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Abstract—We present an adaptive algorithm which uses a fast
electrophysiological (EP) model to estimate apparent elérical
conductivity and local conduction velocity from non-contat
mapping of the endocardial surface potential. Developmenof
such functional imaging revealing hidden parameters of théneart
can be instrumental for improved diagnosis and planning of
therapy for cardiac arrhythmia and heart failure, for examp le
during procedures such as radio-frequency ablation and catiac
resynchronisation therapy. The proposed model is validat
on synthetic data and applied to clinical data derived using
hybrid X-ray/magnetic resonance imaging. We demonstrate a
qualitative match between the estimated conductivity pareneter
and pathology locations in the human left ventricle. We also
present a proof of concept for an electrophysiological mode
which utilises the estimated apparent conductivity paraméeer
to simulate the effect of pacing different ventricular sites. This
approach opens up possibilities to directly integrate modéng in
the cardiac EP laboratory.

Index Terms—Electrophysiology, cardiac conductivity imaging,
conduction velocity, parameter estimation, eikonal model

I. INTRODUCTION

The human heart is stimulated by electrical impulses
facilitate coordinated contraction of the cardiac charabh&ny
irregularities in the heart rhythm are referred tcaashythmia.

increasingly being undertaken in the form of radio-freqren
ablation (RFA). Prior to ablation, an essential invasivagdi
nostic procedure is performed (the electrophysiologitads
(EPS)) in which the arrhythmia circuit is mapped within the
cardiac chambers. EPS involves placing electrodes witien t
heart in specific locations to determine the nature of the
arrhythmia and its source within the heart. This informatio
allows the cardiologist to diagnose the problem as well as
determine the appropriate treatment. However, the identi-
fication of arrhythmia propagation (ectopic foci, accegsor
pathways and areas of slow conduction) by analysing the
measured electrical data often requires expert interoenti
and can be highly complex. The measured electrical data is
obtained either in the form of endocardial potentials atmdie
points, or as isochrones of depolarisation and repoléisan
reconstructed endocardial/epicardial surfaces. Anatigadly
evolving field is cardiac resynchronisation therapy (CRT)
for treatment of heart failure. This involves correction of
uncoordinated contractile function of the heart, whiclelits
results from delayed electrical activation. This pathatab
frocess occurs frequently in patients with heart failurg. B
implanting a pacemaker device using three electrical leads
the activation of the heart can be resynchronised, resgultin

Cardiac arrhythmia is a cause of considerable morbidity aipfl more efficient pump function, thereby improving both
mortality in addition to constituting a huge cost burden teymptoms and prognosis [1]. A further clinical application
modern health-care systems. Although arrhythmia can be c@f electrophysiology is the reversal of life-threateningalt

trolled by pharmacological treatment, curative procesae
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rhythm disturbance (ventricular arrhythmia) by defibtitha,
which uses a short burst of high energy to restore the heart’s
normal rhythm. Implantable devices also have the capgldit
deliver the energy required to achieve this. For all theisecell
applications, augmentation of measured isochronal datta wi
additional maps related to electrical conduction pararsete
of the myocardial tissue may be highly beneficial in the
management of cardiac arrhythmia.

Cardiac imaging modalities such as magnetic resonance
imaging (MRI) and computed tomography (CT) can provide
accurate anatomical and functional information and suntisia
research is being devoted to integrating the anatomical-inf
mation derived from these modalities with electrical magpi
to guide procedures such as RFA and CRT [2]. Hybrid X-
ray/magnetic resonance (XMR) suites are a new type of
clinical facility combining an MR scanner and a cardiac X-
ray system that share a common patient table. Registration
of the two image spaces (MR and X-ray) makes it possible
to combine patient anatomy with electrophysiologic dafa [3



Although these procedures can be highly effective with misolution of the anisotropic eikonal-diffusion (ED) equattion
imal side effects, they still have suboptimal success ratessurface triangulations and propose an adaptive zonal decom
some groups of patients. There is still a need for substantsition iterative algorithm to estimate an apparent cendu
innovation in guiding these interventions, both in straamy tivity parameter. The definition of the apparent conduttivi
the procedures themselves and in improving patient outsomparameter and its relation to the intrinsic myocardialutss
The use of electrophysiologic models simulating electricapecific conductivity is detailed later in the paper. This pa
propagation for various cardiac arrhythmias will factiéaand rameter is estimated first on a global basis and then local
improve the efficacy of these interventional procedures. Egorrections are made. The developed model is validated on
isting models however are computationally expensive ard aynthetic data and then applied to clinical data. We show tha
presently not suitable for direct use in the cardiac caslation the proposed estimation procedure can potentially aid én th
laboratory. The aim of our research is to design electraphysdetection of scarred/infarcted regions in the myocardismg
logical models that are suited for clinical use, and to esiEu electrophysiological and geometrical information andéils
methods to combine these models with interventional dathe prediction of the electrical propagation for differpating
More specifically in this paper, we present a method to imagenditions.
conduction parameters, which is intended to provide more
detailed assessment of cardiac electrophysiologicaltimumc Il. ELECTROPHYSIOLOGYMODEL

in order to aid in the guidance of interventional procedures cardiac tissue is highly anisotropic with wave speeds that
Modelling the entire electrophysiology of the heart begingiffer substantially depending on their direction. For mxde,
with the incorporation of electrical phenomena from thenmic in human myocardium, longitudinal propagation is aboust
scopic cellular level into the macroscopic field using a det gy/s along the fibres and abduitl7 m/s transverse to the fibres.
partial differential equations (PDEs) modelling a contimu | this section, we present a fast electrophysiological @hod
A wide variety of models simulating the electrical activitf of depolarisation wavefront propagation on anisotropidize
the heart have been developed from accurate cellular modglgfaces.
such as Luo and Rudy models [4], [5] to phenomenological The state of the art of modelling electrical activity in ven-
models [6]-[9] and eikonal models [10], [11]. Althoughyricular cells can be classified into biophysical cellulasdels
Luo and Rudy models and phenomenological models provig.eé_, Luo-Rudy) and phenomenological cellular models. {i.
sufficiently accurate resolution of the electrical (depisk FitzHugh-Nagumo). Biophysical models use ion concentra-
tion and repolarisation) phenomena, they are computdljongjons as state variables and solve for the different cusrent
demanding due to a very small spatial scale associated Wilough the membrane. In contrast, phenomenological rsodel
the electrical propagation in comparison to the size of threctly use the resulting transmembrane potential (oraext
ventricles. Fortunately, as the depolarisation occury @nla  gnd intra cellular potentials) as state variable. Bothetgpe
narrow region, the depolarisation region can be considasedof cellular models can be introduced into a spatial diffasio
a propagating wavefront [11] and an eikonal equation can R@mework (which may be either mono-domain or bi-domain)
derived describing this activation phenomenon. The motigg simulating electrical propagation on ventricles (i@ore
of the activation wavefront is observed on a larger spatiffan one cell). Due to fast dynamics of depolarisation, the
scale thus resulting in much faster computations. Furtbegm go|ytion of these equations is computationally demandirdy a
the solution of these models cannot be directly correlatg@dnce quite intractable in a clinical setting. Ignoring éfiects
with pathologies due to the complex interaction of varioust repolarisation, eikonal models can be built to simulée t
parameters present in the models. We believe that devglppagation of the depolarisation wave in quiescent tissue
opment of algorithms for identifying the hidden parameterghese eikonal models are given by the eikonal-curvaturd (EC
in electrophysiological models would help cardiologists i[lO] and the eikonal-diffusion (ED) equation [13]. Tomiars
diagnosis and treatment of pathologies. For our intereeati ot g [11] have analysed these two equations and found
purpose and as parameter adjustment often requires sev@{al the ED equation is nearer to the actual propagation
simulations, we propose to use the eikonal equation to mogehn the EC equation. The EC equation requires a critical
the electrophysiology. We hope that by using the eikonghount of depolarised tissue to sustain the depolarisative

model at least certain types of conduction abnormalitie$ supropagation while the ED equation does not place any such

accuracy and hence can be useful in a clinical setting. TBguation in our model.

most common method of solving the electrical propagationThe static ED equation for the depolarisation tinfe(x))

PDEs numerically is by the finite element method (FEMh the myocardium is given by

which incurs a considerable amount of computational cost.

We propose a different solution technique based on the fast/D(x) (\/VT(X)tMVT(X))*V-(D(X)MVT(X)) = 7(x),

marching method (FMM) [12] which comes under the cate- Q)

gory of single-pass methods. FMM exploits the causality a@fhere the superscrigtdenotes transpose; is a dimension-

the solution variable and hence solves the equation on a mésds constant related to the cell membrane afxl) is the

of N vertices with O(N log (N)) complexity, thus tending cell membrane time constari(x) is the square of the tissue

towards satisfying clinical time constraints. space constant along the fibre and is related to the specific
In this paper, we use a novel FMM for the numericatonductivity of the tissue. The tensor quantity relatinghe




fibre directions is given byM = ADA?, where A is the curves [17]. Instead, we propose to estimate the condtyctivi
matrix defining the fibre directions in the global coordinatparameters in the electrophysiology model described in the
system andD = diag(1, A2, A?). X is the anisotropic ratio of previous section by posing an inverse problem [18], [19F Th
space constants transverse and along the fibre directioisandiffusion coefficientD is the square of the effective space
of the order0.4 in human myocardium [11]. constant along the fibre direction and thus an intrinsic ertyp
The nonlinear Equation (1) is solved using a fixed poimf the myocardial tissueD = )\i = 04Ty, Where); is the
iterative method combined with a very fast eikonal solvespace constant along the fibre directiop,is the inverse of the
based on a modified anisotropic FMM [14], [15]. The FMM issum of effective resistivities of intra and extra cellulangains
a single-pass algorithm to solve the classical eikonal &gua and 7,, is the inverse of membrane conductance per unit
(without the diffusion termiv - (DMVT)) and an anisotropic area. From the above relation and as we model the electrical
version was developed earlier as part of this project. Aheapropagation on a surface (2D), we now refer to the diffusion
fixed point iteration, computation of the diffusion term wasoefficientD as apparent conductivity (AC) in the rest of the
carried out using P1 Lagrange finite elements. Experimentaper. The AC value provides an indication of the region of
evidence suggests no flux on the myocardial surface, so we ugkience of the excitation wavefront at a particular poRQ]f
Neumann boundary condition. We integrate this in the stgd Further, the apparent propagation velocity of the elealtric
matrix K : K;; = [ V¢; MV¢; coming from an integration wave in the tissue can also be estimatedvhy, = coV D/t
by parts of the diffusion term in the variational form wigh  (m/s). In this section, we present an algorithm to estimiage t
and¢; the P1 Lagrange shape functions. The complete detagparent conductivity by matching the isochrones of depola

are presented in Algorithm 1. isation simulated using the EP model to those obtained from
clinical measurements. Furthermore, we have an additional
Algorithm 1 Algorithm for eikonal-diffusion equation advantage in that the model, after parameter estimatiam, ca
e Inputs: Geometry, site of earliest activation, D also be used in a predictive fashion.
« Solve Eq. (1) without diffusion term using modified FMM The present state of the art in obtaining in vivo electro-
[15] to get an initial estimatdy. SetT, .. = Tp. physiological assessment are the electro-anatomical imgpp
while convergence achieved true do systems (Ensite, Carto). Ensite [21] is a non-contact nmappi
e Compute anisotropic diffusion flow ter¥i- (DMVT) system which utilises a multi-electrode array inserted int
with the current estimat@c,;.. the cardiac chamber of interest, and electrical recordargs

e Solve for T,., using modified FMM [15] displayed on an anatomical surface of the endocardium which

coVD (/NTL. _MVT =74V (DMVTau) may be imported from prior imaging or reconstructed using

~ new new curr . !

if || Thew — Toune|| < & then a roving catheter steered endocardially to create the ceamb
. ggvrvlverggr:rce achieved=true geometry. The Carto system [22] is a contact mapping system

else where the position of the catheter is obtained using a magnet

«T. —T tracking system and the electrical recordings are obt&imosal
end ifcm new the tip of the contact catheter. Using these systems the elec
end while trical wave propagation can be identified on the endocardial

surface. Any isochrones of depolarisation obtained froohsu

. . .. mapping systems can be utilised as the measurement data for

OA]\\'fsltheNmethlod !Sh baseg oanadst marchlk:lg Wh'cbh IS fqﬂe estimation procedure. As we have only one measure which
(N'log (V) algorithm, whereN' denotes the number ofjq 1,0 gepolarisation time, we propose to estimate the appar

points in the mesh, the electrical propagation is solved nductivity D in this paper. The dimensionless constagt
a much faster rate as compared to the bi-domain or MONQ-cat at2.5 and the cell time constant is set at1.0 ms

domain equation based moqlels. F_or example, the solution e@pectively. The AC estimation algorithm is divided intgot
5000 node mesh can be achieved in the order of a few secoréqéges namely global and local
[16], and hence the method is suitable for faster computatio '
required in real-time interventional cases. .
A. Global Conductivity

I1l. APPARENTCONDUCTIVITY PARAMETER ESTIMATION A nominal value of the ACDyoba is first sought which

. : . . ._minimises the mean error between the measured and simu-
When using electro-anatomic mapping (EAM), cardiologists, . " : o
. . . . ated isochrones of depolarisation. This global estinmasitep
generally base their analysis of electrophysiologicabdat . ) . !
. S o enables us to bring the simulated isochrones using the model
the isochrones of depolarisation and repolarisation of the : . :
t?t the scale of measured isochrones and also provides uawith

endocardium. However, these time variables may be difficy ood initial estimate of AC for the local parameter estimmati

to interpret due t.o the influence of the g(_eomc_etry and curgatt&he global estimation is done using a bisection method and is
of the propagating wavefront. The estimation of add|t|on%letailed in Algorithm 2

parameter maps related to myocardial tissue property dmld
beneficial for cardiologists in more rapid interpretatidrttoe o
data. To realise this goal we have not resorted to a purelsigRa Local Conductivity

processing approach, where for instance conduction vgloci Once the simulated depolarisation time map globally fits
could be estimated from distance between two isochrorthE measured one, a local adjustment of the model is possible



Algorithm 2 Algorithm for Estimating Global Conductivity e propose to solve the minimisation problem by varying the
e SetD¢y,r = D,, whereD,, is the given user estimate forAC value on one considered region and keeping all other

conductivity parameter. region’s AC constant. Thus, th&/-dimensional problem is
e Evaluate the average value of measured depolarisatiesnverted into a sequence &f one dimensional minimisation
time T'™ problems. It is to be noted that the order in which the zones ar
while convergence achieved !true do considered is important if one undertakes such a methoglolog

e Solve Eg. (1) using FMM algorithm in Section Il due to the causality of the electrical wave propagation @n th
with D = D, and calculate the average of simulategurface [19]. Hence the zone sBtis pre-ordered according
depolarisation time/'s. to the mean measured depolarisation times of all the vertice
if |75 —T™| < e then present in that zone i.e.,

° Dglobal = Deurr

7m 7m = . e —
convergence achieved true To, <To,,, V=12, M—1

else The most popular way of minimising the cost functional

if 7's <T™ then is based on the computation of the derivative of the cost

® Deurr = Deurr — 0.5Dcurr function with respect to the parameter. However, in our case
else as obtaining the derivative involves computiéi§ /oD which

® Deurr = Deurr + 0.5 Dcurr can only be obtained using finite differences, we resort to a
end if one-dimensional minimisation strategy like the Brent'smoel
end if [23]. The Brent’s minimisation algorithm is utilised to isate
end while the apparent conductivity value for each zone sequentiEtiy

Brent’'s method requires an initial bracketing of the minimu
and then the minimum is reached by fitting a parabola in the
Gradient based minimisation techniques are generally fesed bracketed region. The iterations at a particular level arin-
parameter estimation inverse problems. However, in oue cased until the difference in the cost function values betwigen
as the gradient calculation often tends to be expensiveowith successive iterations falls below a certain thresheld ().01).
a suitable adjoint approach, we propose a specific estimatibhen we proceed to the next level by subdividing the zone with
algorithm suited to our fast electrophysiology model. the maximum value of the regional cost function (see Fig.1),
As the local conductivity estimation falls in the purview ofdefined as

parameter estimation techniques, we resort to the zonahalec 1 . o 2
position of the conductivity parameter. We begin by diviglin Ca; = ﬁ] Z [T7(x) = T*(x)]" -
the 2d-surfacé) into M equal zoneRR = {Q1,Qo,- -+, QA }. x€Qy
The conductivity is then assumed to be given by where N; denotes the number of vertices in the zdng At
M the next level, the conductivity values are again estimated
D(x) = ZDJ¢j(X)= ) each Z(_)ne_seqyentlally in _the order pf th_e zonal measured
- depolarisation time according to the iterative Brent mdtho
) ) o explained earlier. The complete procedure is summarised in
where the basis function on th¢" zone is given by the Algorithm 3.
_ 1 x€ Q]‘
¢J(X)_{0 X¢Qj.
. . . Q Q Q, Q
Thus the dimension of the problem is reducedMt The Q o) Q Q —
apparent conductivity values are obtained by minimising th 9@ | & % =T
discrete cost function given by
1 2 Qz Q4 Qz Q7 Qz Qm
C(D)=——> [I™-T%Dgq,,Dq,, --,D , (3
( ) N(l/) ;[ v v( Q1 Q2 ) QM)] ( )
(a) Initial (b) Level | (c) Level 1l

where v denotes the set of all the vertices of the surF-_ L () nita L iion (6) Level 1 » »

, H H m 1g. 1. a) Initial zonal aecompaosition eve zonal aeposition
face mesh andV(.) denOteS_the, Set,S Cardma“ty:v de- (c) Level 2 decomposition At each level, the zone with ma)kim@j in the
notes the measured depolarisation time at the vestend previous level is divided intd equal regions.

T:(Dq,,Dq,,- -, Dq,,) denotes the depolarisation time ob-
tained by solving the fast electrophysiological model vitie It is well known that for solving inverse problems, some
apparent conductivity values set §Bq; }jf‘il. sort of regularisation is always needed to obtain a meaningf

We propose a multilevel approach to the estimation problemstimate of the parameter. In the presented algorithm, we
We begin with a minimum number of sub-divisions (zonesmooth the AC value at each vertex by taking an area-
of the surface. At each level, an iterative approach is usegighted average of the apparent conductivity of eachdtean
to estimate the zonal conductivity values. At each iteraticsurrounding the considered vertex. This smoothing endbles
we estimate a conductivity value for each region. To furthémprove the convergence of the iterative procedure and also
reduce the computational burden on the parameter estimatiaids in regularisation.



Algorithm 3 Adaptive zonal algorithm for estimating local we now proceed to use this valu®.,.) as the initial
apparent conductivity guess of AC for the adaptive zonal conductivity estimation
e Construct an initial decomposition of the surface mesilgorithm. The entire surface was initially divided intb
into 4 zones in the order of measured depolarisation timegual regions. The Brent's optimisation routine requires a

(R=A{Q, -, U}) initial bracketing of the minimum. In this paper, we use
while !(convergence achieved or maximum subdivision.01, D,10.0] as the bracketing wher® is the apparent
reached)o conductivity value estimated at the previous iteration tfat
converged at level=false particular region. After stopping of the algorithm, we dhta
while converged at level !4rue do a total of 64 subdivisions of the endocardial surface. The
for i =1toi=AN(R) do convergence of the root mean squared (r.m.s) error between
e Solve for the zonal AC value using the Brent'sneasured and simulated depolarisation times acrossidesat
minimisation is shown in Fig.3b. We see that the error drops rapidly until
end for the number of zones are aroum@ to 20 and afterwards the
if |C; —Ci_1] < e then convergence tends to become slow. So, if one desires a quick
e converged at level frue estimate, the algorithm could be stopped after the number of
end if zones become arounzd). We obtain a final r.m.s error of
end while 1.42 ms and a mean error 6f84 ms for depolarisation times

e Find the region with the maximurtl,; and subdivide ranging from0 to 96 ms. The absolute error between measured
» Re-order the zones according to measured depolaris@éd depolarisation times before and after the adaptivelzona
tion time estimation algorithm procedure is shown in Fig.4b and [€ig.4
end while respectively. Fig.4a shows the estimated apparent comdyct
map on the surface after convergence. Comparing Fig.4a and
Fig.2a, it can be clearly seen that the presented algorithm i

It is to be noted that the subdivision of zones is limited bgble to identify regions of low conductivity.
the mesh resolution and at any iteration, if the maxia| The AC estimation algorithm is now tested for its robustness
region cannot be further subdivided, we proceed to subelivitb cardiac fibre directions. A Gaussian noise of zero mealm wit
the region with the next maximum value. So, the maximum standard deviation d0° * was added [24], and the resultant
number of zones into which the mesh can be divided is tW& images estimated by the algorithm are examined (See
total number of points in the mesh. However, we stop olig.5). We obtain a similar result to the case when there was
iterations if the number of zones at any level reaches a pres noise in the fibre directions thus proving that the presant
defined limit set ta64. algorithm is also robust to noise or uncertainty in cardiboefi
directions.

Further, to evaluate the effect of mesh resolution on the
L _ apparent conductivity estimation algorithm, we subdidide
A. AC estimation algorithm each triangle in the 256 node mesh into four triangles by

The performance of the adaptive AC parameter estimatigwining the midpoints of each triangle edge and ran the
algorithm is evaluated initially on simulated data. Thecaie estimation algorithm with the measured data resolutiondfixe
cal data is simulated on a surface mesh of the endocardiatrthe original 256 points. Results obtained on synthetta da
consisting of256 vertices andi80 triangles. A low conductiv- show that the estimation algorithm is able to identify regio
ity region with apparent conductivit® = 0.1 was defined on of low conductivity for both the coarse as well as fine mesh
the lateral side of the endocardial mesh and on the remaininigh similar resolution (see Fig.6).
points, the AC was set t0.64 (Fig.2a). The low conductivity
region is considered as diseased tissue and the regions with V. CLINICAL DATA

D = 0.64 are considered healthy. The depolarisation timeIn this section. we present the results of the adaptive
presented in Fig.2b and Fig.2c is the result of a simulation : lon, we p u PV

based on the EP model fof = 2.5. A = 0.4 and+ = 1 ms conduction parameter imaging algorithm on clinical data W
with this conductivity map IR N "~ evaluate the performance on data acquired from patientsawit

The apparent conductivity estimation algorithm preseiried Left Bundle Branch Block (LBBB) pathology. In brief, the tef
section Il is tested on this synthetic data initially. Tarstthe branch of the bundle of His-Purkinje system of these patient

estimation, a crude estimate for AC was takerDas= 2.0 on is damaged and hence the initialisation of left ventricular

S i activation derives mainly from the septal region insteamof
the whole surface. The global estimation algorithm preuict apical site via the Purkinje network. The patients undetwen

a mean value oD = 0.58 and the mean error betwee . o ; .
global nEPS where an Ensite array is inserted into the left ventricle

the measured and simulated depolarisation times dropped fr . . :
. via a retrograde aortic approach. A locator signal from a
4.02 ms t02.8 ms. We also examined the robustness of the% : : o
L : . - standard steerable ablation catheter is utilised to cocistr

global estimation procedure by using different initial wed

ranging from D, = 0.1 to D, = 2.0 (see Fig.3a). From left ventricular chamber geometry. The Ensite array cosgsri

the figure,_ it can be seen that th? .p.roposed global estimatiomy ;. variability was chosen as a probable value of the normahisity
algorithm is quite robust to user initial guess. of fibre orientations, based on a study conducted by Peyralt §24].

IV. VALIDATION OF RESULTS
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a 9 F multi electrode array (MEA) mapping catheter aniig.8b represent the fibre direction80( to circumferential
local endocardial potentials are reconstructed employfieg direction). We obtain a final r.m.s error between the measure
inverse solution method [25]. The data was acquired in amd simulated depolarisation times t6§ ms from an initial
XMR environment (see Fig.7). The patient was imaged usirggror of 62 ms. The reconstructed endocardial surface was
MRI prior to the EPS to obtain a 3D Steady-State Freelivided into55 zones at convergence.
Precession (SSFP) image of the heart (typical parametersn order to validate the estimated AC map for this case, we
for imaging are256 x 256 matrix, 200 slices, resolution endeavour to compare the predicted regions of low apparent
= 1.05 x 1.05 x 7.2mm?, TR=14.0 ms, TE=%.05 ms, flip conductivity to the regions of scar obtained from segmésat
angle=15?, scan timex 6 min). The Ensite reconstructedof a late enhancement MR image performed by a clinician
chamber can then be registered to the endocardial surfg@gey was blinded to all electrophysiological data. Initall
obtained from MR using an earlier developed and validatgfle reconstructed surface of the left ventricular chambmmf
registration technique based on optical tracking [3], [26]  Ensite is deformed to fit the ventricle surface obtained from
Fig.8a shows the isochrones of depolarisation reconsiiucMR image. The deformed Ensite surface registered with the
on 256 points as measured by the Ensite system for oMdR image [28] is shown in Fig.9a. Fig.9b and Fig.9c show
such EP case. The initialisation (initial activation of tleét the estimated AC map and the segmented scars in the same
ventricle) begins at the septal region and ends in the latecaordinate system. The dark blue regions on the deformed
region of the ventricle. The standard values for the conistamesh identify regions on the mesh with a low AC, which we
that we use in the model arg = 2.5, A = 0.4 and7 = 1.0 believe correlate to regions of slow conduction. From these
ms. We apply the AC estimation algorithm (Section Ill) fofigures, it can be seen that the areas of slow conduction and
this case and the resultant isochrones of depolarisatidn @tars were co-localised to the accuracy of the MRI to Ensite
the apparent conductivity image estimated by the model aegistration. It is to be noted that as the late enhancement
shown in Fig.8b and Fig.8c respectively. The black lines images were acquired one day before the procedure, the
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Fig. 9. (a) Registration of Ensite endocardial anatomy to M#Rived anatomy (transparent white), the colourmap on th&it& anatomy represents the
estimated apparent conductivity; (b),(c) Comparison @fr docations (orange) obtained from segmentation of the dathancement MR image to areas of
low apparent conductivity on the deformed Ensite anatomyailume rendered SSFP MR image and a 2D axial slice resphciiireages obtained using
Cardioviz3D [27]).The colourmap values on the Ensite amgtgb) and Ensite contour (c) are the same as in (a).

sources of error are the registration of pre-operative latéearly be seen that the top part of the Ensite reconstructed
enhancement images to the 3D MR images acquired wantricle is in the aortic root and hence the results obthine
the day of procedure and also the registration between finem the Ensite system in that region may not be reliable.
Ensite and MR derived surfaces. Furthermore, as indicat€de real-time fluoroscopy images obtained during the proce-
in earlier section 1ll, additional parameter maps of apparedure were reviewed to ascertain this fact. Despite this, fact
conduction velocityv,,, = ¢ov/D/7 can also be generatedthe apparent conductivity maps did indicate regions of slow
after estimating AC. The apparent conduction velocity ieggconduction (detailed in Fig.12) near the septal region as ca
for this case are detailed in Fig.10. The apparent conductibe seen from Fig.11c.
velocity for normal tissue regions is arouds m/s and in  Once the apparent conductivity map/image of the particular
regions of scar, the conduction velocity drops to approxéiya endocardial surface has been estimated, we now proceed
0.9 m/s. to demonstrate the efficacy of the fast electrophysioldgica
We now present results for a second case of LBBBiodelin its predictive capacity. Fig.13a shows the isonbso
pathology. Fig.11a shows the measured depolarisation timeasured from the Ensite system for the same patient in a
isochrones for the baseline mode (normal sinus rhythm). THaal chamber pacing mode. The heart was paced endocardially
application of the presented algorithm resulted in the rhode the apex of the left ventricle and in the right ventricle.
predicting the depolarisation isochronal map as shown The initialisation from the right ventricle reaches thet lef
Fig.11b. The r.m.s error between measured and estimat@stricular endocardiuri0 ms after the initial depolarisation
depolarisation times wa27 ms after the estimation as com-in response to left ventricular apical pacing. Fig.13b show
pared to113 ms before the estimation procedure. Next, théhe isochrones estimated by the model using the apparent
registration of the Ensite reconstructed ventricularaefwith conductivity map (Fig.12) for this case. The left ventraul
that of MR surface is shown in Fig.11c. The colour map on trendocardial model was initialised (activated) with a vahie
Ensite surface shows the estimated apparent conductivity & ms at the region indicated as Pacing Location 1 and another
the black surface to the septal side indicates the scaridmcatregion indicated by Pacing Location 2 was initialised withi
obtained from late enhancement image segmentation. It cdnms. By a visual comparison of Fig.13a and Fig.13b, it
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can clearly be seen that the model with adjusted condugtivit An important aspect of the anisotropic fast EP model pre-
image is able to predict reasonable isochrones for a differesented in this paper is the cardiac fibre orientation. A gener

pacing mode. formula of fibre directions0° to the circumferential direction
on the mesh) was used in this paper and more accurate
VI. DISCUSSION descriptions of the fibre directions and anisotropic ratfo o
A. Parameter values and Mesh Resolution space constants could be highly beneficial in modelling the

The value of dimensionless constagt= 2.5 in Equation electrical propagation more accurately.

(1) has been taken from literature [11]. As the ratie/D /7 _ o

represents the velocity of the excitation front in the eidon C. Conduction parameter estimation

diffusion equation and the typical propagation velocitjues The adaptive zonal estimation algorithm based on simplified
for normal myocardium reported using the Ensite system aBeent’s method (Section 1ll) can be used in conjunction
about 2.0 m/sec [29], we chose a value of = 1.0 ms with the fast electrophysiology model to obtain additional
obtained by using the value of; for normal myocardial conduction related parameter images. This algorithm has be
tissue a€).8 mm. Further as we model the propagation onlghown to successfully estimate apparent conductivity eslu
on the endocardial surface as compared to the ventricular both synthetic as well as clinical data. The global esti-
volumetric tissue, we would expect the value of eithgror mation algorithm eliminates the need for a very good initial
7 to be adjusted to represent higher propagation velocitiegiess of the AC value by the user and is shown to be quite
In this paper, we chose to take as the value specified robust. We obtain a very good initial guess from the global
in literature and modify the value of in order to increase estimation algorithm in abol20 iterations. For the synthetic
the propagation velocity. For a given set of patient eleatri data experiment, the adaptive zonal AC estimation algwrith
activation times, varying, or = would change the magnitudetakes about anothef) iterations with about 5 refinement levels
of the apparent conductivity estimated but the identifarati (i.e., about32 zones) to obtain an acceptable map for AC. The
of normal to diseased (low AC values) tissue would not kiéme taken for the adaptive algorithm is abddtmin to reach
altered. up to 32 zones. The algorithm is also shown to be robust

The anisotropic diffusion flow term is computed on ao fibre directions and hence can be used even if the fibre

relatively coarse mesh. This is due to the following reasonslirections are not precisely known.

« As we only consider a surface, we do not have to The minimisation method used in the algorithm relies on
precisely represent the transmural fibre variation, and asew parameters, the initial bracketing and the convergenc
the fibre direction is quite smooth when considering onlgriterion defined for each level. A difference in the r.m.ser
the endocardium, we do not need a very fine mesh. between two successive iterations lower theii is sufficient

« Further, such precise discretisation would be beneficialfdr the cases presented in this paper. An initial bracketihg
we have the patient data at a similar resolution, whidhe minimum is essential for the Brent's method to obtain
unfortunately is not the case with the present electrgonvergence. The AC should always be positive and therefore
anatomical mapping systems. we take a very small positive value for the lower bracketoAls

« Experiments done by increasing the mesh resolution fitere is no particular maximum limit for the AC. We use an
both synthetic and clinical data cases showed that tA€ value of 10 as a realistic value of the upper limit for the
estimation algorithm obtains similar results as on theracketing at any Brent iteration in the adaptive algorithm
coarse mesh.

D. Application to clinical data

B. Fast electrophysiology model We presented functional imaging of electrical conduction
The fast electrophysiology model presented in Section riélated parameter for two different left bundle branch kloc
is based on the eikonal-diffusion equation. The fast maghicases. The estimation algorithm requires less than an hour
methodology applied to solve this nonlinear equation has cavall time to obtain an acceptable AC m&j®(zones) for both
siderable advantage in terms of obtaining the electricalewaclinical data sets. From the estimated AC functional images
pattern or the isochrones in order of seconds of computatioFig.9 and Fig.12), we can clearly identify regions of slowe
time and hence can be potentially feasible to apply suchcanduction (AC< 0.5). These slow conduction regions are
model in the clinical setting. A limitation of this model isalso shown to be correlated with scar locations obtaineah fro
that the solution methodology is only of first-order accyradate enhancement images. Apparent conduction velocitysmap
[14]. However, it can be seen that tB&86 node meshes thatcan also be generated and we see that the velocity estimated
we use in this study are able to obtain results with sufficiehies in the range 0.3 to 0.9 m/s in regions of scar to about
accuracy for the application that we consider (simulate BBB2.5 m/s for normal healthy tissue. A very high velocity in
pathology). Finally, the presented electrophysiology elodexcess of4 m/s is also observed in certain regions. This
needs to incorporate repolarisation effects of the tissue is probably due to the accuracy of the measured data from
order to model more complex electrical phenomena suthe Ensite system. We sometimes identify large regions of
as swirling waves which are encountered in other forms tfe endocardial surface being depolarised instantangcusl
cardiac arrhythmia. An initial development to simulate tiaul suggesting very high conduction velocities and the estdhat
front propagation was presented earlier in [15]. conduction velocity maps reflect this behaviour presenhé t
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Fig. 13. Usage of model in a predictive fashion: (a) Isocksonf depolarisation measured using Ensite in a dual chapdmng mode (b) Isochrones of
depolarisation predicted by the EP model with estimatedssiythm apparent conductivity map.

depolarisation time input. Furthermore as the estimated mealidated on synthetic as well as clinical data. Possikigores
is projected on a surface instead of the actual 3D ventriculaf slow conduction have been identified and shown to coeelat
volume, we expect the conduction velocities to be higherith scar locations obtained using late enhancement MRémag
than the normally accepted values. The apparent conducts8@gmentations using this procedure. Finally, we have ptede
velocity values estimated in healthy regions from the preee  a proof of concept for the electrophysiology model, tuned to
adaptive zonal algorithm are consistent with values regbirt  an individual patient data, to be capable of simulating the
studies using the Ensite system and estimated using $¢fslli electrical wave propagation for different pacing modesvikig
method [29]. such a model opens up possibilities for early detection of
Additionally, once the electrophysiological model is tdnescarred regions responsible for arrhythmia, and could ait$o
to the particular patient parameters (once the AC has baarthe planning of interventional procedures.
estimated), we have shown that the tuned model is now able
to simulate a different pacing protocol. We are now in the There can be several improvements made to the proposed
process of acquiring more clinical data in order to validat2 model to enhance its estimation properties which will be
presented methodology. Furthermore, the accuracy of sweh pghe focus of our future research. Some of them are outlined
diction capability could be highly improved by incorporadia here. In terms of simulation, higher order FMM algorithms
3D model which could simulate the propagation on the whot&an be incorporated to obtain better resolution of propagat
ventricular volume and this is a subject of ongoing work. wavefronts. The apparent conduction algorithm can be im-
proved by incorporating gradient minimisation methodshwit
VII. CONCLUSIONS a suitable adjoint formulation instead of Brent’s optintisa
We presented a new method of imaging electrical conduat each level and better regularisation techniques. Finall
tion parameter in the heart based on a fast electrophysialbgwe also intend to introduce the time term into the eikonal-
model and an adaptive parameter estimation procedure. Tiusion equation so as to simulate multi-front propagati
presented EP model is based on the eikonal approach @mzbrporating both depolarisation and repolarisationrume-
can accurately simulate the propagation of the depol@sisatena and extension of these methods to volumetric meshes.
wavefront on the endocardial surface. A novel adaptive zorlacorporation of a mechanical component into the model is
estimation for the conductivity parameter (apparent cotidu also the subject of ongoing work, whereby we envisage an
ity) has been proposed to tune the electrophysiologicalahoalectro-mechanical model which could be used to simulate
to measured isochrones of depolarisation. The estimatibath different pathologies and treatment strategiesirRirgdry
algorithm has also been shown to be robust to the operatawsrk has been done towards the adjustment of mechanical
initial estimate and to cardiac fibre orientations. The appa models to clinical data, however there are still some chgle
conduction images obtained using this procedure have beeg difficulties [30].
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