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Received 31 January 2006; received in revised form 24 March 2006; accepted 6 April 2006
Available online 12 June 2006
Abstract

In this paper, we present a framework to estimate local ventricular myocardium contractility using clinical MRI, a heart model and
data assimilation. First, we build a generic anatomical model of the ventricles including muscle fibre orientations and anatomical sub-
divisions. Then, this model is deformed to fit a clinical MRI, using a semi-automatic fuzzy segmentation, an affine registration method
and a local deformable biomechanical model. An electromechanical model of the heart is then presented and simulated. Finally, a data
assimilation procedure is described, and applied to this model. Data assimilation makes it possible to estimate local contractility from
given displacements. Presented results on fitting to patient-specific anatomy and assimilation with simulated data are very promising.
Current work on model calibration and estimation of patient parameters opens up possibilities to apply this framework in a clinical
environment.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The integration of knowledge from biology, physics and
computer science makes it possible to combine in vivo
observations, in vitro experiments and in silico simulations.
From these points of view, knowledge of the heart function
has greatly improved at the nanoscopic, microscopic and
mesoscopic scales, along with an impressive development
of the observations possibilities.

There are now in vivo modalities to observe the different
phenomena involved in cardiac function: mapping of the
electrophysiology (Eldar et al., 1997; Schmitt et al., 1999;
MacLeod et al., 2001; Faris et al., 2003; Rhode et al.,
1361-8415/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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2005), tracking of the deformation (Axel et al., 2005), mea-
surement of the global and local blood flow velocities (Kil-
ner et al., 2000), or combinations of these (Masood et al.,
2000). All these progresses made the design of a global
model of the heart conceivable (McCulloch et al., 1998;
Geerts et al., 2003; Hunter et al., 2003; Ayache, 2004;
Sachse, 2004).

The joint use of imaging and modelling of the heart
opens up possibilities in understanding, diagnosis and ther-
apy (see, for instance, the proceedings of the Functional
Imaging and Modelling of the Heart conferences (Katila
et al., 2001; Magnin et al., 2003; Frangi et al., 2005)). How-
ever, due to the limitations of medical imaging, modelling
capabilities and computational power, the validation of
such heart models with human in vivo data and further-
more their use in clinical applications are still very
challenging. The key point in using such models is to be
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able to adjust its parameters to patient data in a robust and
precise way.

We present in this paper a framework aiming at over-
coming these difficulties by directly combining modelling
of the heart, cardiac function estimation and parameter
adjustment. The aimed application is the estimation of
local contractility in the myocardium from displacements
measured in medical images.

Estimation of cardiac function from medical images is a
very active research area. The main applications in the
quantitative assessment of myocardial function are the seg-
mentation of the blood pools (Frangi et al., 2001) and the
tracking of the wall motion (Axel et al., 2005). The two
main approaches for the segmentation are based on bound-
aries and regions. The implementation of boundary-based
methods can be explicit, with for instance deformable
models (Montagnat and Delingette, 2005; Sermesant
et al., 2003), or implicit, with for instance level sets (Para-
gios, 2003; Chenoune et al., 2005). The region-based
approach is often a clustering of voxels, with for instance
mixture models (Blekas et al., 2005). The tracking of the
wall motion can be based on tag lines extraction, deforma-
tion models or registration techniques (Chandrashekara
et al., 2004; Pan et al., 2005). Ultrasound images also make
it possible to estimate cardiac motion (Papademetris et al.,
2001) and tissue Doppler gives great insight on motion and
flows. Recent real-time 3D probes will help overcoming
reconstruction and interpolation artifacts from rotating
probes.

Although these tasks give a great insight on the kinemat-
ics of the heart, the key factor in many clinical applications
is the mechanics of the heart, as this is the most represen-
tative of the muscle health and work. To go from the mea-
sured kinematics to the actual mechanics, one has to
introduce a constitutive law relating both, thus use a model
of the myocardium.

The five components presented in this paper are: medical
imaging techniques to observe the heart in vivo, building a
generic anatomical heart model, adjustment of this generic
heart model to patient anatomy, equations used to simulate
the cardiac electromechanical behaviour, and data assimi-
lation method to estimate local contractility from displace-
ment. We emphasise in each of these sections the advances
made and the difficulties encountered.

To build this framework, a multi-disciplinary collabora-
tive action was needed in order to integrate all the different
components, which is an additional difficulty, but such
actions can provide new approaches and help for introduc-
ing new techniques.

2. Observations: magnetic resonance imaging

Magnetic resonance imaging (MRI) is a successful and
promising modality but it remains difficult to use, and the
most complex sequences (tags, diffusion tensors) only just
start being used outside major research centres. A partic-
ular challenge in Cardiac MRI is that the heart is a mov-
ing organ, in a moving environment (breathing). This
restricts the resolution that can be obtained, and often
leads to inconsistent data, making subsequent analysis
challenging. Moreover, the acquisition is from several
heart cycles, using ECG-gating. This can also create
inconsistencies, as many pathologies modify the ECG,
due to changes in local conduction. We focus here on
the MR imaging techniques for the ventricles.

2.1. Anatomical imaging

Anatomical imaging can be divided in two categories:
black-blood and bright-blood. Black-blood imaging is
characterised by the suppression of the signal from flow-
ing blood (Simonetti et al., 1996). This gives a good visu-
alisation of the myocardium and enable accurate
delineation of myocardial borders with little inter-obser-
ver variability (Berr et al., 2005). Unfortunately, due to
the pre-pulse and the inversion time, black-blood imaging
is not well suited to dynamic (3D+t) imaging. Bright-
blood imaging generates high signal intensity for blood
and allow both morphological and functional assessment.
The recent developments in steady-state free precession
(SSFP) based sequences provide high temporal resolution
dynamic images with high contrast between the blood and
the myocardium in a reduced acquisition time. These
sequences have been shown to enable accurate estimation
of time-varying intra-ventricular blood volume curve
(Kunz et al., 2005). A major drawback however is that
delineating the epicardium remains difficult due to the
poor or variable contrast between the heart and the other
anatomical structures. But we worked with this kind of
data, as it is the sequence used clinically for dynamic
3D+t images.

2.2. Functional imaging

2.2.1. Global cardiac function analysis
The quantification of ventricular volumes, myocardial

mass and ejection fraction using MRI are both accurate
and reproducible in the hand of experienced users (Groth-
ues et al., 2002). However, the time required for acquisition
and analysis of MR images hampers the introduction of
cardiac MR into routine clinical use. Cardiac MR examin-
ations last frequently more than one hour, and involve
numerous breath-holds, which add to patient discomfort.

As mentioned earlier, SSFP bright-blood imaging is a
high-quality protocol and is becoming the favoured tech-
nique for cardiac function quantification. Fractional k-
space filling methods, view-sharing strategies and, most
importantly, parallel imaging enable the acquisition time
to be considerably reduced without substantial loss of
image quality or resolution (Kacere et al., 2005). Alterna-
tive approaches for accelerated data acquisition such as
kt-BLAST (Tsao et al., 2003) open new paths to extre-
mely fast and rich data acquisition. Despite the develop-
ment of 3D technology for acquisition, visualisation and
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analysis, cardiac MR imaging remains essentially a 2D
imaging modality. The major issue with multi-sectional
2D imaging is that the coverage of the ventricles requires
multiple breath-holds. Inconsistencies in the different
breath-hold positions can lead to errors in image interpre-
tation. Dynamic 3D+t single breath-hold imaging meth-
ods appear to be a promising alternative for functional
imaging (Peters et al., 2004). Nevertheless, compromises
have to be made in terms of image quality, spatial and
temporal resolutions.

2.2.2. Regional cardiac function analysis

Ejection fraction is a global parameter that assesses the
status of the cardiac function with great sensitivity. How-
ever, it is not specific enough for myocardial efficiency
and contractility. The study of wall deformations provides
more insights on the mechanical contraction of the heart.
MR tagging is a well-known method to track local defor-
mations of a ‘‘printed’’ grid as it follows the heart con-
tracting. It enables parameters such as twist, strain and
strain rate to be derived (Axel et al., 2005). Although
accurate, it is time consuming and suffers from the low
spatial resolution of tags. More recently, the development
of harmonic phase (HARP, Osman et al., 1999) and dis-
placement encoding stimulated echo (DENSE, Aletras
et al., 2005) methods makes it possible to quantify the dis-
placement of each moving pixel inside the myocardium.
These techniques though are currently limited to 2D
displacements.

The relationship between myocardial motion and con-
tractility cannot be directly estimated from the MR images.
Thus, a model-based approach could help to extract this
hidden information which is very relevant clinically.
1 http://www.ccbm.jhu.edu/research/DTMRIDS.php.
3. Generic anatomical heart model

The aim of this work is to provide a method for model-
based analysis of the previously described medical images.
The idea is to adjust a biomechanical model of the ventric-
ular myocardium using these images in order to extract
hidden parameters useful for diagnosis, like local contrac-
tility. To achieve the simulation of cardiac electromechan-
ical activity, we need the myocardium geometry and the
muscle fibre orientations as anatomical inputs. The geom-
etry gives the domain on which to carry out computations.
Fibre orientations are important for both the active and
passive behaviour of the myocardium.

The difficulty for this step is to obtain both types of
information for a particular myocardium. On the one
hand, geometry can be extracted from anatomical medical
images. But fibre orientations cannot be measured in vivo
and current diffusion tensor images of fixed hearts are still
noisy compared to the smoothness required by the electro-
mechanical computations.

On the other hand, when fibre orientations are measured
from dissection, the geometry is often not available, or in
so deformed shape that adjustment of the model to the
in vivo images becomes very challenging.

Due to these problems, our approach is to synthesise a
generic anatomical model of the myocardium, composed
of a simple geometry, close enough to in vivo observations,
and of synthetic fibre orientations, generated according to
the measurements available in the literature (Hsu and Hen-
riquez, 2001; Guccione and McCulloch, 1991).

3.1. Heart geometry

Left ventricle shape is close to a truncated ellipsoid, as
shown by the use of this shape for left ventricle volume esti-
mation from 2D images (Mercier et al., 1982). The right
ventricle can also be approximated by a truncated ellipsoid.
The generic heart model geometry is defined using different
parameters for the axis and radii of the left and right ven-
tricles ellipsoids, their thickness and the height of the trun-
cating basal plane (see Fig. 1).

3.2. Heart fibres orientations

It is well known that muscle fibre orientations vary
across the myocardial wall. Most diffusion tensor imaging
and dissection analysis observed an elevation angle (angle
between the fibre and the short axis plane) varying from
around +70� on the endocardium to around �70� on the
epicardium, depending on the sources (Hsu and Henriquez,
2001; Guccione and McCulloch, 1991), and being horizon-
tal in the short axis plane at mid-wall. Due to the smooth-
ing in the discretisation and averaging per tetrahedron, we
analytically defined the fibre image orientation to follow a
linear variation between +90� and �90�, to obtain the right
orientation in the final model.

Fibre have an important impact on the electromechani-
cal behaviour of the myocardium (Ubbink et al., 2006),
thus we need to define precisely their orientation and quan-
tify their variability. For the precision, DTMRI gives a
more and more precise description of excised hearts, but
there are still questions on how precise this must be to cor-
rectly compute strain and stress (Ubbink et al., 2006).
Recently available DTMRI acquisitions on several excised
canine hearts1 provide a first sample to compute this vari-
ability, but a non-trivial registration of these different data
sets has first to be performed.

3.3. Cardiac anatomical divisions

Accurate calibration, estimation and analysis of the
model is made easier by subdividing it into different ana-
tomical regions. Generating the model makes it possible
to analytically divide it into the 17 regions of interest pro-
posed by the American Heart Association (AHA) (Cerque-
ira et al., 2002).

http://www.ccbm.jhu.edu/research/DTMRIDS.php


Fig. 1. Generic anatomical bi-ventricular model: equatorial short axis slice of (a) geometry, (b) fibres orientation (elevation angle: red = +90, green = 0,
blue = �90), (c) AHA segmental division. (d) Resulting mesh with fibre orientations (black segments) and AHA divisions (colours). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.4. Ventricular myocardium mesh

From the anatomical image, a triangulated surface is
extracted using the marching cubes algorithm (Lorensen
and Cline, 1987). This surface is used to create a tetrahe-
dral mesh with the INRIA GHS3D software.2 Finally, fibre
orientations and subdivisions are assigned to the mesh
using rasterisation, see details in (Sermesant et al., 2003).
The resulting mesh is presented Fig. 1d.

We typically use meshes with around 4000 nodes and
20,000 tetrahedral elements. This allows to have enough
elements to represent well the geometry and the fibre vari-
ations, while keeping the mesh small enough for computa-
tions. Given the resolution of clinical images, especially the
slice thickness, there is no point in using a very fine mesh,
which would segment noise and have a stair-case effect
after local adjustment.

4. Patient-specific heart anatomy

Automatic segmentation of the myocardium from MRI
is still very challenging, and a very active topic (see for
instance the approaches proposed in (Mitchell et al.,
2002; Paragios, 2003; Lorenzo-Valdés et al., 2004) and ref-
erences therein for recent references). Additionally, the epi-
cardium is not easily distinguished and the right ventricle is
quite thin. Our approach is to deform the generic anatom-
ical model designed in Section 3 into the first 3D image of
the sequence. This is done in three steps: segmentation of
the image blood pools, intensity-based registration for the
2 http://www-rocq.inria.fr/gamma/ghs3d/ghs.html.
affine adjustment and deformable model-based segmenta-
tion for local deformations.

4.1. Segmentation of the ventricular blood pools

As stated above, multiple breath-holds SSFP sequences
are the most commonly used protocols for cardiac func-
tional imaging. The major benefit of such a sequence is
the clear contrast between blood and myocardial tissue.
SSFP also presents two other advantages compared to clas-
sical gradient echo (GRE) sequences: better signal-to-noise
ratio (SNR) and signal intensity persistence over the car-
diac cycle. The latter is explained by the fact that the signal
is related to the T2/T1 ratio rather than the inflowing
blood. These particularities are beneficial for ‘‘simple’’ clas-
sification-based segmentation algorithms. In clinical con-
text, multi-slices dynamic acquisitions are mostly planned
along the plane that cuts the left ventricle transversally
(short axis plane). Pixel resolution is often set around 2
by 2 mm and slice thickness usually varies between 7 and
10 mm. If the in-plane resolution provides quite a good
separation of the different tissues, the thickness causes an
averaging (a ‘‘mixing’’) of the different intensities within
the voxels that form the boundaries between tissues – i.e.
partial volume effect (PVE).

Based on these image properties, the method that we
have developed combines boundary-based and region-
based fuzzy classification (Andriantsimiavona et al.,
2003) with a probabilistic approach to partition the differ-
ent classes of tissues mixed in the ‘‘partial volumes’’
(González Ballester et al., 2002). Fig. 2 illustrates some
steps and results from this method. An initial region of
interest is set around the heart on the first frame (often

http://www-rocq.inria.fr/gamma/ghs3d/ghs.html


Fig. 2. Segmentation of the ventricular blood pools. (a) Selection of the region of interest (white square) and final segmentation (yellow curve).
(b) Variability of pixels intensity during the heart cycle, for one slice. (c) Background removal and first estimation of the Gaussian mixture for
myocardium, left and right ventricle blood pools, using the computed variability. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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chosen as end-diastole) of the time series of a slice that is
basal enough not to contain much of the papillary mus-
cles or trabeculae. The whole data of the cardiac cycle
in that slice is then used to roughly estimate the intensities
and locations of the different objects (blood, myocardium
and background) to be partitioned. This is based on a sta-
tistical separation of pixels between stationary and vary-
ing intensities. These initial values are then used as a
priori information for a spatially constrained mixture
model classification algorithm (Blekas et al., 2005; Liew
and Yan, 2003), that separates left and right ventricle
from the blood signal and myocardium. The propagation
of the segmentation over the different slices uses the pre-
viously segmented images as initial guess and a priori
knowledge.

4.2. Registration between the model and the image blood

pools

The segmentation of the blood pools is then used to esti-
mate the parameters of the ellipsoids that form the generic
anatomical heart model. This is to make more robust and
more precise the following local adjustment, based on a
deformable biomechanical model. Specifically, the bound-
ing boxes enclosing each ventricle are computed to define
the length of the ellipsoid axes while their mass centres
establish the location of each blood pool ellipsoid. The next
step of the affine adjustment involves a principal axes-
based registration (Alpert et al., 1990) in which each of
the principal orientations of corresponding ventricles (from
the model and from the segmentations) are matched. This
phase mainly copes with rotations between the segmented
blood pools and the model.

Then, an automatic affine (15 parameters) registration
algorithm is applied from the segmented image to the
blood pools from the model geometry, using the cross cor-
relation as similarity measure. This step is needed to correct
possible errors or ambiguities of the principal axes-based
registration and to cope with possible remaining scale or
shearing differences between the objects to register. Fig. 3
shows the good quality of the affine adjustment obtained
with the described procedure prior to the local adjustment.

4.3. Local adjustment using a deformable biomechanical

model

Finally, local adjustment is done with a deformable bio-
mechanical model (Sermesant et al., 2003), using the affine
transformation computed previously for initialisation. We
use a volumetric deformable model with linear elasticity
to compute internal forces.

External forces are computed along the normal to the
surface nodes. Defining the boundary voxels in the image
is made easy by the segmentation, a simple threshold on
the gradient value is enough. But it is also necessary to
use the gradient direction to distinguish between different
boundary voxels, which is very useful for the septum where
the deformable model can be confused by the left ventricle
and right ventricle endocardial boundaries. When looking
for boundaries, one vertex of the mesh can find a close high
gradient voxel corresponding to the other side of the myo-
cardium, due to the thin nature of the myocardium. By
comparing the normal direction of the mesh surface at this
vertex and the gradient direction at this voxel, we can elim-
inate the high gradient voxels corresponding to the wrong
side of the myocardium.

We implemented Houbolt semi-implicit time integration
scheme (Bathe, 1996), which gives better results for large
deformations: the semi-implicit part regularises the way
the mesh deforms. It makes it possible to conserve the good
quality of the elements, which is important for the subse-
quent simulations. As we attach anatomical information
to each element (fibre orientation, segment, endocardial/
mid-wall/epicardial, basal/apical), it is better to avoid a
re-meshing step.

4.4. Results

This whole method allows precise adjustment of the gen-
eric anatomical model to the patient image (Fig. 4), but still



Fig. 3. Registration of the ventricular blood pools between the segmentation (grey) and the model (green) in three orthogonal slices: (top) mass centres
alignment, (middle) principal axes alignment, (bottom) affine (15 parameters) registration. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. Local deformation with a biomechanical deformable model. (a) 3D surfaces, (b) short axis and (c) long axis slices of the image and the intersection
with the mesh before (red) and after (blue) local deformation. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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preserves surface smoothness and element numerical qual-
ity: the aspect ratio mean (resp. standard deviation) on
all the tetrahedra of the mesh is 0.674 (0.109) for the original
mesh, 0.650 (0.113) after affine transformation, and 0.652
(0.114) after local deformation. We computed a widely used
definition of the aspect ratio Q of a tetrahedron, an estimator
of the element quality which is defined as the ratio between
the radius of the inscribed circle, rin, and the length of
the longest edge, lmax, in the tetrahedron: Q ¼ 2

ffiffiffi
6
p

rin=lmax.
To introduce prior information (e.g. fibre orientation)
and make it easier to compare the results between normal
and pathological cases, it is very advantageous to have cor-
respondence between the reference mesh and patient-
specific meshes. Moreover, it is difficult to obtain good
quality meshes directly from automatically segmented med-
ical images due to the lack of smoothed boundaries. There-
fore we chose to build a generic model and then deform it
into the patient-specific data.
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The whole process could be rather automated, as seg-
mentation and registration parameters are fairly robust
to the variable quality of the input image. The local defor-
mation needs some visual control as no stop criterion has
yet been implemented. Nevertheless, from our experience,
the parameters in these three steps are quite constant across
different images so it should be possible to minimise user
input, and the overall time is considerably less than manual
segmentation duration. This patient-specific model can
then be used for the data assimilation procedure, but there
are requirements on the observations used.

A quantitative validation of this segmentation process
using manual segmentations is underway.

5. Cardiac muscle biomechanics

Modelling the myocardium behaviour is difficult
because of its active, non-linear, anisotropic nature. Several
constitutive laws were proposed for the active and passive
properties of the myocardium (Katila et al., 2001; Magnin
et al., 2003; Frangi et al., 2005).

5.1. Myofibre active constitutive law

An original modelling of the electrically activated
myofibres was proposed by Bestel-Clément-Sorine (BCS)
(Bestel et al., 2001). Whereas most modelling endeavours
rely on heuristic considerations (Arts et al., 2001; Costa
et al., 2001; Hunter et al., 2003), the BCS law is based on
a multi-scale approach taking into account the behaviour
of myosin molecular motors, so that the resulting sarco-
mere dynamics is in agreement with the sliding filament
hypothesis introduced in (Huxley, 1957). Denoting by rc

the active stress and by ec the strain along the sarcomere,
this law relates rc and ec as follows:

_sc ¼ kc _ec � ðaj_ecj þ jujÞsc þ r0jujþ scð0Þ ¼ 0

_kc ¼ �ðaj_ecj þ jujÞkc þ k0jujþ kcð0Þ ¼ 0

rc ¼ sc þ l_ec þ kcn0

8><
>: ð1Þ

where u represents the electrical input (u > 0: contraction,
u 6 0: relaxation). Parameters k0 and r0 characterise mus-
cular contractility and respectively correspond to the max-
imum value for the active stiffness kc and for the stress sc in
the sarcomere, while l is a viscosity parameter.

The propagation of the action potential activating the
muscle contraction can be modelled by non-linear reac-
tion-diffusion equations, see (FitzHugh, 1961; Aliev and
Panfilov, 1996; Knudsen et al., 1997) and references
therein. However, the corresponding numerical computa-
tions are costly, and in particular make a combined electro-
mechanical data assimilation procedure well out of reach.

Supposing we are only concerned with diagnosing
pathologies independent of electrical activation, we can
use pre-computed solutions of activation patterns – for
any relevant model – as inputs of our mechanical model.
However, if we also aim at estimating quantities associated
with electrical pathologies (such as activation isochrones,
or depolarization durations), we can use simplified models
such as that in (Panfilov and Holden, 1996), for instance.
In our approach, we have so far concentrated on the estima-
tion of mechanically related pathologies, and in our simula-
tions we mostly used simplified activation patterns given by
a planar wave traveling from apex to base with wave speed v

and defined by uðx; tÞ ¼ h � ½Uðt � x
vÞ � U lim�. In this expres-

sion U denotes a function representing the transmembrane
potential time variations as exemplified in Fig. 5, Ulim a
threshold value, h a positive constant, and x the coordinate
along an axis going from the apex to the centre of the base.

This gives a simplified but easy to compute activation
pattern. As compared to mechanical measurements and
indicators that we employ in our data assimilation proce-
dure we assume that this simplified electrical modelling is
sufficiently accurate. For a complete adjustment of the
model, we will need more realistic conduction pathways.
We plan to introduce the His bundles and a more realistic
Purkinje network. Nevertheless, quantitative data on the
localisation of these structures in the human heart is diffi-
cult to obtain, in particular due to the fact that they are
not visible with imaging.

5.2. 3D model of the myocardium

The above active constitutive law was used within a rhe-
ological model of Hill–Maxwell type (Hill, 1938; Chapelle
et al., 2001), as depicted in Fig. 6. The element Ec accounts
for the contractile electrically activated behaviour governed
by Eq. (1). In addition, an elastic material law is considered
for the series element Es, while Ep is taken viscoelastic.
Based on experimental results, the corresponding stress–
strain laws are assumed to be of exponential type for Ep

(Veronda and Westmann, 1970). The stress–strain law for
Es – which plays an important role during isovolumetric
phases – is generally assumed to be linear (Mirsky and
Parmley, 1973), and we follow this assumption in our mod-
elling. The role of Ep, described in more detail below, is in
particular to prevent the heart from overstepping certain
limits during filling and ejection.



Par

Artery

Valves

Atrium

Pv

Ventricle

Pat

(a)

Pat

Par Pv

Q = – V

(b)

Fig. 7. (a) Aortic valve model mechanism. (b) Formulation as a double
contact problem, dashed: relation (3), solid: regularised.

Rc

Par

Q

C

R p

Psv

Fig. 8. The 3-element Windkessel model.

u

σ1D

εc , σ c

(Es) (Ec)

(Ep)

E , Σ

Fig. 6. Hill–Maxwell rheological model.

M. Sermesant et al. / Medical Image Analysis 10 (2006) 642–656 649
This rheological model is compatible with large dis-
placements and strains and led to a continuum mechanics
description of the cardiac tissue (Chapelle et al., 2004). A
study and simulations of a simplified 1D model derived
from this continuum mechanics model are detailed in
(Chapelle et al., 2001). The equations of the 3D model
are summarised in the fundamental equation of contin-
uum mechanics known as the principle of virtual

work, which is expressed in a total Lagrangian formula-
tion asZ

X
q€y � vdXþ

Z
X

R : dE dX

þ
Z

CEl[CEr

P vm � F �1 � v det F dC ¼ 0 8v 2 V 0 ð2Þ

In this equation, X denotes the reference domain corre-
sponding to cardiac tissue, while the part of the boundary
corresponding to ventricular endocardium is denoted by
CEl [ CEr (referring to the left and right ventricles), m being
defined as the outward unit normal vector for this bound-
ary. The main unknown in Eq. (2) is the field y that repre-
sents the displacement from the reference to the current
(deformed) configuration along time. Note that the first
integral contains the inertia term q€y, q denoting the mass
per unit volume (in the reference configuration). The defor-
mation gradient F is defined as F = I + $y, where I denotes
the identity tensor and $ the gradient operator. detF is the
Jacobian of the transformation.

We point out that Eq. (2) is valid for an arbitrary virtual
displacement field v taken in the space of test functions V0,
and dE denotes the corresponding linearised variation of
Green–Lagrange strain. Namely, dE corresponds to the
first order term in v in the expansion of E(y + v), where
we recall that E(y) is defined by E(y) = 1/2(FT Æ F � I).

The complex electromechanical behaviour discussed
above enters in the expression of the second Piola–Kirch-
hoff stress tensor

R ¼ Rp þ r1Dn� n

where the first term represents the passive (viscoelastic)
behaviour due to element Ep (recall Fig. 6), while r1D cor-
responds to the contractile behaviour, including rc defined
in Eq. (1), and occurring along the fibre direction as char-
acterised by the unit vector n (the symbol � denoting ten-
sorial products).
In Ep we consider a viscoelastic behaviour, namely,

Rp ¼
oW e

oE
þ oW v

o _E
;

where We and Wv, respectively, represent a hyper-elastic
potential and a viscous pseudo-potential. Considering the
nearly incompressible character of the material we used a
Mooney–Rivlin material (Le Tallec, 1994) in We, as is fre-
quently encountered in the literature of biological tissues.
For alternative choices, see e.g. (Fung, 1993; Humphrey,
2002; Veronda and Westmann, 1970; Mulquiney et al.,
2001; Lin and Yin, 1998) and references therein. The vis-
cous part was modeled by the simple law:

W v ¼ g
2

Trð _EÞ2

We refer to (Sainte-Marie et al., in press) for a more detailed
description and discussion of the mechanical modelling.

Finally, the quantity Pv featured in the last term of
Eq. (2) denotes intra-ventricular pressure, which will be
discussed in the forthcoming section.

5.3. Modelling the blood

The blood inside each ventricle is modelled as a pres-
sure/volume system. The phases of the cardiac cycle (iso-
volumetric contraction, ejection, isovolumetric relaxation,
filling) are distinguished through coupling conditions
between the internal fluid and other parts of the cardiovas-
cular system, namely the atrial cavities and the external cir-
culation. With Pv, Par and Pat denoting the blood pressures
in the ventricle, the artery, and the atrium, respectively, the
ejection occurs when Pv P Par whereas the mitral valve
opens when Pv 6 Pat, see Fig. 7a. Denoting by Q the
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Fig. 9. Computed medical indicators for the left ventricle in reference (solid line) and pathological cases (dashed): volume variations, blood pressures,
pressure-volume diagram, inflow and outflow (positive and negative values, respectively).

3 http://www.openfem.net.
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outgoing flow, the coupling conditions can be formulated
as a (double) contact problem:

Q P 0 when P v ¼ P ar ejection

Q ¼ 0 when P at < P v < P ar isovolumetric phases

Q 6 0 when P v ¼ P at filling

8><
>:

ð3Þ
To avoid numerical difficulties, we used a regularised form
of this function as depicted by the solid line in Fig. 7b.

While the blood flow coming from the atria was mod-
elled by a prescribed pressure Pat, we used a so-called
Windkessel model to represent the arterial flows. Windkes-
sel models can be derived from electrical circuit analogies
where current and voltage represent arterial flow and pres-
sure, respectively, see (MacDonald, 1974; Stergiopulos
et al., 1999). In our simulations, we used the three-element
model depicted in Fig. 8. The corresponding pressure–flow
relation reads

C _P ar þ
P ar � P sv

Rp

¼ 1þ Rc

Rp

� �
Qþ RcC _Q ð4Þ

and is only valid during ejection, namely when Q > 0. Dur-
ing isovolumetric phases and ventricular filling, arterial
pressure is instead described by

C _P ar þ
P ar � P sv

Rp

¼ 0 ð5Þ

In the above equations the parameter Psv denotes a fixed
‘‘remote’’ low pressure (typically the venous system pres-
sure for the left compartment).
This three-element Windkessel model has been found to
be in good agreement – after proper adjustment of the
resistance and capacitance parameters – with clinical mea-
surements. In Fig. 8 the arrows for C and Rp indicate that
these quantities can be varied to account for nervous sys-
tem regulation.

We point out that we use two different such Windkessel
models (with different resistance and capacitance parame-
ters, of course) to represent the systemic and pulmonary
circulations, without connection between the two. This is
justified within the time scale that we consider, namely,
we are concerned with phenomena that take place within
one single cycle. Conservation of blood volumes between
the two compartments occurs only at larger time scales,
indeed.

5.4. Results

The integration of the described model using the finite
element method makes it possible to simulate normal and
pathological cardiac function. The finite element imple-
mentation was performed within the OpenFEM toolbox.3

The simulation time for a complete cardiac cycle is approx-
imately one hour on a standard PC. The resulting global
cardiac function parameters are presented in Fig. 9.

The calibration of the mechanical parameters featured
in the model was performed using physiological and
mechanical considerations regarding the meaning and

http://www.openfem.net


Table 1
Values of the parameters used for the reference situation

a 1
l 200 (Pa s�1)
k0 3.5 · 105 (Pa)
r0 7 · 105 (Pa)
n0 0

h 0.25

Ulim �30 (mV)
v 3 (m s�1)
q 1 · 103 (kg m�3)
l 600 (Pa s�1)
Par(0) 10 (kPa)
Es 5 · 106 (Pa)
C 87 · 10�4 (l Pa�1)
Rp 1.15 · 10�6 (Pa l�1 s)
Rc 0.05 · 10�6 (l Pa�1 s�1)
Psv 1 (kPa)
Par(0) 10 (kPa)
T 0.8 (s)
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effects of each parameter. For example the viscosity of the
passive part of the constitutive law is related to the speed
of relaxation of the heart during filling whereas the hyper-
elastic coefficients are directly linked to the relaxation
level. The resulting global cardiac function indicators
are presented in Fig. 9. The values of the parameters used
for the reference simulation are given in Table 1.

We obtain realistic simulation of global kinematics
(volume) and mechanics (pressure) of the cardiac func-
tion. The data assimilation procedure described below will
make it possible to further validate the model and esti-
mate more precisely the parameters with the available
patient data.

A pathological case was also simulated: a reduced con-
tractility was chosen for two different anatomical segments
(see Fig. 10). This could correspond to an ischemic area in
the myocardium, where the muscle does not contract well
anymore. The simulated pathological cardiac function is
altered in the expected way: significantly reduced ejection
fraction and blood pressure.
(a) Reference σ 0 (b) Measure

Fig. 10. Estimation of reduced contractility values in two AHA segments. (a
measures in the data assimilation, (c) convergence of r0j along iterations of th
noise. The reference values of the contractility in the three areas are r0, 1 = 70
6. Estimation of local contractility from displacement

The aim of data assimilation is to incorporate measure-
ments into a dynamic system model in order to produce
accurate estimates of the current (and possibly future) state
variables, parameters, initial conditions and input of the
model.

6.1. Data assimilation algorithm

The symbol H denoting the observation operator, Y(t)
the available measurements and X(t) the model response,
the general objective of data assimilation is the minimisa-
tion of a cost function J (objective function) performed
over the set of parameters to be estimated

J ¼
Z

I
kY ðtÞ � HX ðtÞk2

X dt þ penalty ð6Þ

where i.iX represents a suitable norm associated with the
problem formulation.

If I denotes the complete simulation time interval [t0,T],
the assimilation technique is said to be variational and cor-
responds to an optimal control problem (Le Dimet and
Talagrand, 1986; Courtier and Talagrand, 1987; Lions,
1968). If at each time step tk, I = [t0, tk], then the filtering
technique is said to be sequential (Kalman, 1960; Kalman
and Bucy, 1961). These approaches were used in various
applications (Chui and Chen, 1999; Kellerhals, 2001; Kano
et al., 2001).

For our problem, the sequential approach is conceptu-
ally possible, but the associated covariance matrix required
is full with a size (namely, the number of degrees of
freedom in the simulation plus the dimension of the param-
eter space) which makes it intractable for the 3D problem
without resorting to specific reduction methods.

Variational data assimilation techniques are based on
an iterative approximation of the optimality condition
$hJ(h*) = 0, where h denotes the parameter set to esti-
mate, leading to an adjoint problem. If the problem to
solve is (A), the adjoint state P is governed by (B):
 Points (c) Estimated σ0
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ðAÞ
_X ¼ F ðX ;h; tÞ
X ðt0Þ ¼ X 0

h unknown parameters

8><
>: ðBÞ

_P þ oF
oX

� �t
P ¼ HtðHX � Y Þ

PðT Þ ¼ 0

(

The general algorithm used is the following:

� Start from a first guess h� of the parameter set
� Start iteration n

– Integrate the direct model from 0 to T
– Integrate the adjoint model from T to 0
– Calculate the gradient rJðhnÞ ¼ �2

R T
0

P t½oF
ohn�dt

– Compute hn+1 = hn + qn$J(hn)
� n! n + 1 until a stopping criterion on J is reached

The computation of the gradient using the adjoint
problem is very effective in the case of multiple parameter
estimation, since it provides the complete gradient with
one single (backward) time integration. However, it
requires the storage of the direct problem solution at all
time steps.

The data assimilation process outlined below, which
was already used in (Rohan and Whiteman, 2000), and
described for biomechanical models in (Rohan and Cimr-
man, 2002), uses an alternative procedure to compute the
gradient using direct differentiation instead of the adjoint
problem.

The state problem is given by the finite element discret-
isation of Eq. (2), and solved for t = 0, . . .,T. Here we
denote it by U(t)(h,yt,yt�1) = 0, to stress its dependence
on the vector of parameters to identify ðh 2 RnÞ, and on
the current and previous state vectors (yt, yt�1). In our case
y is the vector of nodal displacements. Writing the problem
in this time-discretised manner makes easier the direct dif-
ferentiation described below. Let I now be the index subset
of the time steps where measurements ð�uiÞi2I are available,
and ui(h,yi) be the corresponding simulated values of the
observed quantity (displacements).

A Newton-type method was used to perform the identi-
fication, which is in fact a solution to the following nonlin-
ear least-squares problem (NLS), seeking the vector haim of
the parameters:

haim ¼ argmin JðhÞjh ¼ fhign
i¼1 2 Rn

� �
ð7Þ

where the objective function J is discretised as:

JðhÞ ¼ 1

2

X
i2I

ðuiðh; yiÞ � �uiÞ2 ð8Þ

with the constraints that the model equations are respected:

Uð0Þðh; y0Þ ¼ 0; UðtÞðh; yt; yt�1Þ ¼ 0; t ¼ 1; . . . ; T ð9Þ
and that parameters keep values compatible with physio-
logical knowledge:

hmin
i < hi < hmax

i for some i

Such a minimisation method works best when the gradient
of the objective function is available. To compute this gra-
dient, it is necessary to carry out a sensitivity analysis,
where we obtain the derivatives of the model with respect
to its parameters.

The total (sub)gradient of J is:

rhJ ¼
X
i2I

ðuiðhÞ � �uiÞrhui and

rhui ¼
oui

oh
þ oui

oyi

oyi

oh
ð10Þ

In our case, the observation operator is constant and
corresponds to extracting the nodes where we have mea-
sured displacement, so oui

oh ¼ 0 and $hui is just a selection
of rows of oyi

oh corresponding to the measured dis-
placements.

We still need to know how to compute oyi
oh . But as it is a

minimisation with the constraint that the model equations
are respected, we can obtain the gradients oyi

oh of the
(unknown) solution by differentiating Eq. (9):

oUðtÞ

oh
þ oUðtÞ

oyt

oyt

oh
þ oUðtÞ

oyt�1

oyt�1

oh
¼ 0; t ¼ 1; . . . ; T ð11Þ

oUð0Þ

oh
þ oUð0Þ

oy0

oy0

oh
¼ 0 ð12Þ

We thus obtain a recurrence relation that allows us to com-
pute oyi

oh . With the notations xðtÞ � oyt
oh , V ðtÞ � oUðtÞ

oh , P ðtÞ � oUðtÞ

oyt
,

W ðtÞ � oUðtÞ

oyt�1
, the sensitivity analysis is the step two of the

following parameter estimation algorithm:

(1) call the nonlinear least squares (NLS) with h = h�
(2) start iteration n:
(a) perform the sensitivity analysis for hn:

� for time step 0:
lve state problem U(0)(hn,y0) = 0
m P(0)x(0) = � V(0) obtain x(0)
– fro

� for time steps t = 1, . . .,T:

lve state problem U(t)(hn,yt,yt�1) = 0
m P(t)x(t) = �(V(t) + W(t)x(t�1))
tain x(t)

exists observation �ut:

evaluate observation function ut(h

n,yt)
compute gradient rhut ¼ out

oh þ
out
oyt

xðtÞ

� return uiðhn; yiÞ � �ui and $hui to NLS

(b) compute new hn+1

(c) n! n + 1 until a stopping criterion is reached

(3) return the identified h

The data assimilation is achieved by performing this
iterative algorithm. Note that the proposed algorithm is
computationally very effective for a limited number of
unknown parameters. Indeed, each NLS step only requires
one time simulation for the state and for each of the sensi-
tivity quantities oyt

oh (one for each independent scalar param-
eter to be estimated). In addition, at each time step all the
sensitivities satisfy a linear system with the same governing
matrix, see Eq. (11), hence only one matrix inversion is
required.



Fig. 11. Simulation of tagged MRI using the deformation from the
electromechanical model. (a) Simulated image (short axis slice, end
systolic), (b) acquired image.
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In the following results, the parameter set to adjust is local
contractility in different anatomical segments (h = r0(M)).

6.2. Results

Preliminary results in data assimilation have been pre-
sented in (Sainte-Marie et al., 2003). Results presented here
have been obtained using numerically simulated observa-
tions assimilated with the complete 3D problem on a realistic
heart model (Fig. 10). Due to the complexity of the model
and to observability considerations, estimating all the quan-
tities appearing in the complete electromechanical problem
is out of reach. Hence we focus on parameters that are cru-
cial for medical purposes in order to detect contraction trou-
bles, in particular the contractility parameter r0. Moreover,
to be able to achieve such computations, it is important to
cluster the parameters, as trying to estimate a parameter
for each node would not be tractable. This is why anatomical
segments are important, as they provide a first division of the
myocardium, which can be refined if necessary. Then only a
parameter per segment, or group of segments, is estimated.

These results were obtained as follows:

(1) The direct 3D problem is simulated with a given
parameter r0(M), varying across different anatomical
segments (700, 400, 200 kPa).

(2) Observations ð�uiÞi2I are obtained using the displace-
ments for 18 random nodes of the mesh plus one
node in each modified contractility region, with [0,
5, 15]% noise added to these displacements.

(3) Starting from a given parameter h0 ¼ r̂0 different
from the one used for the direct simulation
(300 kPa), the data assimilation is carried out. The
simulated measurements are used at half the fre-
quency of the simulations: simulations are carried
out with a 5 · 10�3 s time step, but the measurements
are only used every 10�2 s.

For this simulation we chose r0(M) constant across the
wall, with three regions of different r0, visible on Fig. 10a.
The result of the estimation of r0 is shown in Fig. 10b. The
data assimilation process, initialised with a homogeneous
distribution, recovered the spatial variations of r0 rather
accurately. We used the variational technique described
in the previous section. The stopping criterion is a 10�4 tol-
erance on h (ihn � hn+1i < 10�4), and convergence is
achieved in 8 iterations.

We obtain very promising results on simulated data.
Even with added noise of 15%, it still converges to the right
values. But before applying this technique to real data, sev-
eral difficulties have to be tackled, which will be discussed
in the following section.

6.3. Data assimilation difficulties

Measurements used to apply the data assimilation in
Section 6 are displacements in some points within the myo-
cardium muscle. The idea is to use the same data assimila-
tion procedure, with displacements from tagged MRI.

In data assimilation, difficulties arise from various areas,
from the available measurements to the complexity of the
operator (type of variables, dimension, rank) and the nat-
ures of the spaces and norms used. Current work on these
difficulties should help design the best possible operators to
achieve this parameter estimation.

The first step before running data assimilation on MR-
based displacements is to calibrate the model for the given
data set. Indeed, there are several parameters in the model
that are patient-specific, and we must design ways to adjust
them before hand. For instance pre-load and after-load
(which correspond to blood pressure in atria for filling
and arteries for ejection) play an important role in cardiac
function, and they appear in the model. Recent advances
both in MR flow measurements and fluid-structure models
of the vessels open up possibilities to evaluate these bound-
ary conditions.

A mathematical difficulty of data assimilation is the
invertibility of the observation operator H because we want
to obtain the state X and the parameters from the observa-
tions using a generalised inverse of H. The analysis of this
invertibility property (observability) is very difficult in gen-
eral with respect to both surjectivity (whether there exists a
set of parameters and variables which leads to the given
observation) and injectivity (whether this set is unique).

Another difficulty in the choice of the observation oper-
ator lies in the fact that the efficiency of the data assimila-
tion technique is highly dependent on the noise. To avoid
the accumulation of the errors of the different image pro-
cessing steps, an idea could be to formulate an operator
as close to the measurements as possible. We could con-
sider the tagged images as the observation by simulating
tagged images from the model displacements. We present
in Fig. 11 the simulation of a short axis tagged image com-
pared with the acquired tagged image, in end diastole. To
achieve this, a binary image of the mesh is created using
rasterisation (Sermesant et al., 2003), tag lines are added
to this image, and simulated displacement are interpolated
in each tetrahedron to compute the deformed image.
Further comparison of these images and design of the



4 http://www-rocq.inria.fr/who/Frederique.Clement/icema.html.

6 http://smai.emath.fr/cemracs/cemracs04/index.php.
7 http://www-sop.inria.fr/epidaure/index.php.
8 http://www-sop.inria.fr/CardioSense3D/.
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corresponding observation operator is in progress. For
instance, to improve this comparison, recent full 3D tagged
MRI could allow to directly work in 3D (Ryf et al., 2002),
as the model is 3D.

7. Conclusion and perspectives

This paper presented the adjustment of a generic myo-
cardium model to a patient-specific anatomy using MRI,
and a framework to automatically estimate mechanical
parameters, like local contractility, from displacements.
We detailed: the medical images clinically used and the
information we can extract from it; the construction of a
generic anatomical model of the ventricular myocardium
integrating muscle fibre orientations and anatomical seg-
ments; the fitting of this model to patient anatomy; the bio-
mechanical modelling of the myocardium; and a data
assimilation method to automatically adjust the parameters
of the model from known displacements. We demonstrated
the capability of such a framework, pointing out the differ-
ent difficulties at the theoretical and practical levels. The
results so far obtained by combining modelling and data
are very promising.

The particularity of our modelling approach is to choose
models where the number of parameters and state variables
is reduced to the minimum, in order to be compatible with
clinical observations, and where we can interpret these
parameters in a physiological manner. For instance, the
calcium handling would be of great importance if we were
using the model to simulate series of contractions (mostly
above 10 contractions), where the dynamics of the calcium
impacts the contraction. As the medical images we are
using are a reconstruction on one heart beat (even if acqui-
sitions are from several cycles), we believe that using a
mean behaviour of calcium is reasonable.

Precise calibration of the model before data assimilation
is difficult and additional measurements can help us with
this task. Progress in MRI, especially in flow measurements,
makes it conceivable to obtain patient-specific boundary
conditions. Indeed, it seems important to have first an
adjustment of the pre-load and after-load before looking
further into local estimation. Simplified fluid-structure
models coupled with velocity and distension measurements
can give insights on how to adjust these global parameters.
Defining the right mechanical interaction between atria,
arteries, ventricles and the fibrous structure is complex.
To solve this difficulty, we also plan to introduce some dis-
placement boundary conditions on the base, extracted from
the observations, to avoid having to simulate all the listed
structures.

For data assimilation, the current work is on observa-
tion operators, for instance with tagged MR that can be
written in a Lagrangian framework. Lagrangian approach
is more easily dealt with, but it is not suitable for all types
of measurements, such as cine MRI and ultrasound which
are directly related to the deformed geometry. Many clini-
cal observations are indeed more Eulerian in essence, and
new methodology would need to be designed to deal with
them.

Future developments are planned to integrate different
modalities. For instance, with patients undergoing electro-
physiology studies, electrophysiology clinical data can be
acquired, using XMR interventional imaging for instance
(Rhode et al., 2005). Such datasets make it possible to also
initialise electrophysiology models of the myocardium
(Sermesant et al., 2005). Having a patient-specific command
of the contraction through a measure of the patient activa-
tion pattern would definitely help the data assimilation.

Finally, we point out that an interesting open problem
concerns whether or not the electrical activity may also
be estimated from displacements measurements of the
myocardium. This proposed framework could give insights
on this problem. Finally, coupling models and parameter
estimation is valuable for interventional planning and ther-
apy testing, owing to the predictive modelling capability.
However, before achieving a clinical use of this framework,
each step of this proof-of-concept will have to be thorough-
fully validated and probably extended to cope with the
quality and variability of clinical routine data.
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