
In vivo human cardiac fibre architecture estimation using shape-based
diffusion tensor processing

Nicolas Toussaint a,b, Christian T. Stoeck c, Tobias Schaeffter a, Sebastian Kozerke c,a, Maxime Sermesant b,⇑,
Philip G. Batchelor a

a King’s College London, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
b Inria, Asclepios Research Project, 2004 route des Lucioles, 06902 Sophia-Antipolis, France
c University and ETH Zürich, Institute for Biomedical Engineering, Gloriastrasse 35, 8092 Zürich, Switzerland

a r t i c l e i n f o

Article history:
Received 16 February 2012
Received in revised form 27 November 2012
Accepted 16 February 2013
Available online xxxx

Keywords:
Diffusion tensor imaging
Cardiac
In vivo
Elevation angle
Prolate spheroidal coordinates

a b s t r a c t

In vivo imaging of cardiac 3D fibre architecture is still a practical and methodological challenge. However
it potentially provides important clinical insights, for example leading to a better understanding of the
pathophysiology and the follow up of ventricular remodelling after therapy. Recently, the acquisition
of 2D multi-slice Diffusion Tensor Images (DTI) of the in vivo human heart has become feasible, yielding
a limited number of slices with relatively poor signal-to-noise ratios. In this article, we present a method
to analyse the fibre architecture of the left ventricle (LV) using shape-based transformation into a norma-
lised Prolate Spheroidal coordinate frame. Secondly, a dense approximation scheme of the complete 3D
cardiac fibre architecture of the LV from a limited number of DTI slices is proposed and validated using
ex vivo data. Those two methods are applied in vivo to a group of healthy volunteers, on which 2D DTI
slices of the LV were acquired using a free-breathing motion compensated protocol. Results demonstrate
the advantages of using curvilinear coordinates both for the anaylsis and the interpolation of cardiac DTI
information. Resulting in vivo fibre architecture was found to agree with data from previous studies on
ex vivo hearts.

! 2013 Elsevier B.V. All rights reserved.

1. Introduction

Cardiac fibre architecture is fundamental to the cardiac func-
tion, as it influences the muscle’s electrophysiological and mechan-
ical properties. For instance, the electrical propagation is three
times faster along the fibre direction than along its orthogonal
plane (Kanai and Salama, 1995). Moreover, cardiac contraction is
mainly explained by the arrangement of fibres (Bovendeerd et al.,
1992; Anderson et al., 2008). For these reasons its study can have
an important impact on clinical decisions, as several cardiac
pathologies – such as myocardial infarction, cardiomyopathy,
hypertension or valvular heart diseases – involve a rearrangement
of myocardial fibres (Sutton and Sharpe, 2000; Helm et al., 2006).

Diffusion Tensor MRI (DTI) can image non-invasively the fibre
orientation distribution of the myocardium (Hsu et al., 1998;
Basser et al., 2000; Scollan et al., 2000; Holmes et al., 2000). More-
over, the intrinsic laminar sheet structure can also be revealed by

taking into account the full information given by the tensors (Helm
et al., 2005; Peyrat et al., 2006; Lombaert et al., 2011b). However,
translating these techniques to the in vivo setting is extremely
challenging (Sosnovik et al., 2009). Indeed, the displacements due
to diffusion measured in DTI are three orders of magnitude smaller
than the bulk motion of the heart, resulting in inaccurate diffusion
signal. To tackle this problem, Reese et al. (1995) introduced a
method based on stimulated echo acquisition (STE) where the dif-
fusion signal is integrated over the entire heart beat. Later, im-
proved by Tseng et al. (1999), this approach has been applied in
2D and proven useful for the depiction of clinically relevant infor-
mation in several scenarios (Dou et al., 2003; Wu et al., 2009;
Nielles-Vallespin et al., 2011; Sosnovik et al., 2009). Alternatively,
Gamper et al. (2007) proposed a method that uses a standard spin
echo (SE) technique in order to improve the Signal to Noise Ratio
(SNR) efficiency. By means of bipolar gradient lobes, this technique
only remains sensitive to acceleration and higher order motion,
and enables the acquisition of 2D diffusion images. These tech-
niques remain challenging to apply in practice. Due to time con-
straints, the amount of slices acquired is very limited and the
SNR performances can be poor. It is therefore of interest to inves-
tigate and adapt the analysis and post-processing procedures to
such specific situations.
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In this article, we propose to use a coordinate system known as
Prolate Spheroidal coordinates in order to generate a curvilinear
scheme for data analysis and dense approximation of the fibre
architecture of the Left Ventricle (LV). A preliminary version of this
work was published in Toussaint et al. (2010).

The contributions of this work are twofold: first a conformal
mapping method that allows the description of acquired tensor
data in the LV wall into a normalised Prolate Spheroidal (PS) frame
is introduced, using non-linear registration and PS coordinate
change. Second, a dense approximation scheme in this PS frame
is proposed, using a tri-variate kernel regression in order to
approximate tensors at all locations in the LV from sparsely ac-
quired data. It is demonstrated that using PS coordinates allows
meaningful interpretation of data in the LV, in particular the orien-
tation of the underlying fibres. Moreover, it is shown that changing
the coordinate system from Cartesian to PS leads to better overall
approximation of the global tensor field. These techniques are
tested on a high resolution ex vivo DTI dataset, and applied to a
set of in vivo data acquired on 5 healthy volunteers.

2. Material and methods

2.1. Ex vivo high resolution cardiac DTI dataset

An ex vivo DTI dataset of a healthy human myocardium was
downloaded from the John Hopkins University website.1 It was
provided by Prof. Patrick A. Helm and Raimond L. Winslow at the
Centre for Cardiovascular Bioinformatics and Modelling and Prof. El-
liot McVeigh at the National Institutes of Health. Data was acquired
on a 1.5T GE CV/I MRI Scanner (General Electrics Medical System),
with a spatial resolution of 0.4297 ! 0.4297 ! 1.0 mm3.

2.2. In vivo cardiac DTI acquisition

Cardiac DTI was performed on five healthy subjects (two males,
three females) on a 1.5 T clinical MR scanner (Philips Heathcare,
Best, The Netherlands) equipped with a gradient system with max-
imal strength of 80mT/m and a slew rate of 100 mT/m/ms per axis.
A 32 channel cardiac coil array was used for signal reception. The
imaging protocol consisted of a B0 map for image based shimming
(Schär et al., 2004), a trigger delay scout sequence for estimation of
optimal trigger points during systolic contraction (Stoeck et al.,
2011), the actual DTI acquisition and a single breath hold 3D T2
contrast enhanced whole heart acquisition. All sequences were
ECG-triggered, and Diffusion Weighted Images (DWIs) were ac-
quired during free breathing using a respiratory navigator, with a
gating window of 5 mm, placed on the right hemidiaphragm. DTI
acquisitions were planned in short axis view of the heart and 4–
6 parallel slices were acquired along the long axis of the LV. Imag-
ing was performed using a diffusion weighted spin echo sequence
with single shot echo planar imaging (EPI) readout (see Fig. 1).
Imaging parameters were as follows: Echo Time (TE)/Repetition
Time (TR) 59 ms/2R–R intervals, Field Of View (FOV):
230 ! 102 mm2, in-plane resolution: 2 ! 2 mm2, slice thickness:
5 mm. The Diffusion Weighted MR sequence is illustrated in Fig. 1.

In order to operate with a single DTI acquisition protocol in all
volunteers, a TR of two R–R intervals was chosen to assure a suffi-
ciently high SNR of each single shot DWI. Readout and echo time
was shortened by using a rectangular FOV (local-look), applying
the excitation pulse in phase encoding direction and the refocusing
pulse in slice-select direction (Gamper et al., 2007). Furthermore a
partial Fourier coefficient of 0.63 was used and the echo pulse
duration was further shortened by applying the variable rate selec-

tive excitation (VERSE) technique (Hargreaves et al., 2004). Diffu-
sion encoding was achieved by two bipolar gradients (Dou et al.,
2003) applied in 18 directions distributed on the unit sphere, cre-
ating a b-value of 500 s/mm2. Ten averages were acquired for each
diffusion encoding direction. The total scan time was 10–15 min
per DTI slice, depending on navigator efficiency.

A 3D whole heart acquisition using a T2 contrast prepared mul-
ti-shot gradient echo sequence with a resolution of 2 ! 2 ! 4 mm3

was acquired directly after the Diffusion acquisitions, in order to
ensure alignment between the DTI and the anatomical data. The
trigger delay of the whole heart acquisition was set identical to
the trigger delay of the diffusion weighted imaging.

Despite the respiratory navigation, residual misalignments, on
the order of 2–3 mm, can occur between DWIs. This is corrected
prior to averaging per direction using an approach very similar to
the one detailed in Oubel et al. (2012): each DWI Si is rigidly reg-
istered to an arbitrary chosen reference image Sk

r , using the Mutual
Information similarity metric, resulting in a rigid transformation
Ak

i . The mean diffusion image between all transformed Si is com-
puted and serves as a reference Skþ1

r for the following registration
iteration. In this (k + 1) iteration, the transformations Ak

i are used
as initialization for the registration algorithm, therefore avoiding
successive resampling of the initial DWIs Si. The operation is re-
peated until the mean square error (MSE) between two consecu-
tive iterations is lower than a small threshold !:
MSE Skþ1

r ; Sk
r

! "
< !. In practice five iterations were sufficient for

convergence.
Tensors were reconstructed in each voxel by solving the Stejs-

kal–Tanner’s diffusion equation system (Stejskal and Tanner,
1965) using linear regression as described in Basser et al. (1994).
Only tensors lying within the LV compact myocardium were con-
sidered for further processing. Illustrations of the acquisitions are
presented in Fig. 2.

2.3. Conformal mapping of left ventricular data

In this section we describe a method to represent DTI informa-
tion contained in the LV wall into a common reference frame. This
is achieved with the use of the PS curvilinear coordinate system. It
involves a non-linear registration of the LV wall onto a truncated
ellipsoid, and a change of coordinate.

2.3.1. Prolate spheroidal coordinates
The LV wall is a relatively thin and non-convex structure with a

shape close to an ellipsoid. The PS coordinates are well adapted to
such an object, and have the advantage to be physiologically mean-
ingful with respect to the ventricular shape and fibre architecture

Fig. 1. DTI spin echo pulse sequence with single shot EPI readout. Diffusion
encoding is established with a pair of velocity compensating bipolar gradients. For
local look imaging, the excitation pulse is applied in phase encoding direction, while
the echo pulse remains in slice-select direction. The echo pulse duration is
shortened using VERSE.

1 http://www.ccbm.jhu.edu/research/DTMRIDS.php.
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(Nielsen et al., 1991; Costa et al., 1996; LeGrice et al., 2001; Rohmer
and Gullberg, 2006).

The transformation operator from Cartesian coordinates x = (x1,
x2, x3)T to PS coordinates n = (n1, n2, n3)T is denoted W: x ? n = W(x).
However, it is more commonly given in its inverse form W#1:

x1 ¼ f sinhðn1Þ sinðn2Þ cosðn3Þ
x2 ¼ f sinhðn1Þ sinðn2Þ sinðn3Þ
x3 ¼ f coshðn1Þ cosðn2Þ

8
><

>:
ð1Þ

where f is the semi-foci distance.
The first coordinate n1 is strictly positive and can be interpreted

as the transmural depth, n2 as the long axis abscissa going from 0 at
the apex to 'p/2 at base level, and n3 as a circumferential abscissa
from 0 to 2p. In the common Cartesian system, the contravariant
basis is stationary in R3. The PS equivalent, here denoted
G ¼ ðg1; g2; g3Þ (where gi ¼ @x

@ni
) varies in space, following the natu-

ral shape of the ventricle (see Appendix B for explicit expression of
contravariant vectors).

PS coordinates have the advantage of describing the highly non-
convex volume of the ventricle walls as a parallelogram, as shown
in Fig. 4. In the PS frame, the shortest path from two distinct points
of the ventricle remains in the ventricle. Therefore, a metric de-
fined in this frame becomes geodesically convex.

2.3.2. Diffeomorphic registration
In order to ensure that the curvilinear coordinate system fol-

lows the shape of the anatomical LV, the imaged ventricle has to
be registered to a perfectly shaped truncated ellipsoid volume.
The source and target images S and T of this registration step are

respectively the binary mask of the segmented LV and the binary
mask of a corresponding approximated truncated ellipsoid volume.
Fig. 5 shows a superposition of delineations of the masks S and T
onto the anatomical image. S is obtained by manual segmentation
of the myocardium using the 3D anatomical image. The volumetric
truncated ellipsoid T was computed as the closest to the segmen-
tation S, using the centre of mass and main axis of symmetry of S.

The non-linear algorithm used to register S to T is the symmet-
ric version of the log-domain diffeomorphic demons (Dru and
Vercauteren, 2009). This algorithm has the crucial characteristic
to provide invertible displacement fields, needed to produce for-
ward and backward transformation between the subject’s anatomy
and the volumetric truncated ellipsoid. Transformations are
respectively denoted U and U#1. Additionally, the displacement
was constrained to be elastic (but yet compressible) as described
in Mansi et al. (2011), in order to obtain a smooth displacement
of the middle-wall area, where no texture is present in the masks
to guide registration. This technique provides forward and back-
ward transformations between the volunteer’s anatomy and a vol-
umetric truncated ellipsoid.

2.3.3. Transformation workflow
Once the LV of the subject is transformed onto the perfectly

shaped truncated ellipsoid volume T using transformation U, the
operator W can be used to express this information in PS coordi-
nates. Transformation from Cartesian to PS coordinates is defined
by inverting the system in Eq. (1). Details of the inversion are given
in Appendix A.

The overall transformation process towards a common PS frame
can be summarised as follows:

n ¼ W (UðxÞ ð2Þ

The operators U and W are fully invertible, apart from the sin-
gularity segment (see Appendix A). As a consequence, it is possible
to transform any LV input data into the PS frame, process it in a
well adapted coordinate system, and transform it back to the ana-
tomical reference.

The global transformation process of this conformal mapping is
illustrated in Fig. 6. The anatomical left ventricular wall volume X
is transformed to the convex box X00 that is the PS frame. A natural
path lying within the LV wall (dotted lines in X) becomes a straight
line in X00. Therefore, any process, such as interpolation or geodesic
distance definition, described in PS frame will follow the natural
shape of the LV.

Extension to tensor data: In our work, the type of data under
consideration is not scalar but consists of tensors. Adjustments to
the transformation operators U and W are needed in order to

(a)

(b)

Fig. 2. Acquired volunteer data. (a) One slice of diffusion tensors. Tensors are colour-coded according to the direction of their main eigenvector, i.e. red: horizontal/green:
vertical/blue: through-plane. (b) Distribution of the slices for each volunteer, super-imposed onto the Left Ventricle (LV) segmentation. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Left: PS coordinate system depends on an arbitrary ellipsoid centre and
semi-foci distance. The iso-lines of constant coordinates are drawn to illustrate its
relevance for the ventricular shape. Right: definition of helix (a), transverse (b) and
sheet (c) angles with respect to the tensor’s first (v1) and third (v3) eigenvectors.
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account for that increased data dimensionality. Let us denote eU the
induced transformation from U on tensors. Transforming the diffu-
sion tensors implies a reorientation scheme using the Jacobian
JU#1 (in our case directly available from U#1). In Peyrat et al.
(2006), two different reorientation strategies are compared: The Fi-
nite Strain (FS) method separates the deformation in a rigid rota-
tion and a pure deformation one, and only applies the rotation
bJU#1 to the tensor. The Preservation of Principal Direction (PPD)
method takes the full Jacobian to reorient the tensor. The study
concludes that FS is best suited for preserving the geometrical

properties of diffusion tensors in this context. The FS strategy
was chosen for this reason and its computational efficiency.

Similarly, extending the change of coordinate to tensors re-
quires the induced transformation of the operator W. The Jacobian
of W corresponds to the contravariant basis G (Eq. (B.1)). This ma-
trix is orthogonal by definition (PS coordinates is an orthogonal
coordinate system), but not orthonormal. The norm of the contra-
variant vectors correspond to the scale factors of the coordinate
system, which are the local derivatives hi = @x/@ni (see Appendix
B). In our setting, the domain of definition is a volumetric ellipsoid

(a) (b)

(c) (d)
Fig. 4. (a,b): A short axis circle drawn in the Cartesian space (a) is represented as a segment in the Prolate Spheroidal (PS) frame (b). n3 being defined with a modulo, the
segment is reproduced at infinity on both sides, and the barycentre of P1 and P2 remains O. (c,d): A left ventricle volume is non-convex in a Cartesian frame (c) whereas the
same volume expressed in a PS frame becomes a convex box (d).

Fig. 5. Binary mask S of the acquired left ventricle (in green) obtained by manual segmentation. From the centre of mass and main axis of revolution of S is derived the closest
volumetric truncated ellipsoid mask T (in red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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X0, and factors hi vary spatially within the domain. In particular,
they decrease with the distance to the long-axis. Therefore, taking
the full Jacobian of W to reorient the tensors and performing inter-
polation in the PS frame would privilege tensors of endocardial re-
gions against epicardial ones, which is not desirable. For this
reason, only the rotational component of eW is used: let us denote
bG the matrix constructed from the normalised column vectors of
G, using the scale factors hi. Recalling that G is direct and orthogo-
nal, bG has therefore by construction a determinant equal to 1. Eq.
(2) is rewritten with the induced transformations on tensors:

n ¼ W (UðxÞ and Dn ¼ eW ( eUðDxÞ

with :
eU : D! eUðDÞ ¼ bJT

U#1 ) D ) bJU#1

eW : D! eWðDÞ ¼ bGT ) D ) bG

(
ð3Þ

The induced transformations eU and eW both represent the finite
strain transformations of tensors under U and W.

Normalisation of the PS frame: For any PS position n, the third
component n3 is defined between 0 and 2p. The 0 position is im-
posed to be the intersection between the anterior wall and the
Right Ventricle (RV). Similarly, the second component n2 is norma-
lised by construction between 0 at the apex and nbase

2 at the basal
region. The value nbase

2 depends on where the base was in the man-
ual segmentation S. The first component n1, on the other hand, is
not naturally normalised as it varies as a hyperbolic cosine. The
upper and lower limit values of n1 depend on both the radius of
the LV and its thickness.

Data accumulation: The transformation scheme presented in
Eq. (3) can be applied to DTI datasets of several subjects. All result-
ing sets of data are then described in a singular normalised PS
frame, and can be combined in order to perform comprehensive
groupwise analysis. This combination of data sets will further be
referred to as A. As DTI tensors are expressed in the PS contravari-
ant basis G, it becomes straightforward to derive meaningful infor-
mation such as a measure of deviation of their main eigenvector
from circumferential direction (projection on g3). Circumferential,
transmural and apico-basal variations of any information also be-
come straightforward to express given the definition of the coordi-
nate system.

2.4. Kernel-based DTI dense approximation from sparse data

In this section the approximation of a dense 3D tensor field
from a set of sparse DTI measurements distributed across the ven-
tricle is considered. Considering an input set P of M measured posi-
tions (or data centres) and tensors P ¼ ðXi;DXi Þi2M , the
approximation operator WP is defined over a domain R (e.g. cover-
ing the ventricular wall volume), that describes how to recover
data at position X from noisy and scattered input data:

8X 2 R; DX :¼WPðXÞ ð4Þ

where R refers to the spatial target domain where samples are
needed. It can be of lower or higher cardinality than P and may
not be necessarily defined on a regular grid nor constrained within
the convex hull of P. Solutions to approximate missing data and
data fitting have been explored in the past. For instance, in Fillard
et al. (2005), the authors used Radial Basis Functions (RBFs) in order
to find a smooth solution for WP that satisfies the interpolant con-
straint. However, because input data can be corrupted by significant
noise, we intentionally chose not to satisfy the interpolation condi-
tion. That is, the approximation operator (or quasi-interpolant) was
considered rather than a rigorous interpolation operator. An interpo-
lation operator gives back the input data at measure points (i.e.
WPðXiÞ ¼ DXi ), whereas a quasi-interpolant can approximate results
ðWPðXiÞ – DXi Þ. Methods to regularise noise corrupted tensor fields
have been proposed in the literature (Fillard et al., 2007; Frindel
et al., 2009). In the present method the regularisation is integrated
into the approximation operator: the operator WP consists of taking
a weighted mean of surrounding tensors as an estimate. To avoid
swelling effect on tensors and to address the fact that the spatial
density of P can be low in the practical case, the mean in the log-
Euclidean sense (Arsigny et al., 2006) was used. Other metrics meet-
ing those requirements could be used, such as in Yang et al. (2012)
for instance, where a tensor is described by its eigenvalues and ori-
entation features. The approximation operator is therefore written
as follows:

WP : X !WPðXÞ ¼ exp
PN

i¼1KðX # XiÞ logðDXi ÞPN
i¼1KðX # XiÞ

 !
ð5Þ

K is a vector to scalar function ðR3 ! RÞ. In our setting, the ker-
nel K is tri-variate and not necessarily isotropic:

KH : dX ! KHðdXÞ ¼ detðHÞ#1k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dXT H#2dX

p! "

where H is a 3 ! 3 diagonal matrix that needs to be optimised
(Härdle and Marron, 1985). The function k is a given univariate
kernel function. In this work, the Normal Gaussian function was
chosen for k: k(s) = (2p)#1/2exp (#s2/2). Diagonal values of H there-
fore control the smoothness of the resulting approximation in the
considered coordinate frame.

The approximation operator in Eq. (5) is applied on the set of ac-
quired data centres P00 = (n, Dn) in the PS frame, therefore enforcing
spacial coherence independently in each of the main directions of
the heart anatomy (e.g. radial, longitudinal and circumferential in
PS coordinates). It is important to note that W (U also needs to
be applied to each position x of the target domain X where esti-
mates are needed. Each resulting estimate WPðnÞ is eventually
transformed back to Cartesian coordinates and warped back to

Fig. 6. Data transformation throughout the procedure. The anatomical LV (X) is registered onto a truncated volumetric semi-ellipsoid (X0) with the displacement field U. The
change of coordinate system from Cartesian to PS is performed with the operator W, which results in a convex representation of the ventricular volume (X00).
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the initial geometry using inverse transformation operators W#1

and U#1. The global transformation process is summarised in
Fig. 7, and the approximation operator can be written as:

WPðxÞ ¼ U#1 (W#1 (WPðnÞ ð6Þ

2.5. Implementation

The segmentation of the ventricles was performed using the
CardioViz3D software (Toussaint et al., 2008). The registration be-
tween the segmented LV and the truncated ellipsoid was done with
the implementation available in Dru and Vercauteren (2009), with
the addition of the elasticity constraint as detailed in Mansi et al.
(2011). The tensor estimation as well as the tractography results
were obtained using the Tensor ToolKit library,2 which implements
methods described in Fillard et al. (2007). Visualisation of tensor
fields and fibre fields were obtained using the vtkINRIA3D software
(Toussaint et al., 2007). All algorithms concerning the conformal
mapping and the dense approximation were developed in a
C++ITK-VTK based framework, and have been made available as an
open-source library, the Cardiac Prolate Spheroidal ToolKit.3

3. Experiments and results

3.1. In vivo group-wise analysis

In this experiment the conformal mapping as detailed in Sec-
tion 2.3 was applied to the set of in vivo DTI data obtained in
healthy volunteers (see Section 2.2) in order to extract meaningful
fibre orientation information. Transformations in Eq. (3) were ap-
plied to each of the subject datasets. The log-demons registration
parameters were as follows: the velocity field diffusion-like regu-
larisation r was 2.5 mm, the Poisson ratio j controlling the degree
of global elasticity was j = 0.8 (Eq. 9 in Mansi et al. (2011)), and the
number of iterations in the multi-resolution scheme was
15 ! 10 ! 5. Transformations resulted in a combined dataset A

containing 18,350 data centres expressed in the PS frame. Coher-
ency between ellipsoids was ensured by imposing that the plane
(n3 = 0) coincides with the junction between the LV and the RV at

the anterior wall region. Boundaries of the first component n1 were
measured in each dataset, obtaining the following limits:
[0.35 ± 0.02 ' 0.55 ± 0.03]. The basal upper bound of n2 was also
measured nbase

2

! "
, obtaining a value of 107 deg ± 4. A normalisation

of the first and second components n1 was therefore applied to A,
with a target range corresponding to the mean of the measured
limits. Fig. 8 presents the accumulated dataset A. As A is ex-
pressed in PS coordinates, it is not convenient to visualise in this
form. The operator W#1 was therefore applied in order to trans-
form A back to Cartesian coordinates, where it is then contained
in the truncated ellipsoid X0. This figure shows an overall good cov-
erage of the ventricle. As predicted, the area close to the apex is
poorly populated due to the challenge of the acquisition in this part
of the LV. The non-linear motion involved in this region makes the

Fig. 7. Global data workflow, from a set of acquired DTI slices towards the full ventricular approximated tensor field. The PS conformal mapping is materialised by the
operators U and W. The dense approximation is materialised by the operator WP . All operators are fully invertible and diffeomorphic, apart from WP .

Fig. 8. All volunteers data was registered and mapped to a common PS frame. This
illustration shows the accumulation of the datasets (denoted A) in the template
truncated ellipsoid volume. Tensors are shown as segments pointing to their first
eigenvectors. The total amount of slices was 23 and the total amount of data centres
was 18,350.

2 https://gforge.inria.fr/projects/ttk.
3 https://github.com/ntoussaint.
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acquisitions not representative of the actual anatomical fibre
structure.

Three different angles of interest were then extracted from the
acquired in vivo tensors of A. As described in Fig. 3, the helix angle,
denoted a, is the signed angle between the tensor’s main eigenvec-
tor v1 and the transmural short axis plane (g1, g3). Its variation with
respect to the transmural depth (n1) is of particular interest as it
follows a recognisable pattern on healthy subjects as depicted
ex vivo (Scollan et al., 2000; Lombaert et al., 2011a). The transmural
angle b is the signed angle between v1 and the wall surface (g2, g3).
The laminar structure of the myocardial fibres can also be de-
scribed by the DTI information (Helm et al., 2005). The plane de-
fined by the vectors v1 and v2 is believed to be parallel to the
underlying laminar sheet (Kung et al., 2011). The sheet angle c is
defined as the signed angle between v3 and the wall surface (g2,
g3). A high absolute value of c implies that the local laminar sheet
is close to be parallel to the wall surface. These projections were
directly available as the tensors Dn are already expressed with re-
spect to the PS contravariant basis G. Using the PS expression of
the diffusion tensors, these angles are mathematically defined as
follows:

a ¼ arcsinðv1; g2Þ
b ¼ arcsinðv1; g1Þ
c ¼ arcsinðv3; g1Þ

8
><

>:
ð7Þ

Joint histograms of the helix, transverse and sheet angles of
population gathered in A with respect to the transmural depth
n1 are presented in Fig. 9. The helix angle a was found to vary be-
tween +55 deg at the endocardium to #30 deg at the epicardium,
with a correlation coefficient of 0.581. The transverse angle b
was found stable along the transmural depth with a mean equal
to 0, and has a consequently low correlation coefficient of 0.260.
The sheet angle c was poorly correlated with the transmural depth,
with a coefficient of 0.012.

3.2. Dense approximation: parameter estimation

In this experiment the dense approximation scheme detailed in
Section 2.4 was evaluated on an high resolution ex vivo human DTI
dataset (see Section 2.1). The approximation operator depends on a
3 ! 3 diagonal matrix H that describes the shape of the tri-variate
kernel KH used in the approximation operator WP . This experiment
aims at finding the optimal kernel width Hopt to use depending on
two acquisition parameters: the density of slices and the amount
of noise in the data. This optimisation was achieved by minimising
the discrepancy between measured tensor data DXi and corre-
sponding estimate WPðXiÞ, while keeping a certain degree of
smoothness.

In order to simulate a sparse distribution of acquired slices, it
was hypothesised that a typical in vivo cardiac DTI acquisition
would consist of a limited amount of short axis (SA) slices with a

certain degree of noise. Furthermore, these slices are usually con-
strained to the equatorial part of the ventricle as motion pattern
and partial volume effects around the apex hamper acquisition of
images with sufficient quality. In consequence, N SA equatorial
slices from the ex vivo dataset were extracted while avoiding the
apex and base boundaries, as shown in Fig. 10 (see Fig. 11).

In order to simulate noise in the data, each of the N slices was
then transformed to a series of 6 DWIs, using the L2 norm over
the tensors as a baseline image and 6 non-collinear gradient orien-
tations uniformly distributed on the sphere. Complex Rician noise
(Gudbjartsson and Patz, 2005) of variance V was added to the
DWIs, before tensor re-estimation.

The resulting noisy DTI slices were then used as input data for
the approximation scheme detailed in Section 2.4 and the full ven-
tricular tensor field was computed. The output was compared to
the true tensor field in a voxel-wise manner. A similarity measure
was used to optimise matrix Hopt, as a trade-off over the entire ven-
tricle domain X between a Least Square (LS) term that describes
the data fit and a smoothness term (Reg):

Hopt ¼ argmin
H2Diagð3Þ

LSðHÞ þ k ) RegðHÞ;

with
LSðHÞ ¼

X

*
dist D*;WPð*Þð Þ2

RegðHÞ ¼
X

*
k@WPð*Þk2

8
>><

>>:

ð8Þ

where ⁄ refers to x 2X in Cartesian coordinates or n 2X00 in PS
coordinates, and k to the scalar controlling the influence of the reg-
ularisation. Among different existing similarity measures between
tensors (named dist in the formula), the Log-Euclidean metric dis-
tance (Arsigny et al., 2006) was chosen. That is, the Frobenius norm
of the matrix-log difference: dist(A, B) = klog (A) # log (B)k. The
smoothness term (or regularisation term) can be seen as an equiv-
alent of the total variation of the tensor field, i.e. the squared norm
of the tensor field gradient in the log domain:
@WPð*Þ ¼ r logðWPð*ÞÞ. The parameter space of this minimisation
problem therefore only consists of the three diagonal elements of
the bandwidth matrix H. The minimisation of Eq. (8) was performed
using a gradient-free multivariate optimisation scheme (Powell,
2008).

The regularisation parameter k controls the influence of the ten-
sor field smoothness in the estimation of the optimal matrix Hopt. A
common technique used to choose its value is the L-curve method
as described in Hansen (1992). The L-curve was computed, as well
as its curvature for the set of variables (N = 7, SNR = 10) in order to
find a suitable value for k. The curvature of the L-curve was found
almost constant. However, it indicated an inflexion point at
k ' 0.05–0.1. The constant curvature might be explained by the
fact that the system we try to solve is non-linear and does not cor-
respond to a Tikhonov regularisation problem, as opposed to the

Fig. 9. Joint histograms of respectively the helix a, transverse b, and sheet c angles with respect to the transmural depth. Angles were derived from the projections of the
tensors Dn onto the Prolate contravariant basis. The helix angle shows a variation between +55 deg at the endocardium to #30 deg at the epicardium.
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system described in Hansen (1992).A value of k = 0.1 was therefore
used for all optimisation results described in this experiment.

For a better comprehension of the noise levels, the Signal to
Noise Ratio (SNR) of the noisy DWIs was computed. A region of
interest R was drawn in the exterior wall of one of the DWIs. Then
the SNR was calculated as follows: SNR = mean(R)/std(R). For in-
stance, the reference ex vivo dataset used as a ground truth has a
value of SNR0 = 36.

The optimisation of the diagonal matrix H was performed for dif-
ferent case scenarios of values of N and values of SNRV. The remain-
ing residual error between the reference tensor field and the
approximated one was computed. The error corresponds to the an-
gle difference between main eigenvectors of the reference and the
approximated tensor, denoted e, in a voxel-wise manner. If e is con-
sidered as a random variable, then it can be seen as the combination
of two independent random variables that are the polar angular er-
rors e1 and e2. To be calculated, those polar angular errors need the
definition of two arbitrary planes going through the reference ten-
sor’s first eigenvector v1r , then e1 and e2 are the respective (signed)
projections of the approximated tensor’s first eigenvector v1a onto
each of the planes, as shown in Fig. 12. Spherical trigonometry
therefore infers that e follows the distribution of arccos (cos e1 -
) cose2). An example of such distribution is simulated in Fig. 12. In
this simulation e1 and e2 are chosen to have a zero-mean Gaussian
distribution. The distribution of e was calculated (shown in red in
Fig. 12), it has a strongly skewed shape. The value of the mode (or
peak) is therefore a good indicator of the most probable angular er-
ror, and of the performance of the approximation scheme.

Mode values of the residual error e are reported in Fig. 13a. The
two graphs show this mode value as a function of both the number
of slices N and the SNR of the DWIs, when using Cartesian coordi-
nates (left) and PS coordinates (right) for the approximation
scheme. For instance, for the case scenario (N = 7, SNR = 10), mode
values of 11.5 deg and 8.3 deg were found (grey and black dots in
the figure). The corresponding values for the bandwidth
matrix were Hcart

opt ¼ diagð3:3;3:3;5:9Þ (in mm) and
Hprol

opt ¼ diagð0:009;0:20;0:31Þ.
To visually evaluate the spatial distribution of the residual

approximation error, we present in Fig. 13b the local distributions
of e along the ventricle for the specific case of (N = 7, SNR = 10).

The grey rectangles represent the location of the seven input noisy
DTI slices.

Additionally, fibre tractography was performed using the
approximated dense tensor fields resulting from Cartesian and PS
coordinates approaches in order to visually assess the impact of
using the PS frame for interpolation. Fibres were tracked in a vox-
el-wise manner using a propagation term as described in Fillard
and Gerig (2003), using an advection–diffusion propagation term
derived from Weinstein et al. (1999). Fibre tractography results
are presented in Fig. 14. For comparison, tractography was also ap-
plied to the initial fully sampled tensor field.

3.3. In vivo fibre tractography results

In this section, the dense approximation scheme was applied to
each 5 individual in vivo datasets separately, and to the accumu-
lated dataset A, using optimal parameters Hopt as found in Sec-
tion 3.2, in order to visually assess the resulting dense fibre
orientations.

In order to choose adequate optimal bandwidth matrix for the
dense approximation, the SNR and the ventricle coverage of the
in vivo acquisitions were measured. The mean SNR was 10 and
the mean ventricle coverage was of 40%. These measures were re-
ported on the graphs in Fig. 13a (grey and black dots) and the cor-
responding diagonal values of Hopt were chosen for the dense
approximation. The approximation scheme was then applied to
each of the subject’s datasets separately, as well as to the combined
dataset A, using PS coordinates. Resulting dense tensor fields were
transformed back into Cartesian coordinates and to their respec-
tive anatomical geometry using operators W#1 and U#1. The
resulting dense tensor fields are presented in Fig. 15a in a mid-ven-
tricular short axis section. All obtained dense tensor fields were
eventually used for fibre tractography for qualitative assessment
of the resulting fibre orientations. Fibre tractography results for
each subject are presented in Fig. 15b. For the special case of A,
there does not exist any corresponding anatomical geometry, i.e.
there exists no anatomical template in our workflow. The resulting
dense tensor field from A was therefore warped onto the geometry
of volunteer # 3, and fibre tractography was performed. The result

Fig. 10. Reference tensor field was downsampled and reoriented to obtain a voxel size of 2 ! 2 ! 4 mm3 in a short axis slice orientation (left). The number of slices N was
varied to simulate different in vivo acquisition situations.

Fig. 11. 6 Diffusion Weighted Images (DWIs) were artificially computed from the reference tensor field. Each DWI was corrupted by additive Rician noise, and the tensor field
was then estimated. The variance of the added Rician noise in this example was V = 0.04 for each DWI, which results in an SNR of 10.0.
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is presented in Fig. 15c, where the fibres are colour-coded with the
local helix angle a.

4. Discussion

4.1. Group-wise study

The PS conformal mapping methodology described in this paper
constructs a normalised referential for the LV from which DTI
information can be analysed in a straightforward manner. Its

application to an in vivo database of healthy subjects allowed to
observe the global distribution of fibre orientation throughout
the ventricle. As the accumulated dataset A is expressed in the
PS frame, simple projections of the tensors Dn main eigenvectors
on the contravariant basis G allowed for the extraction of local fi-
bre orientation. A strong and linear negative correlation between
the helix angle and the transmural depth was observed, confirming
previous ex vivo studies. The reported range of +55 ' #30 deg
(Fig. 9) is in relative agreement with values reported in the litera-
ture for ex vivo canine and human hearts (Streeter and Hanna,
1973; Scollan et al., 2000; Anderson et al., 2008). The value at

Fig. 12. (a) Residual error e due to the approximation scheme on the angle between the approximated tensor’s first eigenvector v1a and that of the reference tensor v1r . e can
be seen as a combination of two independent polar signed angles e1 and e2. (b) If e1 and e2 have a zero-mean Gaussian distribution, then the distribution of e is strongly
skewed, and depends on the standard deviations of the polar angle errors.

Fig. 13. (a) Mode of the residual angular error e of the approximation process showed as a function of both the number of slices N and the SNR of the DWIs. (b) Maps of the
angular error for the case N = 7 and SNR = 10. Results are presented for both Cartesian (left) and prolate spheroidal (right) coordinates. Grey rectangle: region covered by the
seven slices.
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the endocardium is strongly influenced by the limit of the segmen-
tation. Accordingly, one has to be careful not to include the papil-
lary muscles of the LV in the segmentation as they tend to bias the
elevation angle’s endocardial limit by introducing vertical tensors
in the computation. This consideration might partly explain the
asymmetry of the ranges reported both in this experiment and in
the literature. The transverse angle shows a stable mean value of
zero along the transmural depth. This indicates that fibres are
mostly oriented parallel to the wall surface, as also observed
ex vivo in Lombaert et al. (2011a). On the other hand, the sheet an-
gle does not seem to have a significant correlation with the trans-
mural depth. Similar results were obtained e.g. in Lombaert et al.
(2011b). A low correlation with the transmural depth does not nec-
essarily mean the absence of features: a primary cluster can be
seen at the high negative values all along the transmural depth,
and a secondary cluster is situated close to zero at the mid-wall re-
gion. These clusters indicate that a majority of laminar sheets seem
to be oriented parallel to the wall surface, and that some laminar
sheets parallel to the short axis can be seen at mid-wall depth. Fur-
ther investigation is needed to study the local laminar sheet struc-
ture rather than study its global variation along one axis.

4.2. Dense approximation and fibre tracking

The dense approximation scheme presented in this work takes
advantage of the PS frame mapping in order to infer spatial coher-
ency of the approximation along the natural shape of the ventricle.
As demonstrated in Fig. 13 and 14, This approach shows better
approximation accuracy when compared to the common Cartesian
approach. The tensor fields and fibre architecture approximated
from in vivo data (Fig. 15a and b) demonstrate a variation of fibre
orientation from endocardium to epicardium that is in agreement
with the expected structure as reported in the literature for
ex vivo hearts (Scollan et al., 2000; Peyrat et al., 2006). The double
helix pattern is observed on all datasets. Accumulating the datasets
in A allowed us to appreciate the average fibre orientation struc-

ture among the population of this study (Fig. 15c), where the heli-
cal pattern of the fibres is observed.

4.3. Sensitivity to parameters

Segmentation: The anatomical shape of the ventricle was
extracted using manual segmentation, and the closest trun-
cated ellipsoidal volume was then computed from this segmen-
tation. Segmentation errors might thus bias the study by
including or excluding tensor information at the boundaries of
the LV. As shown in Fig. 2, the endocardial boundary of the seg-
mentation was carefully monitored to avoid the papillary mus-
cles. The axis of rotation of the truncated ellipsoid is defined as
the main axis of mass of the segmented LV. A variation of this
axis will slightly impact the resulting statistical study. For
instance, its effect on the graphs presented in Fig. 9 would be
an increase/decrease of the vertical standard deviations of the
angles a, b, and c with no impact on the mean values. However,
since a misevaluation of this axis by only 10 deg. at the base
would already deviate the apex location by 1 cm, the error
would be straightforward to pick during the process. In this
case a manual adjustment of the axis becomes necessary to
ensure a good overlap of the ellipsoid and the LV walls through-
out the volume.
Registration: Additionally, errors could potentially be intro-
duced by the diffeomorphic registration between the seg-
mented ventricle and the truncated ellipsoid. Data centres and
DTI information are transported to this ellipsoid simply for sta-
tistical analysis and interpolation purposes. Since tensors are
reoriented according to the Jacobian of the transformation U,
it can safely be said that only the rotation components of U
can potentially bias the accuracy of the statistical results. It is
therefore important that the segmentation is smooth to prevent
for strong rotation components of the transformation U that
would cause an anatomically incorrect extra rotation of the ten-
sor information. In our experiments the displacement fields

(a) (b) (c)
Fig. 14. (a) Tractography results from the reference fully sampled tensor field. (b,c) Tractography results from approximated tensor fields when using the noisy set of tensors
(N = 7, SNR = 10), and using the PS approach (b) and Cartesian approach (c).
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were found to be smooth with displacement vectors of the
order of 1.28 ± 0.77 mm and Jacobian determinants of the order
of 0.96 ± 0.06 (mean ± std).
Noise: The evolution of the error e with respect to the addition
of slices (each column of the error maps in Fig. 13a) seems to be
significantly robust to noise. That is, the pattern was almost
constant until reaching a SNR 6 5. This is again explained by
the relatively strong smoothness of the fibre orientation struc-
ture in a healthy left ventricle such as the one used as reference
in this sensitivity analysis.
Smoothing: In the experiments shown in this work, a global
kernel width matrix was used throughout the ventricle. Local
variations in the acquired tensor dataset can be smoothed by
this process. In the case of healthy subjects, this property
might be desirable under the reasonable hypothesis that the
fibre structure is relatively smooth. On the other hand, in clin-
ical cases such as infarct subjects, the fibre architecture is sus-
pected to be disoriented in the scar region. In this situation
some more local approach would be necessary. For instance,
one could consider using smaller kernel parameters in such
regions in order to depict the fibre structure in more details.
Tensor shape indices, such as the Fractional Anisotropy (FA)
or the Spherical Coefficient (SC), could potentially be used as
a detector of such regions in order to adjust the kernel param-
eters accordingly. As suggested in Yang et al. (2012), a metric
on tensor which avoid FA collapse should be preferred in this
situation.

5. Conclusion

This work demonstrates that human in vivo cardiac DTI is feasi-
ble in a reasonable acquisition time. The acquisition protocol that
allowed such acquisition was described and applied to a set of 5
healthy volunteers. The methodological contributions of this work
are twofold. First, a conformal mapping workflow was proposed for
the analysis of cardiac DTI data in the left ventricular myocardium,
that combines the use of the PS curvilinear coordinate system and
a non-linear registration to a truncated ellipsoid. This workflow
was applied in vivo to analyse the fibre orientation structure of
the group of subjects. Results showed a structure in good agree-
ment with those reported in the literature for ex vivo specimens.
Second, an approximation scheme was presented to compute a
3D approximation of a dense tensor field from sparsely acquired
DTI data. The performance of this scheme was demonstrated using
a gold standard ex vivo dataset. It was then applied to the group of
healthy volunteers. Resulting reconstructed dense fibre structure
presents a visible double helical pattern in agreement with the car-
diac anatomical knowledge.

The main advantage of this approach is the integration of the
curvilinearity of the object of interest in the groupwise study and
in the approximation process. This is particularly interesting when
the data is sparsely distributed across the ventricle. The Riemann-
ian metric induced by redefining the problem in PS coordinates be-
comes geodesically convex, which is a very desirable property in
such processes.

Fig. 15. (a) Slice of approximated tensor field for each volunteer. (b) Part of the resulting fibre tracking illustrating the transmural helix angle variation. (c) Fibre tractography
result from the accumulated dataset A, using the Cartesian approach (left) and the PS frame approach (right). Fibres are colour-coded with the local helix angle a.
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Future developments of the techniques introduced in this paper
involve a local approach to the dense approximation scheme,
where the kernel sizes would be adapted to the local coherence
of the tensors. Such improvement could be used to depict and
localise fibre disarray involved in scar patients, and potentially im-
prove therapy planning in these cases.
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Appendix A. Inversion of the prolate spheroidal transformation

Recalling the trigonometric and hyperbolic identities:

cos2þ sin2 ¼ 1; and cosh2 # sinh2 ¼ 1

If the following notations is taken for Eq. (1):

A ¼ f 2 B ¼ x2
1 þ x2

2

C ¼ x2
3 a ¼ sin2ðn2Þ

then, using first and second definitions from Eq. (1), and the trigo-
nometric identity, we obtain:

B ¼ Asinh2ðn1Þa ðA:1Þ

sinh2(n1) is a function of a, A, and C using the third definition
from Eq. (1) and the hyperbolic identity, which eventually gives a
polynomial in a:

Aa2 þ ð#Aþ Bþ CÞa# B ¼ 0 ðA:2Þ

Of the two roots of this polynomial, only one is positive. Noting
that a = sin2(n2) is positive by definition, only one root corresponds
to the solution:

sin2ðn2Þ ¼
ðA# B# CÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA# B# CÞ2 þ 4AB

q

2A

Recalling that n2 is an angle from 0 to p, sin (n2) is always posi-
tive, and n2 can then be extracted. n1 is also a positive number by
definition, and can therefore be extracted from Eq. (A.1) when
sin2(n2) – 0 (everywhere but on the axis of revolution). When
sin2(n2) = 0, one can use sinh2(n1) = C/A # 1, which holds true
everywhere on the axis apart between foci, where PS coordinates
are undefined. Note that this singularity can be noticed directly
from the third line of Eq. (1) and by recalling that cosh (⁄) P 1. In-
deed we then have jx3j > f required on the axis. In practice this sin-
gularity is never reached as it is always outside the ventricle wall.
We can nevertheless extend the definition domain by its limit close
to the axis of revolution, i.e. imposing n1 = 0 in the segment be-
tween foci, rendering the singularity ‘‘removable’’.

Finally, n3 is simply obtained by dividing second with first line
of Eq. (1): n3 = arctan (x2/x1), which holds true everywhere except
at the axis of revolution. If the point is on the axis of revolution,
n3 can take any value between 0 and 2p. We use n3 = 0 by
convention.

Appendix B. Contravariant basis vectors

The PS contravariant basis G ¼ ðg1; g2; g3Þ, defines the differen-
tial vectors for each of the coordinates: gi = f@x/ @ni.

g1 ¼ f
coshðn1Þ sinðn2Þ cosðn3Þ
coshðn1Þ sinðn2Þ sinðn3Þ

sinhðn1Þ cosðn2Þ

0

B@

1

CA

g2 ¼ f
sinhðn1Þ cosðn2Þ cosðn3Þ
sinhðn1Þ cosðn2Þ sinðn3Þ
# coshðn1Þ sinðn2Þ

0

B@

1

CA

g3 ¼ f
# sinhðn1Þ sinðn2Þ sinðn3Þ
sinhðn1Þ sinðn2Þ cosðn3Þ

0

0

B@

1

CA ðB:1Þ

The basis G is direct and orthogonal, but not orthonormal. The
norm of each column vector is the inverse of the corresponding
scale factor: kgik = 1/hi.

The calculation of the scaling factors and the contravariant basis
is involved in the ‘‘Finite Strain’’ reorientation for the induced
transformation eW, and the normalised basis is written
bG ¼ diagðhiÞG.

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.media.2013.
02.008.
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