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Abstract

This paper presents a 4D (3Dþ time) echocardiographic image anisotropic filtering and a 3D model-based seg-
mentation system. To improve the extraction of left ventricle boundaries, we rely on two preprocessing stages. First, we

apply an anisotropic filter that reduces image noise. This 4D filter takes into account the spatial and temporal nature of

echocardiographic images. Second, we adapt the usual gradient filter estimation to the cylindrical geometry of the 3D

ultrasound images. The reconstruction of the endocardium takes place by deforming a deformable simplex mesh having

an a priori knowledge of left ventricle shape and that is guided by a region-based data attraction force. The external

force formulation improves the segmentation robustness against noise and outliers. We illustrate our method by

showing experimental results on very challenging sparse and noisy ultrasound images of the heart and by computing

quantitative measurements of the left ventricle volume.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

3D ultrasound imagery is a very promising im-

age acquisition technology due to its low cost and

non-invasive nature. Furthermore, the develop-

ment of real-time 3D ultrasound probes creates

numerous medical applications ranging from

diagnosis to therapy planning and control. For

instance, it allows the reconstruction of the left
ventricle motion through the quantitative compu-

tation of the ventricle ejection fraction which is of

major importance in detecting heart pathologies

(Clarysse et al., 1997; Declerck et al., 1998). Un-

fortunately, the speckle noise in ultrasound images

combined with a low image resolution of 3D ul-

trasound make it a very challenging task. In this

paper, we propose a reconstruction algorithm of
the left ventricle from echocardiographic images

based on 3D deformable models. The input images

are time series of 3D ultrasound (or 4D images) that

are filtered to reduce noise before segmentation.

In some cases, 3D ultrasound systems are based

on a moving 2D probe acquiring along non-

aligned planes (Treece et al., 1998). In this paper,
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we consider rotative probes producing a set of 2D

planes intersecting each other along a revolution

axis. These images are acquired with a cylindrical

geometry implying that the density of information
decreases as a function of the axis distance (Fig. 1).

Previous work (Winterfeldt et al., 1997; Jacob

et al., 1999) have considered 2D image segmenta-

tion and tracking approaches (Nastar and Ayache,

1996; McEachen and Duncan, 1997) without any

spatial coherence between slices. Statistical infor-

mation (mainly principal component analysis) has

also been used to restrain the set of possible de-
formations of a left ventricle model (Jacob et al.,

1999; Giachetti, 1998). Deformable surfaces have

been recently used to reconstruct the heart motion

from 3D echocardiographic images (Berger et al.,

1999), but most of them rely on tagged MRI

(Guttman et al., 1994; Reynard et al., 1995; Young

et al., 1995; Park et al., 1996; Declerck et al., 1998).

Recent methods where proposed in the litera-
ture for the reconstruction of cardiac cycles in 4D

ultrasound images. In (Papademetris et al., 2001),

biomedical models are used for heart motion

analysis. The segmentation stage is semi-automatic

and simplified by using opened chest dog heart

images. Surface-based methods have been pro-

posed for left ventricle segmentation, either relying

on region clustering (Sanchez-Ortiz et al., 2000) or
prior shape and motion constraints (Montagnat

and Delingette, 2000) to make the segmentation

robust to ultrasound noise. To our knowledge, no

other work deal with the native geometry of 3D

ultrasound images acquired by a rotative probe.

Alternatively, several authors proposed to re-

duce speckle level by spatial compounding (Rohling

et al., 1997) or to detect boundaries in US images by
modeling speckle noise (Czerwinski, 1998). Seg-

mentation approaches based on voxels clustering

after noise correction have been also proposed

(Boukerroui et al., 1999; Stetten and Pizer, 2000).

In this paper, we propose a model-based seg-
mentation procedure. Prior to left ventricle seg-

mentation, the image is filtered to reduce speckle

noise. A 4D anisotropic diffusion procedure bene-

fits from the weak correlation of speckle through

time. Image boundaries are then extracted using a

differential operator specialized for the cylindrical

geometry of the ultrasound images acquired using

a rotative 2D probe. A deformable surface model
including prior knowledge on the shape to recover

is then used to segment each 3D volume compos-

ing the 4D sequence. The surface models com-

pensate for the weak image resolution and data

occlusions. Moreover, a region-based data term

that benefits from the prior diffusion stage is used.

Segmentation steps are illustrated in Fig. 2.

The main contributions of our approach are:

• to consider the full 3D nature of input images

with a 3D model deformation,

• to introduce prior knowledge on the shape to

recover,

• to take into account temporal consistency

through 4D anisotropic diffusion,

• to adapt image filtering techniques to the ultra-
sound images cylindrical geometry,

• and to use a region-based approach for finding

the boundaries of the left ventricle.

2. Image filtering

To get rid of image noise, many filtering tech-
niques have been proposed based on the compu-

Fig. 1. The rotative probe and the resulting US images with cylindrical symmetry.
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tation of a mean intensity value on a local neigh-

borhood at each image voxel. However, these

techniques also tend to displace structures and

blur their boundaries. This side effect is critical for

segmentation algorithms relying on the detection

of structures boundaries such as deformable model
approaches. Anisotropic diffusion (Weickert, 1998;

Gerig et al., 1992; Alvarez et al., 1992; Perona and

Malik, 1990) has been developed to smooth an

image, thus removing high frequency noise, while

preserving the boundaries of structures of interest.

2.1. 4D anisotropic diffusion

The anisotropic diffusion theory in imaging

raised from an analogy with fluids diffusion. It

states that the image intensity I, seen as a fluid

concentration, is evolving toward an equilibrium

state according to the diffusion equation otI ¼
divðDrIÞ where D, a positive definite symmetric
matrix (the diffusion tensor) and ot denotes the

derivation with respect to the time.
For ultrasound images filtering, we use a diffu-

sion tensor that depends on the position of the

voxel in the image (heterogeneous), that is com-

puted from the evolving image (non-linear) and

that depends on the direction of the gradient at

this position (anisotropic). We use the diffu-

sion function gðx; aÞ ¼ 1� e�ð3:315=ðx=aÞ4Þ (Weickert,

1998), with a the gradient threshold (the value
above which the gradient is considered high

enough for a voxel to be a boundary point). It acts

as an edge-enhancing filter: where the image gra-

dient is high, the diffusion is high in the direction

parallel to the boundary and negative in the di-

rection orthogonal to the boundary. Therefore, the

intensity gap increases and this process leads to an

enhancement of boundaries. The anisotropic dif-

fusion tensor is written as

D ¼ diag g
oI
ox

; ax

� �
; g

oI
oy

; ay

� �
;

�

g
oI
oz

; az

� �
; g

oI
ot

; at

� ��

With a tensor whose components are different in

all directions, it is possible to vantage the diffusion

in a direction (along boundaries) and, conversely,

to prevent smoothing in another direction (or-

thogonal to a boundary).

The diffusion equation is discretized by the fin-

ite differences method. Let A denote the matrix of
the spatial derivations, I t the image (written as a
vector) at time t and Dt the time step. If Dt

i is the

value of D at a voxel i and at instant t, we have:

AijðI tÞ ¼

Dt
i þDt

j

2
if j 2 NðiÞ;

�
P

n2NðiÞ
Dk

i þDk
n

2
if j ¼ i;

0 otherwise;

8>>><
>>>:

where NðiÞ is the neighborhood of i. Let Ad be the

spatial derivation in direction d, we can write the

diffusion equation in a discrete form as a semi-

implicit scheme:

I tþDt � I t

Dt
¼ A I tð ÞI tþDt ) I tþDt

¼ Id

 
� Dt

X4
d¼1

Ad I tð Þ
!�1

I t:

This scheme ensures stability with quite large time

steps (around 1.0, compared to 0.001 for an ex-
plicit scheme) and a low enough computation cost,

but as the dimension increases (3 or 4 dimensions)

Fig. 2. Segmentation steps: anisotropic diffusion (Section 2), gradient computation in cylindrical geometry (Section 3) and model-

based segmentation (Section 4).
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the system solution becomes costly. The idea of

numerical schemes based on additive operator

splitting (AOS) is to separate dimensions and re-

arrange image in order to only invert tridiagonal

matrices (NðiÞ is then only composed of the two
neighboring voxels in the considered dimension):

I tþDt ¼ 1
4

X4
d¼1

Idð � 4DtAd I tð ÞÞ�1I t

AOS scheme has the same first-order Taylor ex-

pansion in Dt as the semi-implicit scheme (there-
fore the same convergence speed and stability) and

it fits in the discrete multi-scale theory framework

(Weickert, 1998).

As described in Section 3, there are different

techniques to compute the image gradient direc-

tion. In the diffusion process, the gradient is

computed at each iteration, so the computation

must be fast. Moreover we want to have a sym-
metry between spatial and temporal data, as they

are processed the same way and the AOS numer-

ical scheme allows to parallelize the computation

in all dimensions. For these reasons, the gradient is

simply computed by central finite differences in the

diffusion process.

One key parameter of the diffusion process is

the gradient threshold a. As the diffusion process
evolves, the homogeneity of image regions in-

creases and the occurrence of high gradient voxels

decreases. Thus the threshold must decrease with

time. It must also be different for each dimension,

as the information density and variation is differ-

ent.

2.2. Ultrasound images filtering

Anisotropic diffusion is suited to filter 4D ul-

trasound images. It allows us to drastically reduce

the speckle noise while enhancing the structure

boundaries. It is a pre-segmentation tool that can

noticeably improve the quality of model-based

reconstruction.

Since ultrasound images speckle is not neces-
sarily correlated in time, it appears as a high fre-

quency noise in the time dimension. Although the

speckle makes some parts of the boundaries dis-

appear, the time diffusion allows to recover some

of them. Thus, it seems meaningful to perform

anisotropic diffusion on 4D images (Elayadi, 1997;

Sanchez-Ortiz et al., 1999). Brandt et al. (1999)

similarly use time and space information for a

better detection of ultrasound image boundaries.

2.3. Experiments

The 4D anisotropic diffusion is applied on the

image sequences for three iterations of 1.0 time

unit. The thresholds ax, ay , az and at are computed
at each step as a fixed fraction (80%) of the cu-

mulated histogram of the gradient component

considered (as a percentage, it decreases when the
number of edges is reduced, so the remaining

boundaries are well preserved). Since boundaries

correspond to high gradients, thresholds are

chosen in the small upper part of the histogram.

Threshold values are displayed in the table below:

Thresholds are decreased by almost 50% after

the first iteration for every dimension: as expected,

the most important part of the smoothing is done

during this iteration and thresholds are signifi-
cantly different clearly showing the data anisot-

ropy.

We can observe on Fig. 3 that the anisotropic

filtering smooths the noise, but keeps the sharp-

ness of boundaries, even enhancing it at some

places. We can also observe that the 4D diffusion is

better in filtering noise in homogeneous zones and

tends to produce more continuous boundaries,
which is, indeed, very interesting for model-based

segmentation. Diffusion is an effective preprocess-

ing but it remains computationally expensive. In a

time series composed of five 3D images whose di-

mensions are 256	 256	 17, the diffusion process
takes 30 min while the deformation of the model in

all image of the sequence takes less than 5 min

using the same hardware.

Initial

image

First

iteration

Second

iteration

ax 10 5 4

ay 14 7 5

az 26 19 16

at 22 13 10
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3. Gradient computation in cylindrical geometry

Model-based segmentation relies on boundaries

detection to guide deformations. This usually in-

volves gradient computation from the input im-

ages. In 3D images based on a regular lattice

(Cartesian images), the computation of gradient

vectors is mostly based on separable filters (e.g.,

Sobel operators) or recursive filtering (e.g., Canny–

Deriche filters (Monga et al., 1991)). When con-
sidering images of cylindrical geometry, classical

approaches can be used in each slice, computing

2D gradients and neglecting the tangential com-

ponent. It is also possible to interpolate the image

on a regular lattice before applying 3D operators.

Unfortunately, this approach is hopeless due to

the important angular resolution and the low sig-

nal-to-noise ratio (see left of Fig. 4 for a resam-
pling example on a realistic echocardiographic

image composed by nine planes). Instead, we

compute a 3D gradient vector for each image voxel

in the cylindrical geometry ðsee Herlin and Ayache
(1992) for a similar approach in 2DÞ.
Let M0 be a point in Euclidean space with

Cartesian coordinates ðx0; y0; z0Þ and cylindrical
coordinates ðr0; h0; z0Þ (see right of Fig. 4). Let I be
the cylindrical image defined as I : C 
 R3 ! R,

where C is the discrete cylindrical grid over which
the grey-level values are known. The convolution

of a 3D signal S by a filter f at point M0 is defined
in Cartesian space as

ðS � f ÞðM0Þ ¼
Z 1

�1

Z 1

�1

Z 1

�1
f ðx0 � x; y0 � y; z0 � zÞ

	 Sðx; y; zÞdxdydz: ð1Þ
To write this equation in cylindrical space we use

the coordinate transformation x ¼ r cosðhÞ, y ¼
r sinðhÞ, and z ¼ z. Let J be the Jacobian matrix
corresponding to this transformation. A variable

change in Eq. (1) leads to

Fig. 3. 4D anisotropic diffusion in ultrasound images of the heart. Left: the original image. Center: the 3D diffused image. Right: the

4D diffused image (same diffusion parameters).

Fig. 4. Left: echocardiographic image interpolation on a Cartesian grid. Right: cylindrical geometry.
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ðS � f ÞðM0Þ ¼
Z 1

�1

Z 2p

0

Z 1

0

f ðx0 � r cosðhÞ; y0 � r

	 sinðhÞ; z0 � zÞSðr; h; zÞjJ jdrdhdz:
ð2Þ

Since image I is a discrete signal, we discretize Eq.

(2). Let dr, dh, and dz be the dimensions of the
discrete filter applied to I. The filtered value of I at

point M0 2 C, knowing that jJ j ¼ r, is:

ðI � f ÞðM0Þ ¼
Xz0þdz

z¼z0�dz

Xh0þdh

h¼h0�dh

Xr0þdr

r¼r0�dr

Iðr;h; zÞ

	 f x0ð � r cosðhÞ;y0� r sinðhÞ; z0� zÞr:

We use Deriche filters (Deriche, 1987) to perform

gradient computation in cylindrical geometry. Let

Dd and Sd be the mono-dimensional Deriche de-
rivative and smoothing filters respectively, in di-

mension d 2 fx; y; zg : DdðuÞ ¼ ue�ajuj and SdðuÞ ¼
ðajuj þ 1Þe�ajuj. The directional gradient operators
are defined as GxðuÞ ¼ DxðuÞSyðuÞSzðuÞ, GyðuÞ ¼
SxðuÞDyðuÞSzðuÞ, and GzðuÞ ¼ SxðuÞSyðuÞDzðuÞ. The
discrete masks are computed by sampling Gx, Gy ,

and Gz values then normalizing mask coefficients

such that the sum of positive coefficients equals 1

and the sum of negative coefficients equals �1.
This ensures that the derivative mask coefficients

sum is null.

Top row of Fig. 5 illustrates the filter response

on a slice of a synthetic cube image for a 33 (left), a

53 (center), and a 73 (right) filter. Bottom of Fig. 5

compares the output of the 2DSobel filters (left) and

a 3D cylindrical operator (right) in one image plane.

A magnification of the center part is also shown.
The cylindrical operator improves significantly the

edge detection and reduces the speckle effect by fil-

tering along the axial direction, especially close to

the rotation axis where dense data is available.

4. Model representation

Many deformable surface representations have

been proposed for model-based segmentation of

medical images (McInerney and Terzopoulos,

1996). The left ventricle was first modeled using

parameterized representation such as surface har-

monics (Schudy and Ballard, 1979), superquadrics

(Bardinet et al., 1996), or generalized primitives

(Park et al., 1996). Discrete surfaces have also been
used for their capabilities to model complex shapes

(McInerney and Terzopoulos, 1995; Montagnat

and Delingette, 2000). Among existing represen-

tations, we use the discrete simplex meshes (Del-

ingette, 1999) for their simple geometry and their

ability to define shape constraints in a computa-

tionally efficient manner.

Fig. 5. Top row: cylindrical gradient filter response on a cube; Bottom row: comparison of Sobel operators (left) and the cylindrical

gradient filter (right) on a slice. A magnification around the symmetry axis is given that clearly shows the filtering improvement.
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4.1. Law of motion

A two-simplex mesh is a discrete non-para-

metric representation of a surface in R3 defined by

a set of vertices fpigi and their connectivity. It is a
regular three-connected mesh. Its topology is dual

to a triangulation, and it can represent surfaces of

any topology. The geometry of simplex meshes

allows us to define discrete quantities such as mean

curvature at each vertex ðsee Delingette (1999) for
detailsÞ. All vertices follow a Newtonian law of
motion. Three kinds of forces are computed at

each vertex pi. The internal force f inti enforces
some regularization behavior. The external force

f exti pulls the model toward the ventricle bound-

aries. The global displacement force f globali is

computed from a global transformation with few

degrees of freedom designed to constrain all ver-

tices displacements. The law of motion is discret-

ized using finite differences and an explicit iterative

scheme:

ptþ1i ¼ pti þ ð1� cÞðpti � pt�1i Þ þ kðaf inti þ bf exti Þ

þ ð1� kÞf globali ; ð3Þ

where pti denotes the position of vertex pi, at time t,
c is a damping coefficient, a and b are the internal
and external force weights, and k is a locality
weight. The discrete time step is hidden in the a, b
and c coefficients. We use a coarse-to-fine ap-
proach, limiting model deformation capabilities by

setting k to zero at the beginning of the deforma-
tion process, then gradually increasing it to allow

more local deformations. The a coefficient value is
set to 1 thus having b variations weight the re-
spective influence of the internal and the external

forces. The b coefficient varies from 1 to 0.1 as k
increases. The damping value c is fixed to 0.35
based on some empirical results showing this value

usually provides a fast convergence speed. An

automatic algorithm for governing k evolution was
proposed in (Montagnat and Delingette, 1998).

At the beginning of the deformation process.
k ¼ 0 and, due to the computation of f globali

(Montagnat and Delingette, 1998), Eq. (3) exactly

corresponds to the iterative closest point (ICP)

algorithm (Besl and McKay, 1992; Zhang, 1994).

Thus a rigid registration of the model is first

achieved. This drastic reduction of the model

number of degrees of freedom constrains the de-

formation capability of the model and make the

model far less sensitive to its initial position. When

rigid registration is achieved, affine registration is

applied before allowing local model deformations
(k > 1).

4.2. Surface regularization

Due to its discrete nature, the regularization of

a simplex mesh is not based on the evaluation of

surface partial derivatives but on the relative po-

sition of a vertex with respect to its neighbors.
When a reference shape similar to the structure to

segment is known, we rely on a shape regularizing

constraint. The internal force is computed from

the geometric parameters of simplex meshes.

Let us consider a mesh vertex pi and its three
neighbors pnghjðiÞ, j 2 ½1; 3�, defining a tangent
plane Pi with normal ni. The position of pi is re-
lated to the position of its neighbors by the
equation:

pi ¼ e1i pngh1ðiÞ þ e2i pngh2ðiÞ þ 1
�

� e1i � e2i

pngh3ðiÞ

þ HðpnghjðiÞ; e
1
i ; e

2
i ;uiÞni

where e1i and e2i are two barycentric coordinates
called metric parameters, ui is a curvature related

angle called simplex angle, and H is an elevation

function above Pi ðsee Delingette (1999) for de-
tailsÞ. It can be shown that a simplex mesh shape
is defined up to a similarity transformation by the

set of its metric parameters and simplex angles
fe1i ; e2i ;uigi.
Each vertex pi is attracted toward a point ~ppi on

a smoother mesh. Let ~eeji , ~uui and ~pp?i denote the
metric parameters, the simplex angle and the

projection of ~ppi on Pi respectively. The internal

force can be decomposed as the sum of a tangen-

tial and normal component:

f intðpiÞ ¼ ð~pp?i � p?i Þ þ ðHðpnghjðiÞ; e
1
i ; e

2
i ;uiÞ

� HðpnghjðiÞ; ~ee
1
i ; ~ee

2
i ; ~uuiÞÞni:

The tangential component of the internal force
controls the vertex spacing over the surface. To en-

sure uniformly spread vertices, metric parameters
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are all set equal: ~ee1i ¼ ~ee2i ¼ 1=3. The normal com-
ponent constrains the mean curvature of the sur-

face through the simplex angle. The definition of
~uui depends on the level of geometric regularity that

should be enforced. Let fu0i gi be the set of simplex
angles defining the reference shape of an anatom-

ical structure. Setting ~uui ¼ u0i ; 8i constrains the
surface to converge toward the reference shape in

the absence of external forces. This internal force

definition introduce shape prior knowledge in the

deformation process. Reference simplex angles u0i
are measured on the reference mesh used for seg-

mentation. This implies deforming a first mesh in a
reference image. The reference mesh can be guided

manually if needed as this initialization stage needs

only to be done once.

4.3. Statistical shape variations

By using simplex meshes, we are using zero-

order statistics on shape (i.e. a mean model) with
reference curvature information to introduce prior

shape knowledge in the segmentation process.

Several authors reported positive results in using

PCA to compute first-order statistics (i.e. shape

variations) (Cootes et al., 1995). However, we

found difficult to apply this result in our case.

Training on reference surfaces in the 3D case is not

straightforward due to the difficulty to match
corresponding points on a set of surfaces (except

for a very few curvature extrema points). More-

over, relevant statistics can only be extracted from

large enough image databases. This is even more

critical in 3D were the variation space dimensio-

nality is much higher. In the case of 4D imagery,

statistical variation modes would only be relevant

for the segmentation of one, say the first, image.
Each following image of the sequence would

require a new statistical model.

5. External forces for 3D US image segmentation

Our deformable simplex mesh relies on external

forces for segmenting the left ventricle in 3D US
images. These forces should attract each vertex

toward the closest boundary voxel. In echocar-

diographic images several difficulties arise for

finding object boundaries. The speckle, inherent to

the image formation of US imagery, and the image

noise mainly originating from the digitization

process, are responsible for causing false contour

detections (false positives). The variable informa-

tion density, due to the cylindrical geometry of the
image, and the missing information, due to the low

energy of the ultrasound beam reflected at the

organ interfaces and the rib occlusions, make the

ventricle contours hard to detect (false negatives).

We rely on the model regularizing behavior and

the robust force expressions proposed below to

deal with false positives and false negatives.

5.1. Scan-line algorithm

Closest boundary voxels are computed for each

vertex by scanning the image along the vertex

normal direction until a boundary voxel is

reached. Indeed, it has been shown in (Kimia et al.,

1992) that the class of surface deformations is not

restricted by only considering displacement along
each vertex normal. Thus, we restrict the search

for boundary points along the normal direction ni
of each vertex pi.
We proceed by scanning all cylindrical voxels

intersected by the normal line ðpi; niÞ in the image
volume within a fixed range centered on each

vertex (see left of Fig. 6). The image intensity IðpÞ
at any normal line point p is tri-linearly interpo-
lated from the eight closest image voxel intensities

I0–I7 (see center of Fig. 6). This algorithm outputs
a list of voxels for which we store their interpo-

lated intensity value and their Euclidean distance

from pi. The scan-line range is fixed as a percent-
age of the image size. We used a 10 voxel length

scan line in our experiments.

5.2. Gradient norm extremum

We first use the extracted scan line in order to

find the gradient norm extrema along the normal

direction. In practice, the normal direction at a

gradient vertex quickly converges toward the di-

rection of the gradient vector in presence of a

strong boundary. In order to improve this external
force computation, we propose to add two addi-

822 J. Montagnat et al. / Pattern Recognition Letters 24 (2003) 815–828



tional constraints for a voxel to be considered as

the closest boundary voxel. Since the cavity of left

ventricle is surrounded by structures that appear

brighter, we use a gradient orientation constraint to

keep only boundaries whose gradient vector di-

rection is roughly the same as the normal direc-
tion. Also, we constrain the boundary voxel to

belong to a given range of intensity values in order

to eliminate spurious boundary information.

5.3. Region-based algorithm

The previous algorithm may still fail due to the

presence of strong edges in the ventricle bound-
aries vicinity. Errors occur if such a neighboring

edge has a higher gradient than the ventricle edge

and if it meets the two additional constraints listed

above. In order to improve the discrimination of

the boundary search algorithm, we propose to use

both notions of region and boundary. Region-

based image segmentation has been proposed

in (Ronfard, 1994) and has proven to be more
powerful than gradient-based approaches. We first

extract the intensity profile of a vertex in the fil-

tered image. Prior anisotropic diffusion ensures

rather homogeneous regions in the image. The

intensity profile is scanned from the inside to the

outside to find a set of consecutive voxels within a

given intensity range and of length greater than a

minimum threshold. Once the beginning of a re-
gion has been found, we search for the first voxel

value that does not belong to the region intensity

range thus corresponding to the end of the region.

Given that such a voxel has been found we then

look for a voxel whose gradient norm is above a

given threshold in the vicinity of the region end.

This algorithm requires to set appropriate values

for the region intensity range and the gradient

norm threshold parameters, based on the seg-

mented image properties.

6. Experimental results

6.1. Gradient computation

This experiment compares three cardiac left

ventricle reconstructions from a 3D echocardio-

graphic image using two different expressions of

the external force. The first reconstruction relies on

the gradient of the gradient norm as the external

force, thus following the approach originally in-
troduced by Kass et al. (1988). The second and

third reconstructions relies on gradient extremum

and region-based external forces as introduced in

Section 5. The left ventricle model is initialized as

an ellipsoid roughly centered inside the ventricle.

Fig. 7 shows the reconstructed surfaces (top row)

and the intersection of each surface with one of the

image planes (bottom row). The template image
quality is high (4� of arc resolution) and gradients
are compute using a 73 cylindrical filter. The gra-

dient of the gradient norm (left) is not reliable

enough due to the large amount of speckle which

introduces too many false positives. The scan-line

algorithm (middle) provides better results for both

the gradient extremum and the inner dark regions

search. The region approach (right) better smooths
the boundary and is more accurate as can be clearly

seen in the mitral valve area (lower part of image).

6.2. Echocardiographic images

The temporal evolution of the cardiac left ven-

tricle is extracted from a series of eight 3D echo-

cardiographic images covering the heart systole

Fig. 6. Normal line and the scanned voxels: Tri-linear interpolation on a cylindrical voxel; 3D display of the scanned voxels.
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(contraction). The original images quality is poor

due to a low resolution (20� of arc between planes)
speckle, video signal digitization artifacts, and

occlusions due to the reflection of the ultrasound
beam by ribs. A region-based approach is used for

computing the external image attraction term. In

order to study the benefit of anisotropic diffusion,

the same 4D image is segmented both with and

without prior diffusion.

The model built in the previous experiment is

used as a template for the segmentation of the first

volume in time. At each following time step, the
model is initialized from its position at the previous

time instant. The same deformation parameters

have been used for original and diffused images

segmentation. Two deformation stages occur for

each time instant: a global rescaling of the model

using a global affine constraint (b ¼ 1, k ¼ 10%,
scan-line range r ¼ 10 voxels) followed by a local

deformation stage that compensates for non-rigid

deformations (b ¼ 0:2, k ¼ 70%, r ¼ 5 voxels).
Fig. 8 displays the surface model extracted at all

8 time instants in the native (top row) and diffused
image (bottom row). Even though they appear to

be similar, the graph shows the model volume

variations through time for the original (dashed

line) and diffused (solid line) images. For detailed

view of the differences, Fig. 9 shows the intersection

of the models extracted from the original data onto

slices of the original image, while Fig. 10 shows the

models extracted from the diffused data. The hor-
izontal axis represents time (all 8 time instants of

the sequence). The vertical axis is the rotation angle

of the displayed slice (from top to bottom: 0�, 20�,
40�, 60�, 80�, 100�, 120�, 140�, 160� of arc).
A last segmentation example on a complete

heart cycle sequence is shown in Fig. 11. The

sequence has a high resolution: 4� of arc angle

Fig. 7. Gradient of the gradient norm (left), gradient extremum (center), and region-based (right) reconstruction.

Fig. 8. Left: volume variation extracted from the original (- - -) and diffused (––) images. Right: surface models extracted from the

original (top row) and diffused (bottom row) images.
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between slices, 22 time instants. There is a visible

breathing artifact. Fig. 11 shows the volume vari-

ation curve and the reconstructed model super-

imposed on one slice of the sequence.

7. Discussion

The anisotropic diffusion procedure improves

both the gradient computation and the extraction

of homogeneous regions along the model normal

directions. As a consequence, the model better fits

the visible boundaries of the left ventricle in

echocardiographic images. For the two segmen-

tations shown above, the same parameters of
motion have been used.

The region-based force defines the model

boundary as a bright region whose length is at

least 5 voxels. However, due to the intensity

smoothing caused by the diffusion process, the

intensity threshold defining ‘‘bright regions’’ is

different in the original and the diffused data. The

definition of the ventricle boundaries is sensitive to
this threshold and this results in a displacement of

the apparent boundaries that explains the differ-

ence in volume estimation between the original

and diffused data (see left of Fig. 8). In the absence

of ground truth segmentation, it is very difficult to

set the region threshold so that the reconstructed

surface corresponds to the physical boundaries of

the heart ventricle and that the computed volume
corresponds to the actual volume.

Fig. 9. Intersection of the deformed models with the original image.
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However, the computation of the heart left
ventricle ejection fraction if far less sensitive to the

intensity threshold since it is a ratio parameter.

The ejection fraction ef measures the fraction of
blood ejected by the ventricle at each heart cycle:

ef ¼ ðvmax � vminÞ=vmax where vmax and vmin are the

Fig. 10. Intersection of the deformed models with the diffused data.

Fig. 11. Left: model volume variation over a complete heart cycle. Right: intersection of a the surface with one of the sequence slices

through time.
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maximal and minimal ventricle volume respec-

tively. In the first experiment shown above, we

measured ejection fraction values of 41% in the

original data and 44% in the diffused data. This

values compare to the 45% ejection fraction esti-

mated from hand-made segmentation of the image
by a cardiologist. These results are very satisfying

since the inter-operator variability in the compu-

tation of the ejection fraction on that kind of im-

ages is in the order of a few percents.

The model shape constraints regularize the

surface deformation. This is visible in the second

experiment (Fig. 11) where shape constraints at-

tenuate the effect of the breathing artifact on the
surface reconstruction.

8. Conclusion

In this paper we have demonstrated that seg-

mentation of cylindrical echocardiographic images

can be performed using deformable surfaces. The
model provides enough intrinsic (shape) and ex-

trinsic (grey-level range) prior knowledge on the

data, to constrain the deformations properly even

in the presence of very sparse and noisy data. We

are now focusing on introducing more prior

knowledge in the deformation process using

temporal continuity in the deformation process

(Montagnat and Delingette, 2000).
Prior filtering of the image reduces the speckle

level and improves the region detection. The 4D

anisotropic diffusion preprocessing improves spa-

tial and temporal consistency of the time series of

images. The image geometry is also taken into

account for a better detection of structure bound-

aries. The model-based segmentation enables an

accurate computation of the left ventricle ejection
fraction when compared to hand-made segmenta-

tion by an expert.
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