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Abstract. Mapping the e�ects of di�erent clinical conditions on the
evolution of the brain structural changes is of central interest in the �eld
of neuroimaging. A reliable description of the cross-sectional longitudi-
nal changes requires the consistent integration of intra and inter-subject
variability in order to detect the subtle modi�cations in populations. In
computational anatomy, the changes in the brain are often measured
by deformation �elds obtained through non rigid registration, and the
stationary velocity �eld (SVF) parametrization provides a computation-
ally e�cient registration scheme. The aim of this study is to extend
this framework into an e�cient and robust multilevel one for accurately
modeling the longitudinal changes in populations. This setting is used to
investigate the subtle e�ects of the positivity of the CSF Aβ1−42 levels
on brain atrophy in healthy aging. Thanks to the higher sensitivity of
our framework, we obtain statistically signi�cant results that highlight
the relationship between brain damage and positivity to the marker of
Alzheimer's disease and suggest the presence of a presymptomatic pat-
tern of the disease progression.

1 Introduction

The ability to map the di�erent areas involved in the neurodegenerative pro-
cesses is of primary importance for the formulation of new clinical hypotheses
on the pathological mechanisms. Moreover, the availability of a longitudinal
model of the disease progression would provide a reliable standard for diagnostic
purposes. The problem is particularly relevant in the �eld of Alzheimer's disease
(AD) which is characterized by the progressive abnormal con�guration of the
biochemical, functional and structural markers in the brain which may occur

? Data used in preparation of this article were obtained from the Alzheimer's
Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). As
such, the investigators within the ADNI contributed to the design and imple-
mentation of ADNI and/or provided data but did not participate in analysis or
writing of this report. A complete listing of ADNI investigators can be found
at:www.loni.ucla.edu/ADNI/Collaboration/ADNI_Authorship_list.pdf
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up to decades before the clinical assessment [5]. Among the earliest potential
markers, the pathological con�guration of the CSF Aβ1−42 was shown to be
associated with a general increased predisposition to clinical conversion to AD.
It is therefore of great interest to model the subtle di�erential evolution from
normal aging of the brain changes in subjects who are not a�ected by the disease
but present lower Aβ1−42 levels. For this purpose, robust, sensitive, accurate and
reproducible modeling techniques are required.
The non-rigid registration is a candidate instrument to quantify the structural
di�erences between brain images and the new generation registration algorithms
provide di�eomorphic registration ([14], [9]). Among them, the Log-Demons al-
gorithm provides an accurate and computationally e�cient approach, by using
stationary velocity �elds (SVF) as parametrization of the deformations.
The analysis of longitudinal data requires to go one step further and to integrate
the temporal dimension into the registration procedure. The main complexity of
the problem lies in the di�erent levels of variation introduced by the di�erent
nature of the small intra (longitudinal) and large inter-subject (cross-sectional)
changes: the measurements from time series of a speci�c subject must be normal-
ized into a comprehensive spatio-temporal atlas. Although di�erent approaches
have been proposed in the past for the group-wise analysis of longitudinal dataset
([2], [15]), a consensus on the optimal strategy to handle the di�erent levels of
information is still missing, for instance for the choice of the di�erent metrics
for intra and inter subject normalization.
We believe that the reliable quanti�cation of the group-wise longitudinal changes
should independently address the di�erent sources of variability with proper
methods, and consistently integrate the di�erent levels into a general framework.
In previous works the SVF setting was shown to provide:

1. An e�cient pairwise-registration scheme with Log-Demons [14];
2. A straightforward way to model the subject-speci�c deformation trend from

time series with a spatio/temporal regularization procedure [7];
3. A stable way to transport the subject-speci�c trends in the atlas geometry

using the parallel transport given by the Schild's Ladder procedure [8].

The goal of this paper is 1) to combine these previous contributions in a robust,
e�cient and precise tool for modeling group-wise deformation, and 2) to use the
framework to analyze and model the subtle e�ects of the CSF Aβ1−42 levels on
longitudinal brain atrophy in healthy elders.

2 Modeling changes in time series of images with the

SVF framework

We assume that the subject speci�c evolutions are random realizations of an
underlying ideal population trend. The hierarchical generative model is therefore
composed of the following levels:

1. We model the population trend as the deformation µG(t) of a template T0

over time. The (spatially normalized) deformation trend of subject K in the
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template space is assumed to be a random realization of a Gaussian process
µK(t) = µG(t) + εK . It is the goal of step 4 to estimate the population trend
µG(t) from the spatially normalized subject's longitudinal trends.

2. To account for the spatial variability of the anatomy across the population,
the subjects speci�c coordinate system is de�ned by a spatial changes of
coordinates φK(−1) from the template to the subject. The subject speci�c

deformation trend vK(t) is then modeled as the parallel transport of the
spatially normalized subject's longitudinal trend µK(t) along the template-
to-subject spatial change of coordinates φK(−1). Step 3 is taking care of
solving the reverse problem in a discrete time setting.

3. Subject speci�c longitudinal trends are then sampled in time (modeling the
discrete acquisition times) and a deformation noise accounting for the in�u-
ence of random confounding factors (hydratation, vasodilation, etc) is added
independently at each time point to obtain the subject-speci�c deformation
vKi = vK(ti)+εi at time point ti. Step 2 aims at solving the inverse problem.

4. Last but not least, the subject time series of images is generated by deforming
the subject baseline image IK0 with an acquisition noise on intensities: IKi =
exp(vKi ) ∗ IK0 + εIi . Step 1 is solving the inverse problem using non-linear
registration.

Let us now address the inverse problem: estimating the population trend
from the time series of patient images. We detail below step by step the solution
we propose to solve each level of the generative model (in the reverse order).

Step 1: Robust pairwise registration with the Log-Demons algorithm

For each subject K, the longitudinal changes along the time series of images
IKi , i = 0, . . . , n acquired at time t0 = 0, . . . , tn, are evaluated by non rigid
registration with respect to the reference time point, here the baseline IK0 .
The Log-Demons algorithm aims at matching the images I0 and Ii by looking for
the deformation ϕ which maximises their similarity. The deformation ϕ belongs
to the one-parameter subgroup generated by an optimal vector �eld v, and the
parametrisation is de�ned by the group exponential map ϕ = exp(v) [1].
In the standard log-Demons algorithm the �unregularized� correspondence �eld
vx is given by the minimization of the sum of squared di�erences (SSD) between
the intensities of the two images, which is not robust to the intensity biases. In
order not to mistake spurious intensity variations for morphological di�erences,
we �rst propose to resort to the local correlation coe�cient, introduced in [3]:

E(I0, Ii,vx,v) = min(a,b)

∫
GσS

∗ ‖(a(x) · I0(x) + b(x))− Ii(x) ◦ exp(vx)(x)‖2+

+
1
σ2
x

‖ log(exp(−v)(x) ◦ exp(vx)(x))‖2L2
(1)

The spatially varying coe�cients a(x), b(x) account for the additive and multi-
plicative biases for the intensities. Moreover the bias estimation is local, thanks
to the Gaussian weights on the error norm. In practice, the standard correspon-
dence energy of the Log-Demons is replaced by E(I0, Ii,vx,v), while preserving
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the remaining structure of the algorithm. As proposed in [3], the minimization of
(1) is operated through a two step procedure: a �rst step evaluates the optimal
scaling factors a and b voxel-wise, that are then reintroduced for the optimiza-
tion of vx through a Gauss-Newton scheme. Experiments on both synthetic and
real data showed that the local similarity criteria allows to robustly compute
deformations in presence of bias and generally provides smoother estimation of
the anatomical di�erences (data not shown due to space constraints). The im-
portant robustness improvements came at the price of a reasonable increase of
the computational time (around 25 minutes on a Pentium Intel Core Duo 2.4Ghz
for registering images with resolution 182x182x218, voxel size 1x1x1) .

Step 2: Modeling the subject speci�c longitudinal trends. In order to
obtain smoother estimations of the subject speci�c trajectory and to reduce the
intra-subject variability given by possible confounding factors, the Step 2 con-
sists in introducing a temporal correlation into the estimated serial deformations
through a 4D registration scheme [7]. The procedure is particularly indicated
here, since we are going to investigate the subtle morphological changes occur-
ring in the brain of cognitively healthy subjects on a small number of time points
(around 4 for the ADNI dataset), and we do not expect to model sharp varia-
tions or sudden modi�cation of the longitudinal series.
The subject speci�c trend v̄K(t) = L(vKi , ti, t) is estimated with a linear model
in time (which is a non-linear deformation model) from the time series of static
velocity �elds vKi evaluated in the Step 1 for the pairs IK0 , I

K
i . The 4D reg-

istration integrates the v̄K(t) in a new registration step in order to provide a
temporal prior for �nally estimate the spatio-temporal regularized sequence of
the static velocity �elds v

′K
i .

The solution at each time point ti is represented by the weighted average between
the temporal prior v̄K(ti) and the spatial correspondence vx provided by the
similarity measure. Previous experiments showed that the 2:1 trade-o� between
spatial and temporal weights de�nes su�ciently smooth trajectories while not
biasing the changes towards a completely linear model.

Step 3: Transporting the subjects trajectories in the atlas geometry.

In order to compare the longitudinal trajectories between the di�erent subjects
and to perform statistical analysis, we need to transport the series of veloc-
ity �elds v

′K
i in a common reference. For this purpose, we base the transport

on the Schild's Ladder method [8]. The method relies on the technique intro-
duced in the �eld of theoretical physics for computing the parallel transport of
tangent vectors on a general manifold without requiring the knowledge of the
global geometrical properties of the space. It is based on the construction of a
�geodesic parallelogram� for transporting vectors along any curve (and not just
the geodesics of a speci�c choice of metric)3. More precisely, the parallel trans-

3 In the case of SVF, the geodesic parallelogram is based on the one-parameter sub-
groups whicht are the geodesics of the Cartan connections [12].
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port of the trajectory v
′K
i from Step 2 along φK = exp(tuK) connecting IK0 and

T0 is the �eld v∗Ki = ΠφK

(v
′K
i ) ' v

′K
i + [uK ,v

′K
i ] + 1

2 [uK , [uK ,v
′K
i ]].

Step 4: Longitudinal group-wise modeling The transported time series of

SVF v∗Ki = ΠφK

(v
′K
i ) belonging to di�erent subjects can now be easily com-

pared in the reference space T0. In order to develop a group-wise model for
the trajectories, we propose here a random e�ect analysis based on the lon-
gitudinal transported trends. Let µK(t) = L(v∗Ki , ti, t) be the spatially nor-
malized subject trend modeled in the reference space with a linear model in
time4. The di�erent subject trends µK(t) characterize the trajectories across the
populations and by comparing them it is possible to provide a description of the
group-wise evolutions. In the following, the di�erent evolutions across the groups
(say + and -) will be statistically assessed on the group-wise mean deformation
trends µ+(t) and µ−(t). However, the visual di�erences between the trends will
be illustrated by applying the longitudinal evolutions to the template image:
T+(t) = exp(µ+(t)) ∗ T0 and T−(t) = exp(µ−(t)) ∗ T0.

3 E�ects of Aβ1−42 positivity on healthy aging

The T1 weighted longitudinal scans (baseline, 6, 12, 24 and 36 months) were
selected for 98 healthy subjects from the ADNI dataset [10]. Two subgroups
were then de�ned based on the positivity to the Aβ1−42 marker de�ned by values
below the threshold of 192 pg/ml and resulted in 41 subjects Aβ1−42 positives
and 57 negatives (Aβ+

1−42 and Aβ−1−42). The two groups were similar at baseline

for gender (% of women: 45 % for Aβ+
1−42 , 51 % for Aβ−1−42), age (75±5, 75±5)

and education (15.8±3.17, 15.5±2.7). For each subject, the time series of images
were aligned through an unbiased procedure consisting on the iterative rigid
registration to the median image computed voxel-wise. The �nal median image
was linearly registered to the MNI132 template and the a�ne transformation
was then applied to the series.
The 4D registration algorithm was applied to the longitudinal series of each
subject, with σS = 10mm for the local similarity criteria, σfluid = 0.5mm and
σelastic = 1mm for the regularization. The Schild's Ladder was used to transport
the longitudinal trajectories from the subject to an unbiased population-based
Template T , computed as in [6] (Inter-subject registrations were also computed
with the log-Demons algorithm).

The mean trends µ− of the Aβ−1−42 and µ+ of the Aβ+
1−42 groups were com-

puted from the estimated subject-speci�c trends. Their di�erence was assessed
on a voxel-by-voxel basis by a multivariate analysis based on the Hotelling's two-
sample T 2 statistic (Figure 2C). The statistical signi�cance was assessed after
correction for multiple comparisons by means of permutation test (1000 permu-
tations). Moreover, the trends allowed to compute the mean evolutions for the

4 We notice that the model �tted in the Log-domain does not imply a linear trend for
the parametrized deformations.
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Fig. 1: Average SVF from baseline for the Aβ−1−42 (left) and Aβ+
1−42 (right) groups. For

both groups the average forces increase longitudinally, but we can notice an acceleration
for the changes across the hippocampus and the temporal regions for the Aβ+

1−42 group.

Template space and to qualitatively assess the di�erential progression between
the two groups (Figure 2A/B). Finally, a region of interest (ROI) based analysis
was performed on the average log-Jacobian values of the estimated trajecto-
ries in selected areas of the Template space, segmented through an automated
procedure(Ventricles, Hippocampus, Amygdalae, Caudate and Thalamus) [11].

4 Results

Figure 1 shows the average SVF estimated for the two groups from baseline.
Althought the two groups show a similar pattern for the ventricular expan-
sion, the Aβ+

1−42 shows an increased �ow of vectors across the temporal regions
and hippocampus. Figure 2A highlights the modeled longitudinal changes from
baseline for the Aβ−1−42 group. The aging e�ect can be appreciated in the ven-
tricular expansion and in the spread cortical changes. The additional changes
due to the positivity to the marker Aβ1−42 are displayed in Figure 2B. The
positivity to Aβ1−42 is characterized by increased longitudinal changes located
in the temporal areas and by ventricles expansion. We notice that the average
progression built from the estimated SVF allowed to extrapolate the expected
evolution 2 years after the end of the study. The multivariate statistical assess-
ment of the di�erences between the evolution of the two groups is shown in
Figure 2C. It involves hippocampi, ventricles and the temporal regions. Interest-
ingly, the voxel-by-voxel statistical analysis on the associated log-Jacobian scalar
maps showed similar patterns but failed to reach the statistical signi�cance af-
ter the correction for multiple comparisons. This suggests a higher sensitivity of
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the analysis when performed on the multivariate SVF v rather than on scalar
higher order quantities such det(∇v). Supplementary material can be found
in http://www.inria.fr/sophia/members/Marco.Lorenzi/SVF_Framework. The
regional di�erences were con�rmed by the ROI based analysis, where signi�cant
di�erences for the volume change/year were found in the ventricles (3.84% for
Aβ−1−42, 6.72% for Aβ+

1−42, p=0.009) and in the hippocampus (0.14%, 0.24%,
p= 0.014 ) while no signi�cant di�erences were detected in the other regions.

Fig. 2: Modeled longitudinal annual % intensity changes for A) the Aβ−1−42 group with
respect to the baseline, and for B) the Aβ+

1−42 group with respect to the Aβ−1−42

longitudinal progression. In C) are shown the areas of statistically signi�cant di�erence
between the trends of the Aβ−1−42 and the Aβ

+
1−42 groups (p<0.05 corrected). Last row:

modeled additional loss with respect to the Aβ−1−42 progression for an AD group from
the ADNI dataset. We can notice the analogies with the Aβ+

1−42 trend.

5 Conclusions

The present work introduces a consistent and e�ective framework for the analysis
of longitudinal data of 3D MRI images. It allowed to model the subtle changes
which di�erentiate the longitudinal evolution of healthy people with abnormal
Aβ1−42 level from those in the normal range, given by increased ventricular
expansion and spread matter loss in the temporal regions ([4], [13]). The resulting
trajectories incorporate a wide range of informations (velocities, deformations,
volume changes, . . . ) which could provide new insights for the understanding
of the biological phenomenas, like modeling the pathological evolutions (such
as in Figure 2). For instance, the extrapolation result is an appealing feature
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in epidemiology as it enables previsions that could motivate clinical hypothesis.
Moreover, the soundness of the extrapolated data indicate the stability and the
robustness of the proposed method.
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