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Model-Based Imaging of Cardiac Apparent
Conductivity and Local Conduction Velocity for

Diagnosis and Planning of Therapy
Phani Chinchapatnam*, Kawal S. Rhode, Matthew Ginks, C. Aldo Rinaldi, Pier Lambiase, Reza Razavi,

Simon Arridge, and Maxime Sermesant

Abstract—We present an adaptive algorithm which uses a fast
electrophysiological (EP) model to estimate apparent electrical
conductivity and local conduction velocity from non-contact
mapping of the endocardial surface potential. Developmentof
such functional imaging revealing hidden parameters of theheart
can be instrumental for improved diagnosis and planning of
therapy for cardiac arrhythmia and heart failure, for examp le
during procedures such as radio-frequency ablation and cardiac
resynchronisation therapy. The proposed model is validated
on synthetic data and applied to clinical data derived using
hybrid X-ray/magnetic resonance imaging. We demonstrate a
qualitative match between the estimated conductivity parameter
and pathology locations in the human left ventricle. We also
present a proof of concept for an electrophysiological model
which utilises the estimated apparent conductivity parameter
to simulate the effect of pacing different ventricular sites. This
approach opens up possibilities to directly integrate modelling in
the cardiac EP laboratory.

Index Terms—Electrophysiology, cardiac conductivity imaging,
conduction velocity, parameter estimation, eikonal models

I. I NTRODUCTION

The human heart is stimulated by electrical impulses to
facilitate coordinated contraction of the cardiac chambers. Any
irregularities in the heart rhythm are referred to asarrhythmia.
Cardiac arrhythmia is a cause of considerable morbidity and
mortality in addition to constituting a huge cost burden to
modern health-care systems. Although arrhythmia can be con-
trolled by pharmacological treatment, curative procedures are
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increasingly being undertaken in the form of radio-frequency
ablation (RFA). Prior to ablation, an essential invasive diag-
nostic procedure is performed (the electrophysiological study
(EPS)) in which the arrhythmia circuit is mapped within the
cardiac chambers. EPS involves placing electrodes within the
heart in specific locations to determine the nature of the
arrhythmia and its source within the heart. This information
allows the cardiologist to diagnose the problem as well as
determine the appropriate treatment. However, the identi-
fication of arrhythmia propagation (ectopic foci, accessory
pathways and areas of slow conduction) by analysing the
measured electrical data often requires expert intervention
and can be highly complex. The measured electrical data is
obtained either in the form of endocardial potentials at discrete
points, or as isochrones of depolarisation and repolarisation on
reconstructed endocardial/epicardial surfaces. Anotherrapidly
evolving field is cardiac resynchronisation therapy (CRT)
for treatment of heart failure. This involves correction of
uncoordinated contractile function of the heart, which itself
results from delayed electrical activation. This pathological
process occurs frequently in patients with heart failure. By
implanting a pacemaker device using three electrical leads,
the activation of the heart can be resynchronised, resulting
in more efficient pump function, thereby improving both
symptoms and prognosis [1]. A further clinical application
of electrophysiology is the reversal of life-threatening heart
rhythm disturbance (ventricular arrhythmia) by defibrillation,
which uses a short burst of high energy to restore the heart’s
normal rhythm. Implantable devices also have the capability to
deliver the energy required to achieve this. For all these clinical
applications, augmentation of measured isochronal data with
additional maps related to electrical conduction parameters
of the myocardial tissue may be highly beneficial in the
management of cardiac arrhythmia.

Cardiac imaging modalities such as magnetic resonance
imaging (MRI) and computed tomography (CT) can provide
accurate anatomical and functional information and substantial
research is being devoted to integrating the anatomical infor-
mation derived from these modalities with electrical mapping
to guide procedures such as RFA and CRT [2]. Hybrid X-
ray/magnetic resonance (XMR) suites are a new type of
clinical facility combining an MR scanner and a cardiac X-
ray system that share a common patient table. Registration
of the two image spaces (MR and X-ray) makes it possible
to combine patient anatomy with electrophysiologic data [3].
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Although these procedures can be highly effective with min-
imal side effects, they still have suboptimal success ratesin
some groups of patients. There is still a need for substantial
innovation in guiding these interventions, both in streamlining
the procedures themselves and in improving patient outcomes.

The use of electrophysiologic models simulating electrical
propagation for various cardiac arrhythmias will facilitate and
improve the efficacy of these interventional procedures. Ex-
isting models however are computationally expensive and are
presently not suitable for direct use in the cardiac catherisation
laboratory. The aim of our research is to design electrophysio-
logical models that are suited for clinical use, and to evaluate
methods to combine these models with interventional data.
More specifically in this paper, we present a method to image
conduction parameters, which is intended to provide more
detailed assessment of cardiac electrophysiological function
in order to aid in the guidance of interventional procedures.

Modelling the entire electrophysiology of the heart begins
with the incorporation of electrical phenomena from the micro-
scopic cellular level into the macroscopic field using a set of
partial differential equations (PDEs) modelling a continuum.
A wide variety of models simulating the electrical activityof
the heart have been developed from accurate cellular models
such as Luo and Rudy models [4], [5] to phenomenological
models [6]–[9] and eikonal models [10], [11]. Although,
Luo and Rudy models and phenomenological models provide
sufficiently accurate resolution of the electrical (depolarisa-
tion and repolarisation) phenomena, they are computationally
demanding due to a very small spatial scale associated with
the electrical propagation in comparison to the size of the
ventricles. Fortunately, as the depolarisation occurs only in a
narrow region, the depolarisation region can be consideredas
a propagating wavefront [11] and an eikonal equation can be
derived describing this activation phenomenon. The motion
of the activation wavefront is observed on a larger spatial
scale thus resulting in much faster computations. Furthermore,
the solution of these models cannot be directly correlated
with pathologies due to the complex interaction of various
parameters present in the models. We believe that devel-
opment of algorithms for identifying the hidden parameters
in electrophysiological models would help cardiologists in
diagnosis and treatment of pathologies. For our interventional
purpose and as parameter adjustment often requires several
simulations, we propose to use the eikonal equation to model
the electrophysiology. We hope that by using the eikonal
model at least certain types of conduction abnormalities such
as left bundle branch block could be simulated with sufficient
accuracy and hence can be useful in a clinical setting. The
most common method of solving the electrical propagation
PDEs numerically is by the finite element method (FEM)
which incurs a considerable amount of computational cost.
We propose a different solution technique based on the fast
marching method (FMM) [12] which comes under the cate-
gory of single-pass methods. FMM exploits the causality of
the solution variable and hence solves the equation on a mesh
of N vertices withO(N log (N)) complexity, thus tending
towards satisfying clinical time constraints.

In this paper, we use a novel FMM for the numerical

solution of the anisotropic eikonal-diffusion (ED) equation on
surface triangulations and propose an adaptive zonal decom-
position iterative algorithm to estimate an apparent conduc-
tivity parameter. The definition of the apparent conductivity
parameter and its relation to the intrinsic myocardial tissue
specific conductivity is detailed later in the paper. This pa-
rameter is estimated first on a global basis and then local
corrections are made. The developed model is validated on
synthetic data and then applied to clinical data. We show that
the proposed estimation procedure can potentially aid in the
detection of scarred/infarcted regions in the myocardium using
electrophysiological and geometrical information and also in
the prediction of the electrical propagation for differentpacing
conditions.

II. ELECTROPHYSIOLOGYMODEL

Cardiac tissue is highly anisotropic with wave speeds that
differ substantially depending on their direction. For example,
in human myocardium, longitudinal propagation is about0:5
m/s along the fibres and about0:17 m/s transverse to the fibres.
In this section, we present a fast electrophysiological model
of depolarisation wavefront propagation on anisotropic cardiac
surfaces.

The state of the art of modelling electrical activity in ven-
tricular cells can be classified into biophysical cellular models
(i.e., Luo-Rudy) and phenomenological cellular models (i.e.,
FitzHugh-Nagumo). Biophysical models use ion concentra-
tions as state variables and solve for the different currents
through the membrane. In contrast, phenomenological models
directly use the resulting transmembrane potential (or extra
and intra cellular potentials) as state variable. Both these type
of cellular models can be introduced into a spatial diffusion
framework (which may be either mono-domain or bi-domain)
for simulating electrical propagation on ventricles (i.e., more
than one cell). Due to fast dynamics of depolarisation, the
solution of these equations is computationally demanding and
hence quite intractable in a clinical setting. Ignoring theeffects
of repolarisation, eikonal models can be built to simulate the
propagation of the depolarisation wave in quiescent tissue.
These eikonal models are given by the eikonal-curvature (EC)
[10] and the eikonal-diffusion (ED) equation [13]. Tomlinson
et al. [11] have analysed these two equations and found
that the ED equation is nearer to the actual propagation
than the EC equation. The EC equation requires a critical
amount of depolarised tissue to sustain the depolarisationwave
propagation while the ED equation does not place any such
constraint. In view of this reason, we chose to solve the ED
equation in our model.

The static ED equation for the depolarisation time (T (x))
in the myocardium is given by0pD(x)�prT (x)tMrT (x)��r�(D(x)MrT (x)) = �(x);

(1)
where the superscriptt denotes transpose,0 is a dimension-
less constant related to the cell membrane and�(x) is the
cell membrane time constant.D(x) is the square of the tissue
space constant along the fibre and is related to the specific
conductivity of the tissue. The tensor quantity relating tothe
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fibre directions is given byM = A�DAt, whereA is the
matrix defining the fibre directions in the global coordinate
system and�D = diag(1; �2; �2). � is the anisotropic ratio of
space constants transverse and along the fibre direction andis
of the order0:4 in human myocardium [11].

The nonlinear Equation (1) is solved using a fixed point
iterative method combined with a very fast eikonal solver
based on a modified anisotropic FMM [14], [15]. The FMM is
a single-pass algorithm to solve the classical eikonal equation
(without the diffusion termr � (DMrT )) and an anisotropic
version was developed earlier as part of this project. At each
fixed point iteration, computation of the diffusion term was
carried out using P1 Lagrange finite elements. Experimental
evidence suggests no flux on the myocardial surface, so we use
Neumann boundary condition. We integrate this in the stiffness
matrix K : Kij = R r�i Mr�j coming from an integration
by parts of the diffusion term in the variational form with�i
and�j the P1 Lagrange shape functions. The complete details
are presented in Algorithm 1.

Algorithm 1 Algorithm for eikonal-diffusion equation� Inputs: Geometry, site of earliest activation, D� Solve Eq. (1) without diffusion term using modified FMM
[15] to get an initial estimateT0. SetTurr = T0.
while convergence achieved !=true do� Compute anisotropic diffusion flow termr� (DMrT )

with the current estimateTurr.� Solve for Tnew using modified FMM [15]0pD �prT tnewMrTnew� = � +r � (DMrTurr)
if kTnew � Turrk < " then� convergence achieved=true
else� Turr = Tnew
end if

end while

As the method is based on fast marching which is anO(N log (N)) algorithm, whereN denotes the number of
points in the mesh, the electrical propagation is solved at
a much faster rate as compared to the bi-domain or mono-
domain equation based models. For example, the solution of a5000 node mesh can be achieved in the order of a few seconds
[16], and hence the method is suitable for faster computations
required in real-time interventional cases.

III. A PPARENTCONDUCTIVITY PARAMETER ESTIMATION

When using electro-anatomic mapping (EAM), cardiologists
generally base their analysis of electrophysiological data on
the isochrones of depolarisation and repolarisation of the
endocardium. However, these time variables may be difficult
to interpret due to the influence of the geometry and curvature
of the propagating wavefront. The estimation of additional
parameter maps related to myocardial tissue property couldbe
beneficial for cardiologists in more rapid interpretation of the
data. To realise this goal we have not resorted to a pure signal
processing approach, where for instance conduction velocity
could be estimated from distance between two isochronal

curves [17]. Instead, we propose to estimate the conductivity
parameters in the electrophysiology model described in the
previous section by posing an inverse problem [18], [19]. The
diffusion coefficientD is the square of the effective space
constant along the fibre direction and thus an intrinsic property
of the myocardial tissue.D = �2f = �f �rm, where�f is the
space constant along the fibre direction,�f is the inverse of the
sum of effective resistivities of intra and extra cellular domains
and �rm is the inverse of membrane conductance per unit
area. From the above relation and as we model the electrical
propagation on a surface (2D), we now refer to the diffusion
coefficientD as apparent conductivity (AC) in the rest of the
paper. The AC value provides an indication of the region of
influence of the excitation wavefront at a particular point [20].
Further, the apparent propagation velocity of the electrical
wave in the tissue can also be estimated byvapp = 0pD=�
(m/s). In this section, we present an algorithm to estimate the
apparent conductivity by matching the isochrones of depolar-
isation simulated using the EP model to those obtained from
clinical measurements. Furthermore, we have an additional
advantage in that the model, after parameter estimation, can
also be used in a predictive fashion.

The present state of the art in obtaining in vivo electro-
physiological assessment are the electro-anatomical mapping
systems (Ensite, Carto). Ensite [21] is a non-contact mapping
system which utilises a multi-electrode array inserted into
the cardiac chamber of interest, and electrical recordingsare
displayed on an anatomical surface of the endocardium which
may be imported from prior imaging or reconstructed using
a roving catheter steered endocardially to create the chamber
geometry. The Carto system [22] is a contact mapping system
where the position of the catheter is obtained using a magnetic
tracking system and the electrical recordings are obtainedfrom
the tip of the contact catheter. Using these systems the elec-
trical wave propagation can be identified on the endocardial
surface. Any isochrones of depolarisation obtained from such
mapping systems can be utilised as the measurement data for
the estimation procedure. As we have only one measure which
is the depolarisation time, we propose to estimate the apparent
conductivityD in this paper. The dimensionless constant0
is set at2:5 and the cell time constant� is set at1:0 ms
respectively. The AC estimation algorithm is divided into two
stages namely global and local.

A. Global Conductivity

A nominal value of the ACDglobal is first sought which
minimises the mean error between the measured and simu-
lated isochrones of depolarisation. This global estimation step
enables us to bring the simulated isochrones using the model
to the scale of measured isochrones and also provides us witha
good initial estimate of AC for the local parameter estimation.
The global estimation is done using a bisection method and is
detailed in Algorithm 2.

B. Local Conductivity

Once the simulated depolarisation time map globally fits
the measured one, a local adjustment of the model is possible.
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Algorithm 2 Algorithm for Estimating Global Conductivity� SetDurr = Du, whereDu is the given user estimate for
conductivity parameter.� Evaluate the average value of measured depolarisation
time Tm
while convergence achieved !=true do� Solve Eq. (1) using FMM algorithm in Section II

with D = Durr and calculate the average of simulated
depolarisation timeT s.
if jT s � Tmj < " then� Dglobal = Durr

convergence achieved =true
else

if T s < Tm then� Durr = Durr � 0:5Durr
else� Durr = Durr + 0:5Durr
end if

end if
end while

Gradient based minimisation techniques are generally usedfor
parameter estimation inverse problems. However, in our case
as the gradient calculation often tends to be expensive without
a suitable adjoint approach, we propose a specific estimation
algorithm suited to our fast electrophysiology model.

As the local conductivity estimation falls in the purview of
parameter estimation techniques, we resort to the zonal decom-
position of the conductivity parameter. We begin by dividing
the 2d-surface
 into M equal zonesR = f
1;
2; � � � ;
Mg.
The conductivity is then assumed to be given byD(x) = MXj=1Dj�j(x); (2)

where the basis function on thejth zone is given by�j(x) = � 1 x 2 
j0 x =2 
j :
Thus the dimension of the problem is reduced toM . The
apparent conductivity values are obtained by minimising the
discrete cost function given byC(D) = 1N (�)Xv2� [Tmv � T sv (D
1 ; D
2 ; � � � ; D
M )℄2 ; (3)

where � denotes the set of all the vertices of the sur-
face mesh andN (:) denotes the set’s cardinality,Tmv de-
notes the measured depolarisation time at the vertexv andT sv (D
1 ; D
2 ; � � � ; D
M ) denotes the depolarisation time ob-
tained by solving the fast electrophysiological model withthe
apparent conductivity values set asfD
jgMj=1.

We propose a multilevel approach to the estimation problem.
We begin with a minimum number of sub-divisions (zones)
of the surface. At each level, an iterative approach is used
to estimate the zonal conductivity values. At each iteration
we estimate a conductivity value for each region. To further
reduce the computational burden on the parameter estimation,

we propose to solve the minimisation problem by varying the
AC value on one considered region and keeping all other
region’s AC constant. Thus, theM -dimensional problem is
converted into a sequence ofK one dimensional minimisation
problems. It is to be noted that the order in which the zones are
considered is important if one undertakes such a methodology
due to the causality of the electrical wave propagation on the
surface [19]. Hence the zone setR is pre-ordered according
to the mean measured depolarisation times of all the vertices
present in that zone i.e.,�Tm
k < �Tm
k+1 8k = 1; 2; � � � ;M � 1:

The most popular way of minimising the cost functional
is based on the computation of the derivative of the cost
function with respect to the parameter. However, in our case
as obtaining the derivative involves computing�T=�D which
can only be obtained using finite differences, we resort to a
one-dimensional minimisation strategy like the Brent’s method
[23]. The Brent’s minimisation algorithm is utilised to estimate
the apparent conductivity value for each zone sequentially. The
Brent’s method requires an initial bracketing of the minimum
and then the minimum is reached by fitting a parabola in the
bracketed region. The iterations at a particular level are contin-
ued until the difference in the cost function values betweentwo
successive iterations falls below a certain threshold (" = 0:01).
Then we proceed to the next level by subdividing the zone with
the maximum value of the regional cost function (see Fig.1),
defined as C
j = 1Nj Xx2
j [Tm(x) � T s(x)℄2 :
whereNj denotes the number of vertices in the zone
j At
the next level, the conductivity values are again estimatedon
each zone sequentially in the order of the zonal measured
depolarisation time according to the iterative Brent method
explained earlier. The complete procedure is summarised in
the Algorithm 3.

(a) Initial (b) Level I (c) Level II

Fig. 1. (a) Initial zonal decomposition (b) Level 1 zonal decomposition
(c) Level 2 decomposition At each level, the zone with maximal C
j in the
previous level is divided into4 equal regions.

It is well known that for solving inverse problems, some
sort of regularisation is always needed to obtain a meaningful
estimate of the parameter. In the presented algorithm, we
smooth the AC value at each vertex by taking an area-
weighted average of the apparent conductivity of each triangle
surrounding the considered vertex. This smoothing enablesto
improve the convergence of the iterative procedure and also
aids in regularisation.
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Algorithm 3 Adaptive zonal algorithm for estimating local
apparent conductivity� Construct an initial decomposition of the surface mesh

into 4 zones in the order of measured depolarisation times
(R = f
1; � � � ;
4g)
while !(convergence achieved or maximum subdivisions
reached)do

converged at level=false
while converged at level !=true do

for i = 1 to i = N (R) do� Solve for the zonal AC value using the Brent’s
minimisation

end for
if jCi � Ci�1j < " then� converged at level =true
end if

end while� Find the region with the maximumC
j and subdivide� Re-order the zones according to measured depolarisa-
tion time

end while

It is to be noted that the subdivision of zones is limited by
the mesh resolution and at any iteration, if the maximalC
j
region cannot be further subdivided, we proceed to subdivide
the region with the next maximum value. So, the maximum
number of zones into which the mesh can be divided is the
total number of points in the mesh. However, we stop our
iterations if the number of zones at any level reaches a pre-
defined limit set to64.

IV. VALIDATION OF RESULTS

A. AC estimation algorithm

The performance of the adaptive AC parameter estimation
algorithm is evaluated initially on simulated data. The electri-
cal data is simulated on a surface mesh of the endocardium
consisting of256 vertices and480 triangles. A low conductiv-
ity region with apparent conductivityD = 0:1 was defined on
the lateral side of the endocardial mesh and on the remaining
points, the AC was set to0:64 (Fig.2a). The low conductivity
region is considered as diseased tissue and the regions withD = 0:64 are considered healthy. The depolarisation time
presented in Fig.2b and Fig.2c is the result of a simulation
based on the EP model for0 = 2:5, � = 0:4 and � = 1 ms
with this conductivity map.

The apparent conductivity estimation algorithm presentedin
section III is tested on this synthetic data initially. To start the
estimation, a crude estimate for AC was taken asDu = 2:0 on
the whole surface. The global estimation algorithm predicted
a mean value ofDglobal = 0:58 and the mean error between
the measured and simulated depolarisation times dropped from4:02 ms to 2:8 ms. We also examined the robustness of the
global estimation procedure by using different initial values
ranging fromDu = 0:1 to Du = 2:0 (see Fig.3a). From
the figure, it can be seen that the proposed global estimation
algorithm is quite robust to user initial guess.

We now proceed to use this value (Dglobal) as the initial
guess of AC for the adaptive zonal conductivity estimation
algorithm. The entire surface was initially divided into4
equal regions. The Brent’s optimisation routine requires an
initial bracketing of the minimum. In this paper, we use[0:01; �D; 10:0℄ as the bracketing where�D is the apparent
conductivity value estimated at the previous iteration forthat
particular region. After stopping of the algorithm, we obtain
a total of 64 subdivisions of the endocardial surface. The
convergence of the root mean squared (r.m.s) error between
measured and simulated depolarisation times across iterations
is shown in Fig.3b. We see that the error drops rapidly until
the number of zones are around16 to 20 and afterwards the
convergence tends to become slow. So, if one desires a quick
estimate, the algorithm could be stopped after the number of
zones become around20. We obtain a final r.m.s error of1:42 ms and a mean error of0:84 ms for depolarisation times
ranging from0 to 96 ms. The absolute error between measured
and depolarisation times before and after the adaptive zonal
estimation algorithm procedure is shown in Fig.4b and Fig.4c
respectively. Fig.4a shows the estimated apparent conductivity
map on the surface after convergence. Comparing Fig.4a and
Fig.2a, it can be clearly seen that the presented algorithm is
able to identify regions of low conductivity.

The AC estimation algorithm is now tested for its robustness
to cardiac fibre directions. A Gaussian noise of zero mean with
a standard deviation of10o 1 was added [24], and the resultant
AC images estimated by the algorithm are examined (See
Fig.5). We obtain a similar result to the case when there was
no noise in the fibre directions thus proving that the presented
algorithm is also robust to noise or uncertainty in cardiac fibre
directions.

Further, to evaluate the effect of mesh resolution on the
apparent conductivity estimation algorithm, we subdivided
each triangle in the 256 node mesh into four triangles by
joining the midpoints of each triangle edge and ran the
estimation algorithm with the measured data resolution fixed
at the original 256 points. Results obtained on synthetic data
show that the estimation algorithm is able to identify regions
of low conductivity for both the coarse as well as fine mesh
with similar resolution (see Fig.6).

V. CLINICAL DATA

In this section, we present the results of the adaptive
conduction parameter imaging algorithm on clinical data. We
evaluate the performance on data acquired from patients with a
Left Bundle Branch Block (LBBB) pathology. In brief, the left
branch of the bundle of His-Purkinje system of these patients
is damaged and hence the initialisation of left ventricular
activation derives mainly from the septal region instead ofan
apical site via the Purkinje network. The patients underwent
EPS where an Ensite array is inserted into the left ventricle
via a retrograde aortic approach. A locator signal from a
standard steerable ablation catheter is utilised to construct
left ventricular chamber geometry. The Ensite array comprises

1A 10o variability was chosen as a probable value of the normal variability
of fibre orientations, based on a study conducted by Peyrat etal. [24].
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(a) Simulated AC (b) Isochrones (View 1) (c) Isochrones (View 2)

Fig. 2. (a) AC map used to generate synthetic data. The blue region represents area of low conductivity (diseased) as compared to the healthy region
represented in red. (b),(c) Resultant isochrones of depolarisation (sec) obtained using the fast EP model.The excitation begins in the septal region and ends
in the lateral region. The black lines on the mesh indicate the fibre directions pre-set to+60o to the circumferential direction.
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Fig. 3. Convergence graphs for global estimation procedure(a) and local estimation algorithm (b). In (a), the horizontal black line indicates the value ofD = 0:64 which was the nominal value of AC on healthy tissue used to generate measured data.

(a) Estimated AC (b) Absolute Error (Initial) (c) Absolute Error (After)

Fig. 4. (a) Estimated AC colour map after convergence of zonal adaptive estimation algorithm. (b),(c) Absolute Error between measured and estimated
depolarisation times (sec) before and after zonal adaptiveestimation respectively.
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(a) Estimated AC (b) Isochrones (model) (c) Absolute Error (After)

Fig. 5. Results obtained from the AC estimation procedure using fibre directions corrupted with a Gaussian noise with a mean of0o and a standard deviation
of 10o (a) Estimated AC image (b) Isochrones of depolarisation obtained after the AC estimation procedure and (c) Absolute error between measured and
simulated depolarisation times.

(a) Estimated AC (b) Isochrones (model)

Fig. 6. Effect of mesh resolution on AC parameter estimationalgorithm
(a) Estimated AC map (b) Isochrones of depolarisation predicted by the EP
model with estimated conductivity map.

a 9 F multi electrode array (MEA) mapping catheter and
local endocardial potentials are reconstructed employingthe
inverse solution method [25]. The data was acquired in an
XMR environment (see Fig.7). The patient was imaged using
MRI prior to the EPS to obtain a 3D Steady-State Free-
Precession (SSFP) image of the heart (typical parameters
for imaging are256 � 256 matrix, 200 slices, resolution
= 1:05 � 1:05 � 7:2mm3, TR=14:0 ms, TE=6:05 ms, flip
angle=15o, scan time� 6 min). The Ensite reconstructed
chamber can then be registered to the endocardial surface
obtained from MR using an earlier developed and validated
registration technique based on optical tracking [3], [26].

Fig.8a shows the isochrones of depolarisation reconstructed
on 256 points as measured by the Ensite system for one
such EP case. The initialisation (initial activation of theleft
ventricle) begins at the septal region and ends in the lateral
region of the ventricle. The standard values for the constants
that we use in the model are0 = 2:5, � = 0:4 and � = 1:0
ms. We apply the AC estimation algorithm (Section III) for
this case and the resultant isochrones of depolarisation and
the apparent conductivity image estimated by the model are
shown in Fig.8b and Fig.8c respectively. The black lines in

(a) XMR Room (b) XMR Registration

Fig. 7. (a) XMR suite at Guy’s Hospital, London. (Front) X-ray C-arm
system, (Back) MR scanner (b) Registration of X-ray and MR images using
optical tracking methodology [3]. The 3D volume (transparent red) obtained
from MR is overlaid on to the X-ray image.

Fig.8b represent the fibre directions (60o to circumferential
direction). We obtain a final r.m.s error between the measured
and simulated depolarisation times of16 ms from an initial
error of 62 ms. The reconstructed endocardial surface was
divided into55 zones at convergence.

In order to validate the estimated AC map for this case, we
endeavour to compare the predicted regions of low apparent
conductivity to the regions of scar obtained from segmentation
of a late enhancement MR image performed by a clinician
who was blinded to all electrophysiological data. Initially,
the reconstructed surface of the left ventricular chamber from
Ensite is deformed to fit the ventricle surface obtained from
MR image. The deformed Ensite surface registered with the
MR image [28] is shown in Fig.9a. Fig.9b and Fig.9c show
the estimated AC map and the segmented scars in the same
coordinate system. The dark blue regions on the deformed
mesh identify regions on the mesh with a low AC, which we
believe correlate to regions of slow conduction. From these
figures, it can be seen that the areas of slow conduction and
scars were co-localised to the accuracy of the MRI to Ensite
registration. It is to be noted that as the late enhancement
images were acquired one day before the procedure, the
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(a) Isochrones (Ensite) (b) Isochrones (model) (c) Estimated AC

Fig. 8. (a) Isochrones of depolarisation obtained from Ensite (b) Isochrones of depolarisation obtained from EP model after estimating apparent conductivity
(c) Estimated AC colour map after convergence.

(a) Ensite to MR registration (b) Scar comparison (c) Scar comparison

Fig. 9. (a) Registration of Ensite endocardial anatomy to MRderived anatomy (transparent white), the colourmap on the Ensite anatomy represents the
estimated apparent conductivity; (b),(c) Comparison of scar locations (orange) obtained from segmentation of the late enhancement MR image to areas of
low apparent conductivity on the deformed Ensite anatomy involume rendered SSFP MR image and a 2D axial slice respectively (Images obtained using
Cardioviz3D [27]).The colourmap values on the Ensite anatomy (b) and Ensite contour (c) are the same as in (a).

sources of error are the registration of pre-operative late
enhancement images to the 3D MR images acquired on
the day of procedure and also the registration between the
Ensite and MR derived surfaces. Furthermore, as indicated
in earlier section III, additional parameter maps of apparent
conduction velocityvapp = 0pD=� can also be generated
after estimating AC. The apparent conduction velocity images
for this case are detailed in Fig.10. The apparent conduction
velocity for normal tissue regions is around2:5 m/s and in
regions of scar, the conduction velocity drops to approximately0:9 m/s.

We now present results for a second case of LBBB
pathology. Fig.11a shows the measured depolarisation time
isochrones for the baseline mode (normal sinus rhythm). The
application of the presented algorithm resulted in the model
predicting the depolarisation isochronal map as shown in
Fig.11b. The r.m.s error between measured and estimated
depolarisation times was27 ms after the estimation as com-
pared to113 ms before the estimation procedure. Next, the
registration of the Ensite reconstructed ventricular surface with
that of MR surface is shown in Fig.11c. The colour map on the
Ensite surface shows the estimated apparent conductivity and
the black surface to the septal side indicates the scar location
obtained from late enhancement image segmentation. It can

clearly be seen that the top part of the Ensite reconstructed
ventricle is in the aortic root and hence the results obtained
from the Ensite system in that region may not be reliable.
The real-time fluoroscopy images obtained during the proce-
dure were reviewed to ascertain this fact. Despite this fact,
the apparent conductivity maps did indicate regions of slow
conduction (detailed in Fig.12) near the septal region as can
be seen from Fig.11c.

Once the apparent conductivity map/image of the particular
endocardial surface has been estimated, we now proceed
to demonstrate the efficacy of the fast electrophysiological
model in its predictive capacity. Fig.13a shows the isochrones
measured from the Ensite system for the same patient in a
dual chamber pacing mode. The heart was paced endocardially
in the apex of the left ventricle and in the right ventricle.
The initialisation from the right ventricle reaches the left
ventricular endocardium20 ms after the initial depolarisation
in response to left ventricular apical pacing. Fig.13b shows
the isochrones estimated by the model using the apparent
conductivity map (Fig.12) for this case. The left ventricular
endocardial model was initialised (activated) with a valueof0 ms at the region indicated as Pacing Location 1 and another
region indicated by Pacing Location 2 was initialised within20 ms. By a visual comparison of Fig.13a and Fig.13b, it
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(a) (b)

Fig. 10. (a),(b) Estimated conduction velocity maps and comparison with scar locations. The black regions on the mesh are those regions identified with
AC < 0:5 using the model and adaptive zonal estimation algorithm.

(a) (b)
(c)

Fig. 11. (a),(b) Isochrones of depolarisation measured using Ensite and obtained after AC estimation (c) Ensite-MR-Scar registration.

(a) (b) (c)

Fig. 12. (a),(b) Apparent conductivity images obtained after convergence of adaptive zonal estimation algorithm. Theblack regions indicate areas of low
AC (c) Estimated conduction velocity.
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can clearly be seen that the model with adjusted conductivity
image is able to predict reasonable isochrones for a different
pacing mode.

VI. D ISCUSSION

A. Parameter values and Mesh Resolution

The value of dimensionless constant0 = 2:5 in Equation
(1) has been taken from literature [11]. As the ratio0pD=�
represents the velocity of the excitation front in the eikonal-
diffusion equation and the typical propagation velocity values
for normal myocardium reported using the Ensite system are
about 2:0 m/sec [29], we chose a value of� = 1:0 ms
obtained by using the value of�f for normal myocardial
tissue as0:8 mm. Further as we model the propagation only
on the endocardial surface as compared to the ventricular
volumetric tissue, we would expect the value of either0 or� to be adjusted to represent higher propagation velocities.
In this paper, we chose to take0 as the value specified
in literature and modify the value of� in order to increase
the propagation velocity. For a given set of patient electrical
activation times, varying0 or � would change the magnitude
of the apparent conductivity estimated but the identification
of normal to diseased (low AC values) tissue would not be
altered.

The anisotropic diffusion flow term is computed on a
relatively coarse mesh. This is due to the following reasons� As we only consider a surface, we do not have to

precisely represent the transmural fibre variation, and as
the fibre direction is quite smooth when considering only
the endocardium, we do not need a very fine mesh.� Further, such precise discretisation would be beneficial if
we have the patient data at a similar resolution, which
unfortunately is not the case with the present electro-
anatomical mapping systems.� Experiments done by increasing the mesh resolution for
both synthetic and clinical data cases showed that the
estimation algorithm obtains similar results as on the
coarse mesh.

B. Fast electrophysiology model

The fast electrophysiology model presented in Section II
is based on the eikonal-diffusion equation. The fast marching
methodology applied to solve this nonlinear equation has con-
siderable advantage in terms of obtaining the electrical wave
pattern or the isochrones in order of seconds of computational
time and hence can be potentially feasible to apply such a
model in the clinical setting. A limitation of this model is
that the solution methodology is only of first-order accuracy
[14]. However, it can be seen that the256 node meshes that
we use in this study are able to obtain results with sufficient
accuracy for the application that we consider (simulate LBBB
pathology). Finally, the presented electrophysiology model
needs to incorporate repolarisation effects of the tissue in
order to model more complex electrical phenomena such
as swirling waves which are encountered in other forms of
cardiac arrhythmia. An initial development to simulate multi-
front propagation was presented earlier in [15].

An important aspect of the anisotropic fast EP model pre-
sented in this paper is the cardiac fibre orientation. A generic
formula of fibre directions (60o to the circumferential direction
on the mesh) was used in this paper and more accurate
descriptions of the fibre directions and anisotropic ratio of
space constants� could be highly beneficial in modelling the
electrical propagation more accurately.

C. Conduction parameter estimation

The adaptive zonal estimation algorithm based on simplified
Brent’s method (Section III) can be used in conjunction
with the fast electrophysiology model to obtain additional
conduction related parameter images. This algorithm has been
shown to successfully estimate apparent conductivity values
for both synthetic as well as clinical data. The global esti-
mation algorithm eliminates the need for a very good initial
guess of the AC value by the user and is shown to be quite
robust. We obtain a very good initial guess from the global
estimation algorithm in about20 iterations. For the synthetic
data experiment, the adaptive zonal AC estimation algorithm
takes about another20 iterations with about 5 refinement levels
(i.e., about32 zones) to obtain an acceptable map for AC. The
time taken for the adaptive algorithm is about10 min to reach
up to 32 zones. The algorithm is also shown to be robust
to fibre directions and hence can be used even if the fibre
directions are not precisely known.

The minimisation method used in the algorithm relies on
a few parameters, the initial bracketing and the convergence
criterion defined for each level. A difference in the r.m.s error
between two successive iterations lower than0:01 is sufficient
for the cases presented in this paper. An initial bracketingof
the minimum is essential for the Brent’s method to obtain
convergence. The AC should always be positive and therefore
we take a very small positive value for the lower bracket. Also,
there is no particular maximum limit for the AC. We use an
AC value of10 as a realistic value of the upper limit for the
bracketing at any Brent iteration in the adaptive algorithm.

D. Application to clinical data

We presented functional imaging of electrical conduction
related parameter for two different left bundle branch block
cases. The estimation algorithm requires less than an hour
wall time to obtain an acceptable AC map (32 zones) for both
clinical data sets. From the estimated AC functional images
(Fig.9 and Fig.12), we can clearly identify regions of slower
conduction (AC< 0:5). These slow conduction regions are
also shown to be correlated with scar locations obtained from
late enhancement images. Apparent conduction velocity maps
can also be generated and we see that the velocity estimated
lies in the range of0:3 to 0:9 m/s in regions of scar to about2:5 m/s for normal healthy tissue. A very high velocity in
excess of4 m/s is also observed in certain regions. This
is probably due to the accuracy of the measured data from
the Ensite system. We sometimes identify large regions of
the endocardial surface being depolarised instantaneously -
suggesting very high conduction velocities and the estimated
conduction velocity maps reflect this behaviour present in the
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(a) Measured isochrones (b) Predicted isochrones

Fig. 13. Usage of model in a predictive fashion: (a) Isochrones of depolarisation measured using Ensite in a dual chamberpacing mode (b) Isochrones of
depolarisation predicted by the EP model with estimated sinus rhythm apparent conductivity map.

depolarisation time input. Furthermore as the estimated map
is projected on a surface instead of the actual 3D ventricular
volume, we expect the conduction velocities to be higher
than the normally accepted values. The apparent conduction
velocity values estimated in healthy regions from the presented
adaptive zonal algorithm are consistent with values reported in
studies using the Ensite system and estimated using Schilling’s
method [29].

Additionally, once the electrophysiological model is tuned
to the particular patient parameters (once the AC has been
estimated), we have shown that the tuned model is now able
to simulate a different pacing protocol. We are now in the
process of acquiring more clinical data in order to validatethe
presented methodology. Furthermore, the accuracy of such pre-
diction capability could be highly improved by incorporating a
3D model which could simulate the propagation on the whole
ventricular volume and this is a subject of ongoing work.

VII. C ONCLUSIONS

We presented a new method of imaging electrical conduc-
tion parameter in the heart based on a fast electrophysiological
model and an adaptive parameter estimation procedure. The
presented EP model is based on the eikonal approach and
can accurately simulate the propagation of the depolarisation
wavefront on the endocardial surface. A novel adaptive zonal
estimation for the conductivity parameter (apparent conductiv-
ity) has been proposed to tune the electrophysiological model
to measured isochrones of depolarisation. The estimation
algorithm has also been shown to be robust to the operator’s
initial estimate and to cardiac fibre orientations. The apparent
conduction images obtained using this procedure have been

validated on synthetic as well as clinical data. Possible regions
of slow conduction have been identified and shown to correlate
with scar locations obtained using late enhancement MR image
segmentations using this procedure. Finally, we have presented
a proof of concept for the electrophysiology model, tuned to
an individual patient data, to be capable of simulating the
electrical wave propagation for different pacing modes. Having
such a model opens up possibilities for early detection of
scarred regions responsible for arrhythmia, and could alsoaid
in the planning of interventional procedures.

There can be several improvements made to the proposed
model to enhance its estimation properties which will be
the focus of our future research. Some of them are outlined
here. In terms of simulation, higher order FMM algorithms
can be incorporated to obtain better resolution of propagating
wavefronts. The apparent conduction algorithm can be im-
proved by incorporating gradient minimisation methods with
a suitable adjoint formulation instead of Brent’s optimisation
at each level and better regularisation techniques. Finally,
we also intend to introduce the time term into the eikonal-
diffusion equation so as to simulate multi-front propagation
incorporating both depolarisation and repolarisation phenom-
ena and extension of these methods to volumetric meshes.
Incorporation of a mechanical component into the model is
also the subject of ongoing work, whereby we envisage an
electro-mechanical model which could be used to simulate
both different pathologies and treatment strategies. Preliminary
work has been done towards the adjustment of mechanical
models to clinical data, however there are still some challeng-
ing difficulties [30].
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