our experiments, the
O(N) operation is much more costly than the O(Ncp?) one
(retiois approximately 5:1).

2. TRACKING THE 4D MOTION OF THE LV

We define in this section an adaptation of the Iterative Closest
Point algorithm (Besl and McKay, 1992; Zhang, 1994) which
gives an estimation of those matches for the least squares
minimization: it is possible this way to calculate the “best”
function with respect to adistance criterion.

The motion is tracked in a heart image sequence (in our
experiments, gated SPECT). Points featuring the edges of the
heart are extracted and matched. The result of the matches
between pairs of pointsin the images of the sequence is used
to estimate a 4D polar transformation.

2.1. Matchingthefeature points

The matching method is an enhancement of theiterative clos-
est point (Besl and McKay, 1992; Zhang, 1994; Feldmar and
Ayache, 1996), adapted to our problem. Given a point P (X,
Y, 2) in cartesian coordinates and a time valuet, the transfor-
mation givesa point Q (X, ¥, Z) which is assumed to be the
location of point P at timet. To estimate a 4D planispheric
transformation f, we therefore need to know the matches be-

tween pointsh of thefirstimage (t = 0) and pointsQy, of the
image at timen (t =tp). We thuslook for f so that

f(H atn) ~ Qn,l

We define a criterion:

T—1N-1

C(f)= ; IZO Oy -d[ (R, tn); CP(f(RLta)) 12 (10)

CP;, caculates the closest point to a 3D point among the
festure points FP, extracted in image n. We use kd-trees to
compute this function (Preparata and Shamos, 1985). The
criterionisthe sum of theresidual distances between the esti-
mated | ocation of thepoints R at timet,, and thefeature points
extracted in Image n. ap) is a weighting coefficient which
depends only on (R, t,) (figure 8). In our experiments, the
model isthelist of data pointsat end diastole.

image sequence

Figure 8. The matching criterion measures the sum of distances
between f(R, tn), the estimated point R at time t, and Qy, the
closest feature point of Imagen, for all existing B and ty.

2.2. Minimizingthecriterion

The minimization process is iterative, given an initia trans-
formation fp. This initid transformation is chosen in our
experiments to be the identity (nothing moves anywhere !).
Each iteration k splitsinto three steps:

1. For each 4D point (R, tn), we calculate fy_1(R,tn)
(which should be the location of point B at timet,) and
we identify itsclosest feature point CP, inImagen. We
therefore end up with alist of possible pairs of matched
points.
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2. For each time t, and for each type of boundary (en-
docardium, epicardium), we calculate the residua dis-
tance || f—1(R,tn) — CPy, || for each pair, and we decide
whether apair isrdiable or not: we first eliminate pairs
for whichtheresidual distance exceeds afixed threshold.
Second, we compute the mean | and the standard devia-
tion o attached to theremaining pairs. Wethen diminate
the points for which the distance is greater than another
threshold depending on the distance distribution (1 +
c.0, where ¢ can be easily set using a x? table (Feldmar
and Ayache, 1996; Feldmar, 1995)).

We get for this iteration a list S of reliable pairs of
matched points. Noticethat if a point is not matched in
thisiteration, it may be matched in one that follows.

3. With thefiltered list S of pairsof points, we calculate fy
which isthe best least squares fit for the pairs of points.

The iterative process stops when a maximum number of iter-
ationsisreached, or when § = S ;. (Feldmar and Ayache,
1996; Feldmar, 1995) gives further details about this adapta-
tion of theiterative closest point algorithm, for instance about
the convergence properties.

2.3. Definition of the closest point

The matching function CP, takes into account for each point
its geometric position and the loca direction of the intensity
gradient cal culated while extracting the edges. Considering 2
oriented points(P;np) and (Q;ng), where np and ng arethedi-
rectionsof theintensity gradient at point P and Q respectively,
the distance between them is calcul ated as follows:

d(PQ* = a.|PQII*+|Ine—nqll® (12)

where a is a weighting coefficient for normalisation. The
local direction of the gradient defines which border a points
belongsto: if the gradient is oriented towards the center, the
point belongs to the endocardium. If not, it is assumed to
belong to the epicardium. This separation avoids mismatches
between points of two different boundaries and speeds up the
computation: one kd-tree is more costly to manipulate than
two kd-trees of half size.

This double definition of a point (location + direction) re-
fines the matching criterion and makesit more robust and pre-
cise. We know that such features must be used with caution,
especialy when trying to define a distance between two fea
tures (Pennec and Ayache, 1996). However, the formula (12)
must be written as a sum of squares in order to keep the
convergence properties of the process (Feldmar and Ayache,
1996; Feldmar, 1995).

2.4. Computing an optimal 3D-planispheric coordinate
system

A keypoint in the estimation of the 4D transformation is the

definition of a 3PC system (a center, a base, an apico-basal

vector, a septo-lateral vector and anormalisation factor oy).

24.1. The coordinate system

In (Declerck et al., 1996), we define a method to adign a
SPECT heart image with a template using a non-rigid trans-
formation. This method gives a transformation from the nor-
malized coordinates of the template to the patient’s case.

As the transformation which deforms the template is suf-
ficiently free (B-spline tensor product), the template can be
chosen as a rough approximation of a LV. Here, we choose
two truncated el lipsoids (one for the endocardium and one for
the epicardium). The parameters have been set manually not
to design a precise shape: the ideais just to have a “good-
looking” one. We define for this template a center, a basis
point and a point in the lateral wall so that all three define a
reference system [C, u, V].

The template is matched with the edges of the image of
the heart a end diastole (largest volume). With this trans-
formation, we deform the reference system of thetemplateto
the patient case (figure 9). Calling S (for “shape”) the spline

ur S Up
VRN |
B #
T .t
Wp
wr | A
) e
el P W
4 i v
original template deformed template

Figure 9. The template and three points defining the coordinate
system. By the transformation S, they are deformed to match the
shape of the left ventricle of the patient.

transformation deforming the template to the patient’s case,
the reference system is defined as follows:

¢ For thetemplate

— center: Cr
— base: By
— laterd point: Ly
. CTBT
— apicobasal vector : ut =
® ICrEr]



Definition of a4D continuous planispheric transformation for the tracking and the analysis of LV motion 9

Crly
- to-lateral vector : vy = ——
P T =Gl

(Lt issuch that ur.vr = 0)
— infero-anterior vector : Wy = Ut X v
o For the patient’scase
— center : Cp = S(Cy)
— base: Bp = S(BT)
— latera point: Lp = S(Lt)

CrBp

— apicobasa vector : up = ———
® P~ TICeBol
— septo-lateral vector :

Cplp— < Up|Cpr > .Up
P:
[l

(so that up.vp = 0)
— infero-anterior vector : wp = Up x Vp

24.2. Choosing oy

The normalisation factor oy isused to make the R coordinate
dimensionless, asaretheother coordinatesX and Y. Changing
oy changesthe shape of asurface inthe planispheric geometry
by ascaling in the R direction (the lower oy, the “higher” the
surface). The closest point in this surface to a given point P
varies with o, (figure 10):

e When o, approaches 0O, the R value becomes very large
compared to X and Y, Qq, the closest point to P tendsto
a point with the same R (figure 10, left). This implies
that if we use those matches for the least square criterion
on distances, the tangential motions(thosewhich change
only X andY) are privileged and the radial motion (those
which change only R) becomes negligible.

¢ When o; tends to infinity, the R value becomes very
small compared to X and Y. Q., The closest point to
P isapoint with same X and Y (figure 10, right). This
impliesthat if we use those matches for the least square
criterion on distances, theradial motionisprivileged and
the tangential motions are negligible.

Giving a vaue to this factor therefore amounts to choosing
aweighting between purely tangential and purely radial mo-
tions.

Asthelatitudeof thebasal pointsapproachesTt/2, theabso-
lutevaluesof X andY do not exceed 0.5. For an average heart,
it appears that the maximum distance (meaning ther value) of
apoint of themyocardium to the axis does not exceed CB. We
thus choose o, = 2.CB, so that R does not exceed 0.5 asfor X
andy.

Figure 10. The surface Sis represented in 3PC. In this geometry,
the location of the closest point Q to P of surface S dependson oy.
Q belongsto the curved segment [QgQw], where Qp and Q. arethe
closest point to P for o = 0 and oo respectively. Figure reprinted with
kind permission of IEEE Trans. on Med. Imag.

3. EXPERIMENTS

We present here experiments conducted on a series of gated
SPECT image sequences provided by Pr. M.L. Goris, Stanford
University Hospital (Caifornia, USA). There are 8 imagesin
the sequence, the size of the images is 64x64x64, pixel size
is 2.5mm isotropic. The temporal sampling is uniform and
coversthe entire cardiac cycle.

3.1. Extraction of feature points

Each image of the sequence is resampled in the polar geome-
try defined in (Declerck et al., 1996). Thisreference describes
a method to extract edges in nuclear medicine myocardia
perfusion images, we recall here the main idess. in a polar
geometry with a center well inside the cavity, the heart looks
likeathick plate. We detect edgesin thisimage with a Canny-
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Dericherecursivefilter (Mongaet al., 1991). Cardiac bound-
ary points are easily detected and filtered in this geometry:
in an ided situation, where the heart is a volume of pixels
with high intensity values in an image with a high signal-
to-noise ratio, starting from the center of the cavity dong a
radius, thefirst edgeisassumed to bel ong to the endocardium,
the following edge is assumed to belong to the epicardium
(figure 11).

myocardium

other organ

forbidden cone Intensity

2
OUTLIER "
EPIC.

radius

Figure 11. Intensity profiles along 2 different radii starting from
the center of the image. The black dots show on both curves the
edges detected with the Canny-Derichefilter. On curve 2, the non-
cardiac edge is rejected. Figure reprinted with kind permission of
IEEE Trans. on Med. Imag.

Thisheuristic constraint isused tofilter out thenon-cardiac
edges (in SPECT images, there may be some partsof theliver,
or artificial edges generated by binary masks). In (Declerck
et al., 1996), the method is tested on a database of 40 pairs
of images, the proportion of erroneous edges was estimated
satisfactory enough for the matching process to work. Fig-
ure 12 shows the result of the extraction of feature pointson
four different times of a gated SPECT sequence of a healthy
heart.

3.2. Retrieval of trajectories

From these data points, we look for aperiodic 4D polar trans-
formation with ny = 2, ng = 3, Ny = 6, nt = 5 (which gives
715 control points, for roughly 50000 data points). Figure 14
shows the surface of a healthy LV (VANN) deformed by the
4D polar transformation. This is the surface of a template
matched with the method defined in (Declerck et al., 1996).
Because the feature pointswe extract from theimages are not
structures, it isdifficult to visuaise them efficiently. The tra-
jectories of the points are smooth and periodic, as illustrated
by figure 13. Figure 15 showsthe surface of apathological LV
(BOJO, suffering from septal akinesia due to an infarct) de-
formed by another 4D transformation: theakinesiaisrevesled
by the relative short trajectories of points around the septum
(on theleft in each frame of figure 15).

Extracting feature points takes around 20 seconds per im-
age on a DEC Alpha400 MHz workstation. The computation
of the4D plani spherictransformationtakesaround 15 minutes
on the same machine.

3.3. Analysisof the motion

We show in figure 16 a display of the physica parameters
values on the surfaces of the heart. On the top, the normal
VANN case and on the bottom, the pathological BOJO case.
For theradia motion, thevalues vary between 0 and 40 %, for
the elevation, between -5 % and 5 % and for the apico-basal
rotation, from -10 to 10 degrees. The values are computed at
end systole.

In figure 17, we show a display of the amplitude and the
phase of thefirst harmonic of the radial motion for three nor-
mal hearts (CRIR, HUVM and VANN) and apathol ogical one
(BOJO). Thiscrude Fourier analysisshowshow the parameter
varies over thewhole sequence. For the normal cases, thereis
avariability in the computed values of the parameters:

1. around the base, the vaues are hasardous due to a bad
identification of the base, potentially leading to mis-
matches. A better segmentation of the base should avoid
thiskind of behaviour;

2. agpart from thisregion, the distribution of amplitude val-
uesis coherent for the three cases, showing that the sep-
tum contracts less than the other walls and that the con-
traction is more important on the endocardium than on
the epicardium. The amplitudereveal s potential akinetic
aress,

3. the phase reveds potentid dyskineticregions. The val-
ues distribution shows the septum contracts dightly later
than the other walls. Thisis particularly visible on cases
VANN and HUVM.

However, those values must be interpreted with caution.
Asthematching procedure workswith aclosest point method,
the tangential motions which are retrieved are not fully reli-
able (elevation and apico-basal rotation). As a matter of fact,
only theradial motion (an“orthogona” motion) matcheswhat
can be expected from ahealthy heart (Park et al., 1996; Young
et al., 1994) and figure 17 shows, for a pathological case, the
sengitivity of thisparameter:

o amplitude the septum appears in dark blue, featuring
low values. The akinesiaisthuslocated and quantified;

e phase around the septum, the values distribution shows
strong variations, due to the fact that the amplitudes are
low inthisarea: the approximation of anearly flat curve
(showing the evolution of the parameter over time) by a
sinusoid istherefore very sensitive.

3.4. Perspectivesfor thevalidation
The motion we are able to retrieve and analyse using gated-
SPECT images sequences must be interpreted with caution.
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lateral on left, septum on right

septum on left, lateral on right
inferior on left, anterior on right
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Figure 12. Edges (in white) automatically extracted and filtered from images at four different times (one time per row). On each row, we see
central slicesresampled from the 3D image by rotation around the apex-baseaxis, as shown on drawing on theleft: this makeseasier the display

of the myocardial structure.
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Figure 13. View of the LV from the apex. The trgjectories of some points are drawn over the cycle: they are smooth and periodic (see the

zoomed areaon the right). Figure from (Declerck et al,1997).
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t3 t7

13 t7

Figure14. Thesurfaceof the LV deformed by the 4D transformation
over the 8 times of the sequence. The heart is healthy (VANN). Figure 15. Same asfigure 14, for a pathological case (BOJO).
Trajectories are represented for some points.
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gated SPECT gated SPECT
norma case (VANN) pathologicd case (BOJO)

0% MEENNTT N 40%

-5% EEERT i 5%

-10° EEER—— e 10°

Figure 16. The surface of the heart (the septum is on the left)
colorised with the parametersvaluesat end systole, for anormal case
(VANN, ontheleft) and for apathological case(BOJO, ontheright):
top, the radial motion, middle, the elevation and bottom, the apico-
basal rotation. The colorscalesunder the images indicate increasing
valuesfrom left to right. Figure from (Declerck et al,1997).

Radia motion

Elevation

Apico-basdl rotation

CRIR (Norm.)

HUVM (Norm.)

VANN (Norm.)

BOJO (Path.)
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Figure 17. The surface of the heart (the septum is on the left)
colorised with the amplitude (left) and phase (right) of the first
harmonic of the radial motion. First 3 lines show normal cases
(CRIR,HUVM et VANN), thelast line, apathological one(BOJO).
The amplitude shows how wide the motion is, the phase shows the
synchronisation.
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Due to the low resolution of theimages, it is difficult to get a
preciseinformation. Second, any tangentia motion cannot be
reliably retrieved using only festure-based techni queswithout
markers. The parameters we are able to compute may be
useful if thereis a possibility to demonstrate that they can be
used for a detection of a pathology, by separating normal and
abnormal hearts into two statistically different classes. This
validation should be processed on adataset of heart images of
which the pathology or hedlthy state is known. For a given
database, the sensitivity and the specificity can be calculated
and can show the usefulness of our approach on aquantitative
basis.

Another way to validate our decomposition of the motion
isto check that it corresponds to areal motion. Tagged MRI
yields images in which the motion of soft tissues at a num-
ber of discrete pointsis easily detectable, can be measured
(McVeigh, 1996; Kraitchman et al., 1995; Young et al., 1995;
Young et al., 1994; Denney and Prince, 1994) and then com-
pared to our computed motion.

These two validation processes are currently under study,
partia results have been obtained (Declerck, 1997) and will
be the subject of aforthcoming article.

4. CONCLUSION

In this work, the mathematical framework for a new class of
transformation is defined: a 4D planispheric transformation
isadifferentiable function in space and time coordinates and
potentialy periodic in time. A smal number of parameters
constrain the definition of the function and there is a sim-
ple relationship between the estimated parameters a, and the
“canonical” motions defined for amoving LV (radia motion,
rotation, elevation). We demonstrated the feasability of the
method on a series of gated SPECT sequences.

Thiswill bethe basis for anumber of experimental studies
both on nucl ear medi cine and tagged MR datain coll aboration
with Pr. Michael Goris (Stanford University Hospital) and
Dr. Elliot McVeigh (Johns Hopkins University).

In order to refine thetracking procedure, we are al so work-
ing on defining feature pointsinside the myocardium. Those
points added to the edges we have aready defined will give
landmarks in the entire myocardia volume and not only on
its boundary.
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A. 3D PLANISPHERIC COORDINATES
This section is dedicated to the problem of finding Hp given a
point P in space. In order to avoid cumbersome notation, we

rename Hp as H. The problem is, given two pointsC and B
and apoint P, to find apoint H on the line CB so that:

(BC,HP) = ©
CH = (1—cos0).CB
Let usdefine A asfollows:
CH=ACB=Al
Because A is supposed to be equal to 1 — cos(6), A € [0, 2].

If wewrite

CP

[l
N
N < X
~—

]

c

[l
N
S&E L
~—

we have
X— A.Ux
HP=I1.1 y—Auy
Z—A.Ug

uHP = uHC-+uCP
= L[=A 4 (XUx+Yy.uy+zuy)]

On the other hand,

BC.HP

os® = {Bcy A

If wecall

r

[HP]
I.\/(x—)\.ux)2—|- (Y= A.uy)2+ (Z—A.up)?

and

p = uCP
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we thus have

u.HP

cos(B) = ;

and theconstraint (1) can be rewritten, after some calculation,

A=—T (13)

_ M)+
f(A) = r()\)+1_)\ (14)
We look for Ag so that
f(Aog) =0 (15)

To solve this eguation, we use a Newton method. In the
following lines, we demonstrate that the derivative f' is of a
constant sign, which implies a unique solution for (15), if it
exists.

The derivative of the function f with respect to A is as
follows

iy FANA-p)
W= Gmne
It is straightforward to prove that
) _ A-p
"=
so we have
fl()\) — ()\ — p)(l_ p) -1 (16)

Let uscall P’ isthe projection of P on (CB). We have then

/
\_p — _HP

1-p = ———

To prove the constant sign of f', we just have to compare
the two distance products CB.HP'.BP' (the numerator of the

B B
H
H
P P
C Ce
P P
P €cCB P¢cs

Figure 18. Two possible configurationsfor P'.

fraction) and HP.(HP + CB)? (the denominator of the frac-
tion). If we can provethat CB.HP'.BP’ < HP.(HP+CB)?, the
fractionislower than 1 and f’ isnegative.

Dueto the symmetry of the problem, we can suppose with-
out any loss of generality that P’ isonthe semi-line[BC). The
demonstration of theinequality splitsin two parts:

e P ¢ [CB] (figure 18, l&ft). We obviously have

PB < CB < HP+CB
CBPB < CB?> < (HP+CB)?

asHP < HP,

CB.HP'.P'B < HP.(HP+CB)?
CB.HP.BP < HP.(HP+CB)?

thiswhat we want;
e P ¢ [CB] (figure 18, right). We have

(HP+CB)2 > (HP'+CB)?
> (CP+CB)?=PB?
> PBCB
asHP < HP,

CB.HP'.P'B < HP.(HP+CB)?
CB.HP.BF < HP.(HP+CB)?

thiswhat we want.

So, inany configurationof P, forany A, f/(A) < 0. f isthen
a decreasing function.
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Obvioudly,

CP+ucCP
0 = prcg >0

and, if P’ ison the semi-line[BC),

BP + u.CP
fl) = ———
( ) BP-+CB
uCP-CB
BP-+CB

u.BP

BprcB < °

f(0) and f (1) are of oppositesigns, thesign f’ is constant,
there isthen a unique solution for (15).

In our implementation, we use a Newton method to find
Ao solution of (15). Starting from a central position (A = 1),
after 3 or 4 iterations, the difference between two successive
estimations of A do not exceed 107%. The convergence is
extremely fast.

B. PROLATE SPHEROIDAL COORDINATES

We define a center O and two “focal points’ F; and F,, F»
being at the same distance 6 from O as F4, but in the opposite
direction. A prolate sphereisdefined to have aconstant radius
A (dimensionless number), a point in this prolate sphere is
defined fixing two angles. elevation 6 and azimuth @. From
these three parameters, the cartesian coordinates (X, Y, 2) of
this pont are calculated using the following formulae:

= 3sinh(A) sin(8) cos(q)
= &sinh(A) sin(8) sin(g) (17)
z = &cosh(A) cos(6)

6
6

Conversdly, knowingthe cartesian coordinates(x, y, 2), itis
possibleto compute the prolate spheroidal parameters (A,0,¢)
using the equations:

o=/ @+y?+(z-9)?

2 = \/®+y?+(z+8)?
. ri+rz

A = aoh| =3

0 acos | =12 (18)

X y

¢ = dan dsinh(A) sin(8) ' 3sinh(A) sin(6)

Analogously to our system, F; would be C, O would be B,
F> would be C' (figure 7) and A would be R. In the end, the
transformation from (R,0,¢) coordinatesto (X,Y,R) would be
expressed asin (2).
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