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Integrating computational models of the heart
with clinical data can open up ways to improve
diagnosis, treatment planning, and interventions

for cardiovascular diseases. It provides a consis-
tent, biophysically based framework for the
integration of the fragmented and heterogeneous

clinical data currently available. Obtaining pa-
tient-specific computational models of the cardiac
physiology could help diagnosis by providing

physically meaningful cardiac indices. Moreover,
once validated, models can have a predictive use
and guide in patient management and therapy

planning. For example, these computational
models provide an excellent basis to optimize the
design of implantable devices for improved ther-
apy. However, the application of this modeling

research has yet to be translated into the clinical
environment, mainly because of the difficulty of
validating these models with in vivo data, and

efficiently personalizing them.
There is a growing body of literature on the

functional imaging of the heart, for example with

the measurement of electrical activity, deforma-
tion, flows, fiber orientation [1–4], and on the
modeling of the electrical and mechanical activity

of the heart [5–9]. Many of these models are direct
computational models, designed to reproduce in
a realistic manner cardiac activity, often requiring

high computational costs and the manual tuning
of a very large set of parameters.

The proposed approach is to design models

that are directly related to the phenomena ob-
served in clinical data. Although the models used
here are often simplified when compared with the

very detailed models available in the literature, the
authors try to select a level of modeling compat-
ible with reasonable computing times and in-

volving a limited number of parameters, thus
allowing the identification of the model parame-
ters from clinical measurements of a specific
patient, through the resolution of the inverse

problem (Fig. 1).
There are still many challenges in achieving

a patient-specific electromechanical model of the

heart, but some parts can already be personal-
ized, as demonstrated here. The authors will
present this work in three sections concerning

the anatomy, the electrophysiology, and the bio-
mechanics. But the first challenge in this area is to
obtain patient data on these different parts, and
integrate them in the same spatio-temporal

coordinates.

Clinical data acquisition and fusion

The construction, testing, and personalization

of biophysical models rely on the ability to fuse
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data from a variety of sources. For cardiac

modeling, the fusion of anatomic, mechanical,
and electrical data is of primary interest. This
fusion must be both in the spatial and temporal

domains. High quality cardiac anatomic data can
be obtained from both computerized tomography
(CT) andmagnetic resonance imaging (MRI).MRI

can also be used to obtain functional data, such as
myocardial wall motion and blood flow. Electrical
data can be obtained from catheter-basedmeasure-

ments that are guided using X-ray fluoroscopy.
Spatial fusion of these different data requires

an effective image registration strategy. The
authors’ solution has focused on the use of the

X-ray/MR (XMR) hybrid imaging system that
allows the seamless collection of both MRI and

X-ray-based data (Fig. 2). The authors have

developed a real-time registration solution [10]
that allows the spatial integration of MRI-based
anatomic and functional data with X-ray-based

catheter data, such as intracardial electrical and
pressure signals. For the temporal integration,
the electrocardiogram gives information on the

heart rhythm that makes possible the synchroni-
zation of the different datasets.

Myocardial anatomy

In the authors’ approach, only the compact

biventricular myocardium is considered. As the
valves are not modeled, the papillary muscles are
not simulated, and only the atria and arteries as

Fig. 1. Global scheme of the model building blocks and of the clinical data used to personalize it.

Fig. 2. (A) XMR suite with the MR scanner and the X-ray C-arm. (B) Catheters in place during an atrial flutter ablation

and overlay of the MR-derived anatomy (in red) of the right side of the heart.
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before-load and after-load boundary conditions
are integrated.

Patient-specific myocardial shape

The authors have developed a method to create
a biventricular mesh adapted to the three-
dimensional (3D) image of the heart of a given

patient. There is important literature on cardiac
image analysis for the segmentation of the heart
from medical images [11–21]. The idea is not to be

exhaustive but to present a generic pipeline where
most of the approaches can fit. The full pipeline
relies both on intensity-based algorithms and

deformable models [22]. The workflow is to ex-
tract from the images a preliminary segmentation
of the blood pools and then to adjust the mesh
geometry. Deformable models evolve under the

influence of both external forces, computed from
the preliminary segmentation, and internal forces,
computed from the laws of mechanics.

More precisely, the pipeline consists of three
main steps, detailed below: image filtering, to
enhance image quality and correct possible

artifacts; intensity-based labeling, to get a first
segmentation of the ventricular cavities; and
model-based segmentation, to get the final 3D
myocardial shape (Fig. 3).

Image filtering

To increase the robustness of the algorithm on
routine cardiac MRI, prone to acquisition arti-
facts (noise, slice misalignment, motion artifacts),
the images must first be processed to facilitate

automatic labeling. First, intensity inhomogenei-
ties caused by magnetic field variations can be
attenuated using, for instance, the N3 algorithm

[23], which estimates image intensity variations
using a nonparametric approach. Next, a histo-
gram-based algorithm can be applied to enhance

image contrast (remove extrema quantiles). Fi-
nally, image signal-to-noise ratio can be improved
by using anisotropic filtering, where nonlinear

partial differential equations (PDE) are used to
smooth the noise while preserving the edges [24].

Intensity-based labeling of left and right blood pools
A first extraction of the ventricular blood pools

is achieved by relying on a region-growing
approach. For each ventricle, the user interac-
tively places a few control points to define the
valve annuli and initial seeds inside the cavities.

The algorithm automatically expands the seeds,
covering the voxels with similar intensities. In
order to enforce the right topology, smooth the

borders, and propagate along the time sequence,
a deformable surface is then used. The Marching
Cubes algorithm [25] provides a 3D surface repre-

senting the preliminary segmentation. Then the
endocardial surfaces can be extracted from each
image of the sequence: the mesh is immersed
into the second frame and forces are applied to

deform it toward the new endocardial boundaries
[13]. An internal force ensures its smoothness
while a region-based external force makes it

evolve according to the image gray-level intensi-
ties. Afterward, the resulting surface is embedded
into the following frame and deformed, and so

forth until the end of the sequence. Thus, the
labeling of both left and right blood pools in
each cardiac phase is finally obtained.

Myocardium segmentation

The epicardium is hardly visible in most of the
standard clinical MR sequences. Thus, it is first
delineated with an interactive tool. The user
places a few control points inside, on, and outside

the epicardium. A 3D surface is generated in real-
time, as the user adds, removes, or moves control
points, using variational implicit surfaces and

radial basis functions [26]. From the epicardial
and endocardial surfaces, a binary image
corresponding to the myocardium is created. A

volumetric mesh is finally deformed under
the influence of internal and external forces. The
material properties of the muscle are used in the

Fig. 3. Global scheme of the segmentation pipeline. Different algorithms can be used for each step of this process.
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internal forces to ensure the smoothness and the
incompressibility of the myocardial mesh [22].
Results of this pipeline are presented in Fig. 4.

Myofiber orientations

In the compact myocardium, the muscle fiber

orientations play a crucial role in cardiac electro-
physiology and electromechanics. Thus, their
introduction in the model is important. However,

there is currently no accurate in vivo measurement
of these orientations at high resolution [27],
so investigators have to mainly rely on prior

knowledge.
The complete 3D reconstruction of fiber ori-

entations from histologic sections [28], and more
recently its direct 3D acquisition on ex vivo hearts

with diffusion tensor MRI (DT-MRI) [29], have
been used for a more realistic description of the
myofiber architecture. However, they still come

from a single subject and thus do not take into
account any intersubject variability. In order to
improve these models by building an average fiber

architecture (Fig. 5) and by measuring its variabil-
ity, the authors computed a statistical atlas of
DT-MRIs from a small database of nine canine

hearts [30], which is available on the World
Wide Web (http://www-sop.inria.fr/asclepios/
data/heart/). The authors performed a groupwise
nonrigid registration of the cardiac geometries

to an average geometry (see Fig. 5A). Then the
DT-MRIs were properly transformed to fit the
average geometry in which the average (see

Fig. 5B) and covariance of diffusion tensors at
each voxel was computed.

Because there is a direct link between the fiber

orientations and the primary eigenvector of
diffusion tensors, the authors derived the fiber
orientation variability from the analysis of the

covariance of the diffusion tensors. The results
showed a strong coherence within the canine
population. Thanks to the exceptional access to

an ex vivo human cardiac DT-MRI data set, its
comparison with the canine population showed
good interspecies similarities [30]. The use of an
average model from different species makes sense

for a more realistic and generic prior knowledge
on fiber orientations. Because it is known that
some pathologies have an impact on the fiber

architecture, there may be local adjustment to per-
form on these orientations when simulating these
pathologies. This could be done, for example,

with synthetic models built with analytic laws
describing general trends of fiber orientations
observed in different studies [31]. However, the in-
fluence of this variability in terms of the electrical

and mechanical behavior of the heart is currently
studied based on biomechanical simulations.

Myocardial electrophysiology

Electrophysiology model

Modeling the cell electrophysiology (EP) has
been an active research area since the seminal
work of Hodgkin and Huxley [32]. At the organ

level, it involves a cell membrane model embedded
into a set of PDEs representing a continuum. The
approaches can be divided into three categories, in

decreasing order of computational complexity:

� Biophysical: semilinear evolution PDE with

ionic models (up to 50 equations for ions
and channels) [33–37]
� Phenomenologic: semilinear evolution PDE

with mathematical simplifications of bio-
physical models (bidomain, monodomain)
[38–40]

Fig. 4. Results of myocardium segmentation using the presented pipeline. (A) Intersection between the final segmenta-

tion (in red) and the MR image. (B) 3D visualization of the final mesh within the MR volume.
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� Eikonal: one static nonlinear PDE for the
depolarization time derived from the previous

models (Eikonal-curvature, Eikonal-
diffusion) [41,42].

Solutions of the evolution PDE are computa-

tionally very demanding, because of the space scale
of the electrical propagation being much smaller
than the size of the ventricles, and the stability
issues of the dynamic aspect. The Eikonal equation

is static and the front can be observed at a larger
scale, resulting in much faster computations.

For the authors’ clinical applications, very fast

models that can be adjusted to the data must be
designed. Moreover, meaningful clinical data
currently available reliably describes the propaga-

tion times, but are not suited for accurate estima-
tion of extracellular or action potentials. For these
reasons, the authors chose to base their work on

the Eikonal models. Even if these models may not
be able to precisely simulate the complete range of
cardiac pathologies, they open up possibilities for
fast parameter estimation, as well as data filtering,

interpolation, and extrapolation.
An anisotropic multifront, fast marching

method was developed to solve the Eikonal model

equations very efficiently [43]. The Eikonal model
is capable of simulating complex depolarization
wavefront rotations around functional blocks.

The authors base their model on the Eikonal
diffusion (ED) equation. The static ED equation
for the depolarization time (Td) in the myocar-

dium is given by

c0
ffiffiffiffi
D
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VTt
dMVTd

p �
� ðDV,MVTdÞ ¼ t ð1Þ

where c0 is a dimensionless constant related to the
cell membrane, t is the cell membrane time con-
stant, and D is the square of the membrane space

constant and thus related to the volumetric electri-
cal conductivity of the tissue. The tensor quantity

relating to the fiber directions is given by
M ¼ ADAt, where A is the matrix defining the fi-
ber directions in the global coordinate system and

D ¼ diagð1; l2; l2Þ. In this equation, l is the aniso-
tropic ratio of membrane space constants along
and transverse to the fiber direction and is of the

order 0.4 in human myocardium (see Ref. [44]
for more details on the ED equation and its
parameters).

Patient-specific electrophysiology

To personalize the electrophysiology model,
the authors propose to estimate the cardiac cell

membrane space constant (D) in the Eikonal
model, which corresponds to an apparent conduc-
tivity (AC). The idea is to estimate the AC by
matching the simulated propagation times of the

model to clinically measured propagation times
of the patient. Once this process has been
achieved, a patient-specific electrophysiology

model can be realized, which can help in diagnosis
and therapy planning. The EP model adjustment
procedure is divided into two components:

� A nominal value of the AC is estimated by
minimizing the average difference between

the simulated and measured depolarization
times using a bisection method. This step
enables the simulated and measured propa-

gation times to be brought to the same scale.
� A multilevel approach is then taken by adap-
tively subdividing the entire region of the endo-

cardium into zones where the AC on each zone
is estimated using a least-squares approach and
modified Brent minimization algorithm.

The authors present the application of the
EP model adjustment algorithm to build a

Fig. 5. Statistical atlas of cardiac fibers architecture. (A) A groupwise registration of the cardiac geometries to an aver-

age geometry. (B) Fiber tracking performed with the average DT-MRI.
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patient-specificEPmodel for a clinical casewith left
bundle branch block pathology. The patient
underwent electrophysiology study in the XMR

environment where an Ensite array (St. Jude
Medical) is inserted into the left ventricle via
a retrograde aortic approach. The baseline (normal
sinus rhythm) propagation times weremeasured by

the Ensite array and are used to adjust the Eikonal
model for this particular patient (Fig. 6).

Once the EP model has been adjusted to

a particular patient data, the model can then be
used in its predictive capacity. Fig. 7 shows how
the adjusted EP model can be used to predict

a propagation map from a different pacing site.
Fig. 7B presents the application of the adjusted
model to predict the isochrones of propagation
when paced from a postero-lateral position in

the endocardium. By comparing these isochrones
with those measured during pacing (Fig. 7A), it
can be seen that this adjusted model can indeed

be a first step toward the development of a patient
specific EP model. Such models could be very use-
ful, for example, for the planning of multisite car-

diac stimulation, as used for the treatment of
patients with ventricular asynchrony.

Furthermore, an additional conduction related

parameter, the conduction velocity ðvappÞ, can be
estimated from the apparent conductivity parame-
ter: vapp ¼ c0

ffiffiffiffi
D
p

=t. These conduction velocity
maps can aid in determining possible scars, as

they show up as areas of low conduction velocity
on thesevelocitymaps.Fig. 8 shows sucha resultant
conduction velocity map obtained for a different

clinical case after EP model adjustment. This

patient had scars caused by an earlier myocardial
infarction. From the figures, it can be seen from
the adjusted conductivity parameter colormap,

that areas of low conduction velocity (black
regions on the endocardial surface) do correspond
to the scar locations, as obtained by the segmenta-
tion of the late-enhancement images.

Myocardial biomechanics

Constitutive law of the myocardium

The myocardium is an active nonlinear aniso-
tropic visco-elastic material. Its constitutive law is

complexand includesanactivepart for contraction,
controlled by the transmembrane potential propa-
gation (which can be computed from the previous

section), and a passive part representing the me-
chanical elasticity of the myocardium. Several
constitutive laws have been proposed in the litera-

ture [45–51]. These laws are designed to precisely fit
rheologic tests made on in vitro cardiac muscle.

Another approach is to model contraction
from the nanomotors scale and build up a macro-

scopic constitutive law representing the phenom-
ena encountered at the different scales, which is
the approach followed by Bestel-Clément-Sorine

[52]. A detailed study of this complex model and
simulations can be found in the work of Sainte-
Marie and colleagues [53] and Moireau and

colleagues [54]. This model is based on the Hill-
Maxwell scheme.

The electromechanical model used here was
motivated by the multiscale and phenomenologic

approach of Bestel-Clément-Sorine, but it is
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Fig. 6. Bull’s-eye plots of depolarization times from a patient with left bundle branch block. (A) Measured isochrones

using Ensite during sinus rhythm. (B) Simulated isochrones with the adjusted electrophysiology model.
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specifically designed for cardiac image analysis
and simulation. It is built to be computationally
efficient and with few parameters directly related
to clinical parameters, so the authors chose to

simplify the constitutive law of the Bestel-Clém-
ent-Sorine approach. The simplified mechanical
model has the following components:

� An active contractile element, which creates
a stress tensor sc, controlled by the command

u, depending on the depolarisation time Td

and repolarisation time Tr;
� A passive parallel element which is aniso-
tropic linear visco-elastic and creates a stress

tensor sp.

For the electromechanical coupling, several
different laws have also been proposed [45,49].
The authors believe that it is important to keep
the model simple, as relatively few clinical
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Fig. 7. Usage of the adjusted EP model to predict propagation map from a different pacing site. (A) Measured iso-

chrones using Ensite during pacing. (B) Isochrones of depolarization predicted by the adjusted electrophysiology model.

Fig. 8. (A) Estimated conduction velocity, where scars appear as small value regions (blue). (B,C) Areas of slow conduc-

tion (black regions) after EP model adjustment, compared with scar locations obtained from late-enhancement MRI

image (red wire-meshes).
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measures are available to adjust it. The contrac-
tion of a heart muscle cell (like all muscle cells)
is controlled by cycling levels of calcium, which

are stored in the sarcoplasmic reticulum. When
depolarization occurs, the concentration of cal-
cium increases in the cytosol and allows the
adenosine diphosphate (ATP) hydrolysis, which

provides energy to the molecular motors in the
sarcomeres, generating the contraction of the
fiber. The command u is then equal to a constant

kATP, which represents the rate of the hydrolysis
of the ATP. After contraction, during the depolar-
ization, calcium moves back from the cytosol into

the sarcoplasmic reticulum, and this calcium
decrease leads to the relaxation of the muscle.
The command u is then equal to another constant
(� kRS), which models the activity of the sarco-

plasmic reticulum. The simplest way to model
this contractile element is thus through an
ordinary differential equation of the type
_sc þ jujsc ¼ jujþs0, with _sc the time derivative
of sc, s0 the maximum intensity of the contractio-
nand, and jujþ the positive part of the command

u, equal to u if u is greater than or equal to
0 and 0 if not. With this equation, the authors
obtain the following coupling model (Equation 2

below), with Td the depolarization time, Tr the
depolarization time, HP the heart period,
and sr ¼ scðTrÞ:

The constants kATP and kRS allow the

contraction stress increase and decrease to be con-
trolled, which is consistent with their precedent
definition. A time delay between the electrical

and the mechanical phenomena in this coupling
can also be added. The command and the result-
ing contraction are represented in Fig. 9.

To numerically simulate this simplified consti-
tutive law, the authors use the finite element
method on a tetrahedral mesh to solve the
discretised dynamics equation: MÜ þ CÜ þ KU

¼ Fb þ Fc, with U the displacement vector, M
the mass matrix, C the damping matrix for the in-
ternal viscosity part, K the stiffness matrix for the

transverse anisotropic elastic part (parallel ele-
ment), Fc the force vector computed from contrac-
tion (contractile element), and Fb the different

external loads from the boundary conditions, de-
tailed in the following section.

Boundary conditions: the cardiac phases

To simulate a whole cardiac cycle, the in-
teraction of the myocardium with the blood is
crucial. The cardiac cycle has four different phases

(filling, isovolumetric contraction, ejection, isovo-
lumetric relaxation), which implies different
boundary conditions:

� Filling: the preload pressure is applied to the
endocardium. Its intensity is equal to the pres-
sure of the atrium. It is augmented during the

P wave to represent atrial contraction. When
the ventricular contraction starts, the con-
traction force will tend to eject blood, so

when this force becomes more important
than the applied pressure, the blood flow
changes sign. As the blood is considered in-

compressible, the conservation of mass allows
the computation of blood flow directly with
the ventricular volume time derivative. This

is used to close the atrial-ventricular valves
and start the isovolumetric contraction.
� Isovolumetric contraction: the ventricular
pressure computed to counterbalance the

contraction force and then to keep the ven-
tricle volume constant is applied to the
vertices of the endocardium. When the ven-

tricular pressure is more important than
the arterial pressure, the ventricular-arterial
valves open, and the ejection phase starts.

� Ejection: a pressure is applied to the vertices
of the endocardium. Its intensity is equal to
the pressure of the aorta (for the left ventricle)
and the pulmonary artery (for the right

ventricle). Contraction force decreases after
repolarization. When the flow changes sign,
the ventricular-arterial valves close, starting

the isovolumetric relaxation phase.
� Isovolumetric relaxation: the ventricular pres-
sure computed to keep the ventricular vol-

ume constant is applied to the vertices of the
endocardium. When the ventricular pres-
sure is less important than atrial pressure,

the atrial-ventricular valves open, starting
the filling phase.

The efficient implementation of such changing
boundary conditions is an important part of

�
if Td%t%Tr : scðtÞ ¼ s0

�
1� ekATPðTd�tÞ

�
as _sc þ kATPsc ¼ kATPs0

if Tr!t!Td þHP : scðtÞ ¼ sre
kRSðTr�tÞ as _sc þ kRSsc ¼ 0

ð2Þ
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achieving fast enough mechanical simulations. In
the model by Sermesant and colleagues [55], a pen-
alty constraint was applied to the vertices of the

endocardium to keep its volume constant. To
achieve a balance between this constraint and
the contraction, very small time steps had to be
used. The authors now use the constrained opti-

mization theory to directly compute the ventricu-
lar pressure, keeping the volume constant. The
authors minimize the energy of the mechanical

system of the heart JðUÞ ¼ 1
2ðUt ~KU � Ut ~FÞ under

the constraints V ¼ V�, with V the volume in the
considered ventricle (depending on U) and V� its
volume at the beginning of the isovolumetric
phase. ~K and ~F are two matrices obtained by a first

integration of the dynamics equation. The pres-
sure forces are contained in the ~F matrix. At
each time step, the authors compute the ventricu-

lar pressure for which the solution U of the above
constrained minimization system is such that the
volume is kept constant. This method can sustain

much larger time steps (100 times greater than
before), which allows the authors to simulate
a whole heartbeat on a mesh with 50,000 elements

in about 5 minutes on a standard computer. This
improvement opens up possibilities in mechanical
parameter adjustment and allows the behavior of
the model on series of beats to be tested.

Despite its simplicity when compared with
other constitutive laws proposed in the literature,
this model reproduces reasonably well the global

and local behavior of the myocardium. Fig. 10
shows the simulation of this model using the
canine cardiac atlas for the myocardial shape

and fiber structure.
In the current implementation, the atria pres-

sures vary smoothly between two values (baseline

Fig. 9. Command u(t) and contraction sc(t) generated.

Fig. 10. Long axis and short axis views of the heart model at different phases of the heart cycle. (A–F) Colors represent

the intensity of the contraction stress.
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and atrial systolic pressure). The authors use
a three-element Windkessel model to compute
the arterial pressures from the arterial flow.

Windkessel models are derived from electrical
circuit analogies, where current and voltage rep-
resent arterial flow and pressure, respectively, and
have been found to represent well (after proper

adjustment of the parameters) the clinical mea-
surements [56–58]. To hold the mesh in space, the
authors simulate the fibrous structure around the

valves with springs, having one extremity attached
to a basal node and the other extremity attached
to a fixed point. Some simulation outputs are pre-

sented in Fig. 11.
The authors can note that even with these

completely independent conditions for the left and
right parts of the heart, the two ventricles stay

well synchronized, which shows that force
development is coherent in the model. It allows
calibration of the contractility parameters s0,

kATP, and kRS from the duration of the different
phases, and also from the atrial and arterial
pressures, before further local adjustment, using,

for example, cine-MRI.

Toward patient-specific simulations

Preliminary simulations of patient heart func-
tion are already possible through this framework.
Right-ventricle overload caused by congenital

heart diseases, for example, can be simulated to
study the effect of the abnormal myocardium
anatomy and loading conditions upon the cardiac
function.

To illustrate the overall framework, the authors
present the adjustment of the electromechanical
model to a patient with Tetralogy of Fallot. The

myocardium shape is extracted from the patient
image data using the presented segmentation pipe-
line. The biomechanical parameters are manually

calibrated: maximum contraction s0 is obtained by
comparing the simulated and real diameters of the
ventricles at end-systole; contraction rate kATP and
relaxation rate kRS are estimated using both the dy-

namic images and the volume diagrams obtained
from the segmentations. Because they are not ac-
cessible for this patient, electrical parameters and

boundary conditions are set according to clinical
observations available in the literature.
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The left ventricle can be simulated successfully,
as well as the regions of the right ventricle far from

the outflow tract. The simulated contraction at
each vertex of the mesh, the electrical propagation,
and the 3D strain can be visualized in real time to
assess the cardiac function (Fig. 12). Additional

results on this disease-adapted work can be found
on the World Wide Web (http://www-sop.inria.fr/
asclepios/projects/hec/).

However, the abnormal regions of the right
ventricle are still difficult to simulate because of
some limitations in the model: in particular the

authors’ way of handling the fluid-structure
interactions, which may not be suited to these
pathologies. The authors introduced here a prelimi-
nary model of valve regurgitation, which is an

important feature of this pathology; however, local
abnormalities also have to be introduced in themodel
parameters to better represent the diseased behavior.

In summary, this article presents a framework
toward patient-specific models of the myocar-
dium. By integrating information about the anat-

omy, the electrophysiology, and the mechanics,
we can explore the correlation between function
and anatomy for a given patient and test different

hypothesis as well as plan therapies.
To complete the personalization of the model,

the parameters of the mechanical model must be

adjusted locally, as was presented on the electro-
physiology model. First results have been

obtained on this problem, using the data assimi-
lation framework of Sermesant and colleagues
[59], but this is still very challenging. One of the
additional difficulties, compared with the electro-

physiology, is to precisely know the boundary
conditions, such as the before-load and the after-
load. In addition, the mechanical behavior

depends on the electrophysiology, which is the
command. Then, if errors were to occur in
the electrophysiology model adjustment, this

would lead to errors in the mechanical parameter
adjustment. Thus, the progress made on the data
acquisition and fusion will definitely play an im-
portant role in achieving a fully patient-specific

heart model.
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