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Abstract Computer models of cardiac electrophysiology
(EP) can help to better understand the mechanisms of
arrhythmias and to guide interventions. However, model
adjustment to patient data (personalization) is a required step
that is still challenging from clinical data. The progress in the
fusion of multimodal data opens up new possibilities in
generating patient-specific models of the heart. In this paper,
we present the state-of-the-art in multimodal data fusion for
EP procedure guidance and how such integrated data can be
used to personalize models and guide interventions.
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Introduction

Electrophysiology (EP) procedures can be highly effective,
but the complexity of the electromechanical phenomena
combined with the challenges of cardiac catheterization still
hamper the success rate. There has been an important effort in
the last years in image fusion in order to help guidance of such
procedures. This is often based on multimodal image
registration, allowing the display of information from from
computer tomography (CT) or magnetic resonance imaging

(MRI) as an overlay on top of real-time fluoroscopy.
However, the planning of the intervention is still difficult.
The translation of the important effort in cardiac electrophys-
iology modeling into the clinical environment could help such
interventional planning. We present here how the latest
developments in image fusion can be coupled with personal-
ized models of the heart in order to improve planning and
guidance of EP procedures.

The two exemplar applications presented here are
cardiac resynchronization therapy (CRT) and radiofre-
quency (RF) ablation. In the two cases, the image
registration shares similar techniques but the biophysical
models used are different. No global biophysical model of
cardiac electrophysiology is suitable for all the clinical
applications. There is an important requirement to select the
right model for a specific application. The model has to
represent the important phenomena for this application, but
any additional complexity makes the personalization harder
and the computational cost higher.

Modeling of the human body at all scales has been an
important research effort of the last decades; see for
instance the Physiome project (http://www.physiome.org)
and the Virtual Physiological Human (VPH) [1]. Within this
community, cardiac models have been particularly devel-
oped, and mostly for the electrophysiology [2–8••, 9••]
(and references therein). Detailed biophysical modeling of
cardiac EP can help in understanding the pathophysiology
and the generic mechanisms. However, for personalized
planning and guidance, there is a need to adjust the
parameters of these models in order to fit to specific patient
clinical data. This is also a scientific challenge, which is now
an important focus of the modeling community.

This has been enabled by the tremendous progress of the
imaging of the heart, and the fusion of the different imaging
modalities. We present in this article a review of the
imaging as well as examples of biophysical model
personalization for EP procedure guidance.
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Imaging Cardiac Anatomy/Function and Data Fusion
for EP Procedures

Anatomical Imaging and Segmentation

Anatomical imaging of the heart is possible with CT, MRI,
ultrasound (echocardiography, echo), and rotational X-ray
angiography (RXA). Each imaging modality has its relative
advantages and disadvantages and all can be used for
interventional guidance of cardiac EP procedures and
subsequent biophysical modeling.

CT imaging is now widespread and modern scanners can
acquire an ECG-gated image of the whole heart within a
single breath-hold following the injection of iodinated
contrast agent [10•]. The voxel resolution is high at
0.3 mm3. There is excellent visualization of the endocardial
cavities, good visualization of the ventricular myocardium
and the valves [11, 12]. However, the visualization of the
atrial myocardium remains a challenge but is just discern-
able using this modality. Imaging of the coronary circula-
tion is well achieved for both arteries and veins after
contrast agent injection. Concerns about radiation dose are
counter-balanced by new acquisition techniques, such as
step-and-shoot, that keep dose to a minimum while
maintaining high image quality [13].

Cardiac MRI has seen significant development in the last
10 years [14]. The use of ECG-gated and respiratory-
navigated techniques allows the acquisition of a single
high-resolution whole-heart image in less than 10 minutes
during free-breathing acquisition. This can be carried out
after gadolinium-based contrast agent injection to achieve
excellent visualization of the endocardial cavities. There is
excellent visualization of the left ventricular myocardium,
but the visualization of the right ventricular and atrial
myocardium is challenging due to the limits of the voxel
resolution that can be typically reconstructed to 1 mm3.
Imaging of the coronary arteries is well achieved and
visualization of the coronary venous system is possible,
especially after the administration of blood-pool imaging
contrast agents such as Gd-BOPTA (Bracco Imaging SpA,
Italy). Imaging of the valves is limited using MRI.

Echocardiography is the mainstay of cardiac imaging
due to its low cost and ubiquitous availability. Recent
advances in transducer technology allow for the acquisition
of wide field-of-view three-dimensional heart images using
both transthoracic (TTE) and transesophageal (TEE) probes
[15]. Whole-heart images can be reconstructed using
image-stitching or compounding methods [16•]. Excellent
visualization is possible of all of the cardiac chambers, the
great vessels, the left ventricular myocardium, and the
valves. Imaging of the right ventricular myocardium is
more challenging. The atrial myocardium can be imaged
effectively using transesophageal probes. There is also the

possibility to use catheter-based intracardiac echo (ICE) to
achieve small field-of-view detailed imaging from within
the heart.

Rotational X-ray angiography uses conventional C-arm
technology to acquire multiple projection images during the
injection of iodinated contrast agent into the target
structure. The C-arm is rotated around the patient during a
breath-hold and is covering a typical rotation of more than
200° in less than 10 s. Reconstruction techniques are then
applied to obtain CT-like image data with a typical
reconstructed voxel resolution of 0.4 mm3. RXA has been
extensively used for imaging of the left atrium for guidance
of left atrial ablation procedures [17•]. The contrast
injection can be either directly into the left atrium, with
cardiac motion arrested using either adenosine injection or
rapid pacing [18]. Recently, RXA has been also used to
image the right ventricle to guide the ablation of the right
ventricular outflow tract tachyarrhythmias [19•]. RXA only
provides images of the endocardial cavities, with poor
signal-to-noise ratio and significant cardiac motion blur.
RXA has also been used for imaging of the coronary
circulation, both arteries and veins.

For effective use for image-guided intervention and
biophysical modeling, anatomical models must be generat-
ed from the cardiac image data. This can be achieved by
segmentation of the image data and subsequent surface
meshing or by both of these in a single step, ie, direct
surface fitting to the image data. Segmentation should be
robust, ie, have a low failure rate, and accurate. The gold
standard for cardiac segmentation is manual, slice-by-slice
segmentation by an expert. This will be robust and accurate
but is very time-consuming and can take 4 h for a several-
hundred slice data set. The use of fully automatic or
semiautomatic methods is preferred as long as the robust-
ness and accuracy are within the requirements for interven-
tional guidance and modeling. Fully automatic whole-heart
segmentation (all cardiac chambers, including the left
ventricular myocardium, and the great vessels) has been
reported using statistical shape models (SSMs, see [20] for
a detailed review of SSMs and their use for segmentation)
and atlas-based methods. These methods have been applied
to both CT [21••] and MR [22–24] image data (Fig. 1) and
more recently to 3D echo data [25]. Robustness and
accuracy are best for CT data where image quality and
consistency is high. Segmentation results for cardiac MR
image data are slightly inferior and methods are restricted to
particular acquisition protocols, eg, steady-state free pre-
cession (SSFP) 3D data. Echo data poses the greatest
challenge due to low signal-to-noise and field-of-view
problems. For all imaging modalities, fully automated
segmentation techniques coupled to minor expert manual
corrections give a significant timesaving when compared to
manual segmentation. In all cases, the segmentation of the
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left atrial endocardium is a challenge due to the topological
variants of the pulmonary veins that are present. Segmen-
tation of the left atrium from RXA data using SSMs has
been demonstrated but only for the four-vein pulmonary
vein configuration [26]. Recent work on left atrial segmen-
tation from first-pass gadolinium MR angiography image
data [27] is promising but semiautomated techniques, such
as ITK-Snap (http://www.itksnap.org) [28], are currently

more robust for left atrial segmentation. Segmentation of the
right ventricular or atrial myocardium remains a challenge and
is largely limited by the current state-of-the-art in imaging.
Segmentation of the valves has recently been demonstrated
from cardiac CT data and also from echo data [11, 12].

Electro-anatomic mapping systems (EAMS) are extensively
used during EP procedures for guidance and electrical
mapping. These systems are able to reconstruct the geometry

Fig. 1 Fully automatic segmen-
tation result using the method of
Peters et al. [22]. A high-
resolution whole-heart SSFP
MR dataset is shown in
multiplanar view (left) with
segmented boundaries shown in
red. The resultant 3D model is
shown on the right with the
cardiac chambers and great
vessels labelled with different
colors: (cyan) left ventricle,
(green) right ventricle, (blue)
left atrium, (yellow) right atrium,
(brown top) superior vena cava,
(brown bottom) inferior vena
cava, (brown left) coronary
sinus, and (magenta) aorta

Fig. 2 Left atrial scar map
registered to X-ray fluoroscopy
to guide a redo left atrial
ablation for atrial fibrillation.
The anatomical surface and scar
map were derived from MR
SSFP and gadolinium
late-enhancement images,
respectively. The amount of
late-enhancement is color-code
with red as high, green as
medium to low, and yellow as
none. There is an ablation
catheter (middle catheter)
looped inside the left atrium and
inserted into the right upper
pulmonary vein. The right
catheter is inside the coronary
sinus and the left catheter is the
lasso lying in the right atrium
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of target cardiac chambers by tracking a roving catheter
within the heart. As the roving catheter is moved along
the endocardial surface, the position of the catheter is
continually recorded to generate a surface model.
Examples of these systems include the CARTO system
(Biosense Webster, USA) [29••] and the EnSite NavX
system (St. Jude Medical, USA) [30•]. Due to the
limitations of the accuracy of the catheter tracking and the
influences of both cardiac and respiratory motion, the fidelity
of the anatomical reconstructions is suitable for the guidance
of procedures but is of limited use for obtaining the high-
fidelity anatomical models required for biophysical modeling.

Functional Imaging

Functional imaging can be divided into several categories:
motion, perfusion/blood flow, and scar imaging. Motion
imaging is possible with CT, MR, and echo imaging. Gated
cardiac CT has an intrinsic temporal resolution of approx-
imately 100 ms but image reconstruction is possible for any
arbitrary cardiac phase, as expressed by the percentage of
the R-R interval, using interpolation. Several techniques
exist for imaging cardiac motion using MRI and the two
most popular techniques are cine MRI and tagged MRI.
Both cine and tagged MRI are typically acquired as a series
of short-axis and long-axis slices, with 40 to 50 phases per
slice for cine MRI and 20 to 30 phases per slice for tagged
MRI [31•]. More recent advances in MRI have allowed

whole-heart dynamic 3D imaging for both cine and
tagged acquisitions but with lower temporal and spatial
resolutions than the 2D counterparts [32]. However, 3D
acquisitions do not have the inter-slice mis-registrations that
are often present with the 2D acquisitions due to multiple
breath-holds. Dynamic 3D imaging of the ventricles is
possible with echo imaging with the latest transducers and
systems achieving frame rates of 40 frames per second. See
Leung and Bosch [33••] for a detailed review of techniques to
extract the myocardial motion from this type of data.

MRI has been shown to be the premier modality for
myocardial perfusion imaging and scar imaging [31•, 34].
Although perfusion imaging and scar imaging with CT is
possible [35, 36], the sensitivity and robustness is poor
when compared to MRI. Recently, gadolinium late-
enhancement MRI has been used to image necrotic damage
caused by catheter-based RF ablation for the treatment of
atrial fibrillation and atrial flutter [37••, 38]. Post-processing
techniques have been developed to segment and visualize
these necrotic regions that resolve to form atrial scars over
time (Fig. 2) [39••]. Furthermore, T2-weighted MRI has
been used to image the acute edematous effects of RF
ablation with some success [39••].

Electrical Mapping

For EP procedures, measurement and localization of the
electrical activity of the heart is critical. Commercial

Fig. 3 Example of CT registra-
tion to X-ray fluoroscopy for
guidance of ablation treatment
of left atrial fibrillation. The left
atrium is shown in a cut-away
view in blue; the red structure is
the tracheal bifurcation and this
was used to aid in the manual
registration of the CT data to the
fluoroscopy data. Catheters can
be seen inside the left atrium
(top) and inside the coronary
sinus (bottom)
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EAMSs have the capability to record and localize the
electrical activity measured by tracked mapping catheters
and to display this on the reconstructed anatomical models
that are created by these systems. Furthermore, it is possible
to directly map the electrical data to anatomical surfaces
obtained from high-quality imaging modalities such as CT,
MRI, and RXA. The high-fidelity surface models obtained
from these modalities can be registered to the reconstructed
EAMSmodels using a combination of point-based and surface-
based registration techniques (CARTO-Merge, Biosense Web-
ster, USA [40]; EnSite Nav-X Fusion, St. Jude Medical, USA
[41]). Electrical mapping is also possible by measuring the
position of the mapping catheter using X-ray fluoroscopy and

projecting this to a registered anatomical model (ElectroNav,
Philips Healthcare, The Netherlands) [42•, 43].

Multimodal Data Fusion

For both guidance of cardiac EP procedures and personal-
ization of biophysical models, it is necessary to co-register
or fuse multimodal data from imaging modalities and
catheter-based information, such as the location of ablation
points, pacing sites, and electrical data. If an EAMS is used,
then this can be achieved by using CARTO-Merge or
EnSite NavX Fusion technology as described above. Other
approaches consist of registration of the 3D imaging data to

Fig. 4 Registration of MRI-derived data to X-ray fluoroscopy for the
guidance of cardiac resynchronization therapy for the treatment of heart
failure. The coronary venous system is shown in blue, the left ventricular
endocardial surface is shown in green with scar distribution shown in

red, and the left atrium is shown in orange, and the right atrium is
shown in yellow. The balloon occlusive venogram (top) shows good
alignment with the coronary vein model. In the shown position
(bottom), the left ventricular lead is close to an area of scar
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the 2D fluoroscopy images that are routinely used to guide
EP procedures and to make catheter-based measurements.
This problem is a 2D-3D registration problem (see [44•] for
a detailed review of 2D-3D registration techniques for
interventional guidance) but is somewhat challenging in the
case of cardiac structures since there is limited common
information available between the 3D and 2D image data.
For the case of RXA data, the 2D-3D registration is implicit

since both imaging data are acquired with the same X-ray
system and therefore in the same coordinate system [45].
For CT and MR data, the registration can be performed in a
number of ways. Manual alignment of CT-derived or MR-
derived surface models with features seen in the fluorosco-
py data (Figs. 2, 3, and 4), such as catheters, the heart
borders, and contrast in angiography, can lead to a robust
and accurate registration for guidance [46, 47]. This
technology is available through the commercial EP Navi-
gator platform (Philips Healthcare, The Netherlands).
Automatic registration methods include the use of the spine
[46] and 3D catheter reconstructions from multiple X-ray
views [48, 49]. Automatic registration can also be
achieved in the setting of hybrid X-ray/MR systems
(XMR systems) by pre-calibration and tracking [50,
51••]. The registration of 3D echo data to fluoroscopy data
is more challenging than when using 3D CT or MR data.
Two approaches are possible: firstly, indirect registration
via a registered CT or MR dataset [52, 53] or direct
registration via a tracked echo probe (Fig. 5) [54, 55].

Modeling the Heart for EP Procedures

Biophysical Models of Cardiac Electrophysiology

For the last decades, an important research effort has
focused on mathematical modeling of cardiac electrophys-
iology [4, 9••, 56••, 57, 58]. This effort has produced a

Fig. 6 From clinical data to models: a MR-derived segmented mesh
with scars (in red); b XMR registration of Ensite LV surface with MR-
derived mesh, values projected from Ensite to MR LV surface; c fiber
orientations based on a statistical atlas; d unipolar electrograms for

detection (black dots) of depolarization time (upper) and repolariza-
tion time (lower) from positive (red), negative (blue), and biphasic
(green) T waves

Fig. 5 Registration of 3D echo data (orange) to X-ray fluoroscopy
(grey scale) by tracking a calibrated 3D transesophageal echo probe
during left atrial ablation for the treatment of atrial fibrillationof atrial
fibrillation. TEE - transesophageal echo probe, Ao - aorta, LV - left
ventricle, LA - left atrium, AV - aortic valve, MV - mitral valve, Lasso -
lasso catheter, Ab - ablation catheter
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variety of models, with different levels of complexity. An
important question when translating such research into
clinical applications is the choice of the relevant model.
Indeed, the most complex models, which can reproduce the
cardiac function with the most detailed realism, may not be
the best choice as the complexity in adjusting the
parameters and the computational time may not be
compatible with the clinical constraints [59•, 60]. Compu-
tational modeling of cardiac arrhythmogenesis and arrhyth-
mia maintenance using such models has made a significant
contribution to the understanding of the underlying mech-
anisms [61–64]. These studies have shown a host of factors
involved in the onset of arrhythmia with wave fragmenta-
tion and spiral wave breakups, which include realistic
ventricular geometry [65], heterogeneity in repolarization
[66], APD restitution [67, 68], and CV restitution [69]. A
combined clinical study and synthetic modeling of APD
restitution was shown [70], and comparisons with animal
models were done for CRT [71, 72].

However, direct coupling of such models with clinical
data to obtain patient-specific simulations and predictions
remains challenging. Personalization of models, which is
the process of estimating the model parameters that best fit
a specific patient data, is now in important development
[73, 74•]. It is a scientific challenge as modeling soft tissue
in vivo is difficult and clinical data are usually sparse and
noisy. Specific methods have to be designed, and these
have to be fast and robust in order to be compatible with
clinical constraints.

We present here an example of adjusting different parts
of the model (geometry, conductivity, restitution) to the
available clinical data (Fig. 6).

Anatomical Model Personalization

Biophysical models require first defining the spatial domain
on which the simulations will be carried out. In the case of
EP, one needs to segment the anatomical structure of
interest (the atria or the ventricles). Different segmentation
approaches, depending on the imaging modality, were
presented in the first section.

It is then necessary to generate a computational mesh
from the segmentation whose specifications are imposed by
the equations of the model. The accuracy of the simulations
is controlled by the characteristics of the mesh used.

Finally, one important factor of EP simulation is the
muscle fiber orientation, as it has an impact on the action
potential propagation. One can use synthetic orientations
generated from the literature, or a statistical atlas built from
ex vivo hearts [75], and potentially newly emerging in vivo
measurements [76].

Electrophysiology Model Personalization

Adjusting the model parameters so that the simulation
results fit the measured data is both a theoretical and
practical challenge. This inverse problem can be ill posed;
for instance, the solution may not be unique. This can be
created by the only partial observation of the heart that is
available. For instance, having only activation times on a
part of the endocardium could lead to different volumetric
parameters providing the same results. Thus it is important
to evaluate the observability of the model parameters from
the data, which provides insights on such topics.

This is the reason why the careful choice of the model is
crucial for such methods, as more complex models may
lead to situations where too many parameters are not

Fig. 8 Depolarization time isochrones estimated from the personal-
ized electrophysiology model and the endocardial mapping data.
Presented cases are sinus rhythm (left), and with pacing (right)

Fig. 7 DT isochrones for simulated S1-S2 VT-Stim protocol. S1 stimulus shows a normal propagation and S2 shows a unidirectional block
created in the isthmus due to APD heterogeneity. Then we observe DT isochrones for induced monomorphic VT
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observable from the data, and thus its appropriateness to
simulate patient-specific behavior is reduced.

Personalized Model Predictions

Once adjusted to the available patient data, models can be
used to test the behavior of the heart under different
conditions. We demonstrate here two examples, for VT and
for CRT.

For instance, the VT stimulation procedure can be applied
virtually to the model, in order to evaluate the inducibility of
VT in the patient [77]. Once personalized using mapping
data, different pacing protocols can be tested on the
computer model, from any location in the heart (Fig. 7).

Similarly, personalized models of the heart were used to
predict the changes in left ventricular pressure with
different pacing conditions [78]. Personalized EP models
were used to extrapolate the endocardial mapping data to
the whole myocardium (Fig. 8), in order to then simulate
contraction.

Conclusions

The important progress achieved in image acquisition,
image fusion, and biophysical modeling opens up possibil-
ities in obtaining patient-specific models of the heart.
However, there is still an important challenge in order to
perform this in a fast and robust manner, which is a
required step before being able to use such models in a
clinical environment. Moreover, the validation of model
predictions on a large cohort of patients is still to be done.
Once validated, such personalized models will be able to
help in diagnosis and therapy planning.
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