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Differentiation of sCJD and vCJD Forms by
Automated Analysis of Basal Ganglia Intensity

Distribution in Multisequence MRI of the
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Abstract—We present a method for the analysis of basal gan-
glia (including the thalamus) for accurate detection of human
spongiform encephalopathy in multisequence magnetic resonance
imaging (MRI) of the brain. One common feature of most forms of
prion protein diseases is the appearance of hyperintensities in the
deep grey matter area of the brain in T2-weighted magnetic reso-
nance (MR) images. We employ T1, T2, and Flair-T2 MR sequences
for the detection of intensity deviations in the internal nuclei. First,
the MR data are registered to a probabilistic atlas and normalized
in intensity. Then smoothing is applied with edge enhancement.
The segmentation of hyperintensities is performed using a model
of the human visual system. For more accurate results, a priori
anatomical data from a segmented atlas are employed to refine the
registration and remove false positives. The results are robust over
the patient data and in accordance with the clinical ground truth.
Our method further allows the quantification of intensity distribu-
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tions in basal ganglia. The caudate nuclei are highlighted as main
areas of diagnosis of sporadic Creutzfeldt–Jakob Disease (sCJD),
in agreement with the histological data. The algorithm permitted
the classification of the intensities of abnormal signals in sCJD
patient FLAIR images with a higher hypersignal in caudate nuclei
(10/10) and putamen (6/10) than in thalami. Defining normalized
MRI measures of the intensity relations between the internal grey
nuclei of patients, we robustly differentiate sCJD and variant CJD
(vCJD) patients, in an attempt to create an automatic classification
tool of human spongiform encephalopathies.

Index Terms—Creutzfeldt–Jakob Disease (CJD), grey matter
(GM), human visual system model, intensity quantification, in-
ternal nuclei, multisequence magnetic resonance imaging (MRI)
of the brain, normalization, registration, segmentation, sporadic
Creutzfeldt–Jakob Disease (sCJD), variant Creutzfeldt–Jakob
Disease (vCJD).

I. INTRODUCTION

THE identification of diagnosis markers is a major challenge
in the clinical care of patients with Creutzfeldt–Jakob Dis-

ease (CJD). This disease raises a number of questions for neuro-
radiological centers, due to the limited development of medical
imaging techniques for its detection. Some recent studies [5],
[15], [22], [52] found strong correspondences between the diag-
nosis of CJD and the detection of signal abnormality in the deep
grey matter (GM) internal nuclei in magnetic resonance imaging
(MRI) of the brain. Since CJD progresses rapidly, detecting the
earliest signs of the disease becomes essential in studying its
evolution and developing potential treatments.

This work was completed as part of GIS-Prions, a project
funded by the French Ministry of Health. Its goal was to perform
a prospective study of particularly sporadic Creutzfeldt–Jakob
disease (sCJD) and variant Creutzfeldt–Jakob disease (vCJD)
and develop techniques for the detection and classification of
various types of CJD [5], [6]. The project involved several re-
search centers across France and a database aimed at including
CJD patients from two main neuroradiological centers in Paris
and Marseille in the period between 2002 and 2004. All patients
gave their informed written consent. The protocol was reviewed
and approved by the local ethical committee (CCPPRB).

0278-0062/$20.00 © 2006 IEEE



LINGURARU et al.: DIFFERENTIATION OF SCJD AND VCJD FORMS 1053

Fig. 1. Deep grey nuclei. On the left: a map of deep GM internal nuclei in a normal T1-weighted axial MR image. On the right: a map of deep GM internal nuclei
reproduced from the Talairach and Tournoux atlas [45] showing the caudate nuclei (CN), the putamen (Pu), and the thalami (Th). Pulvinar (P) is located in the
posterior section of the thalamus.

A. CJD and MRI

MRI is commonly used for noninvasive examinations of pa-
tients with neurological diseases [23], [44]. For the last fifteen
years, evidence of MRI hypersignals in CJD patients has been
found. However, the observations and studies describing the
MRI ability to help in the diagnosis of CJD are in an early stage.
Most of the studies are concerned with sCJD cases, which rep-
resent 80% of all forms of CJD. The first study cases describe
hypersignals in T2-weighted images (and FLAIR T2 images)
with higher incidence in the basal ganglia (see Fig. 1) in a bilat-
eral symmetric form [18], [33], [37]. Schroeter et al. [41] con-
duct a large study on sCJD patients and conclude that the MR
sensitivity in detecting sCJD is 67% with a specificity of 93%.
No anomalies are generally reported in T1-weighted images of
sCJD patients, with some exceptions [13].

A great concern has been the occurrence in the U.K. of vCJD
in the 1990s, a form of environmentally acquired human CJD.
Although the number of vCJD cases has decreased since 2001,
there is a new risk of rise by blood transfusion [39]. This type
of CJD related to the bovine spongiform encephalopathy shows
a different distribution of lesions and therefore hyperintensities
in brain MRI [36], [51]. In FLAIR and T2 sequences, abnormal
high signals are depicted in the thalamus, mainly in the poste-
rior pulvinar nucleus (see Fig. 1). Unlike in sCJD cases, in vCJD
cases abnormal intensities are higher in the pulvinar when com-
pared to striatum [20]. The sensitivity of MRI in detecting vCJD
is reported as 78% with a specificity of 100%.

Cortical hypersignals are also associated with CJD, but on
a much more reduced scale. Abnormal cortical signals are best
detected in diffusion weighted images (DWIs) [3]. Areas of high
signal in DWI are usually associated with decreased apparent
diffusion coefficient (ADC) values [24], [43]. Although there
are overlaps between bright areas in FLAIR/T2 and in DWI, the
MR sequences depict different types of abnormal pathological
features.

There are several hypotheses relating hyperintensities in MRI
and CJD. In [14] and [46], the interpretation of MRI studies and
neuropathological data shows that an elevation of signal in MRI
T2-weighted sequences correlates with gliosis in pathological
analysis. Bahn and Parchi [4] relate the high signal in DWI to
spongiform changes. In [51] and [52], it is argued that hyper-
intensities in thalamus in vCJD seem more likely linked to the

level of gliosis than to spongiosis or prion deposits. More re-
cently, Haïk et al. [21] noted that in a sCJD and vCJD cases,
there is no clear association between the high MRI signal and
gliosis or spongiform changes. It seems to be closer related to
the accumulation of prion protein. Still, the relation between the
prion deposits and strong signal in MRI remains ambiguous.

Some studies make MR related image processing an impor-
tant tool in noninvasive CJD diagnosis [17], [33], [35]. How-
ever, the visual interpretation of MR images by the clinicians is
sometimes difficult and could lead to an under- or overestima-
tion of the true incidence of CJD [6]. At the present time, MRI
is not included as a diagnosis criterion for sCJD, even though
it could be useful, as for vCJD [52]. Therefore, it is necessary
to further explore the advantages of computer aided diagnosis
(CAD) techniques in the MRI clinical environment.

Leemput [46] proposes a method for automated quantifica-
tion of MR intensity changes in images of CJD patients. He
acknowledges common difficulties in processing such images,
including limited resolution, partial volume effects, noise, low
contrast, and nonhomogeneous intensity, whether a computer
or a human expert performs it. Hence, low-level segmentation
methods are inappropriate for the detection of hyperintensities
in the affected areas of the brain. A mixture model of normal
distributions combined with the expectation-maximisation al-
gorithm (EM) is proposed. However, the method does not de-
tect signal abnormalities in all the CJD cases, while showing
significant amounts of false positives (FPs) along the interface
between GM and cerebrospinal fluid (CSF).

Colchester, Hojjat et al. [9], [10], [22] analyse the putamen
intensity gradient to separate CJD from normals and propose
several ratios (posterior thalamus to caudate and most notably
to frontal white matter) to differentiate vCJD from the rest. They
use T2-weighted and proton density MRI for average intensities
(no hyperintensity analysis) and their segmentation is performed
manually.

B. Addressing the Problem

CAD is expected to simplify the complex tasks of every day
clinical work, assist in the routine investigation of large numbers
of medical images (reducing human errors), and present a robust
and reliable second opinion in decision making.
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Fig. 2. Registration of Zubal Phantom onto the MNI template. On the left, the MNI template; in the middle, the original Zubal Phantom; the right image shows
the registered Zubal Phantom. Please note the arrangement of MR images in radiological convention with an axial, a sagittal and a coronal view. This convention
is reflected in figures throughout the paper.

The image blurring due to motion artefacts in the set of im-
ages we work with makes the use of statistical detection algo-
rithms very difficult. Such algorithms rely on finding consistent
repeatable signs of a disease over a set of patients [26], [48].
Also, they need good contrast between GM and white matter
(WM) in T1-weighted images for stochastic analysis according
to a general atlas context. This is another major source of errors
in cases of CJD, where patients suffer dementia with often un-
controlled movements.

Rueckert et al. [40] build statistical deformation models of
anatomical variability. They use nonrigid registration to build
atlases of the brain and patient anatomical models. Since we
use images with low contrast, our method combines affine and
nonrigid registration using global landmarks to segment deep
grey nuclei.

The approach we propose is based on the use of a priori
anatomical knowledge in the form of an accurately segmented
and labelled image (e.g., the Zubal Phantom [53]) for precise
segmentation and of a probabilistic atlas for intra- and interpa-
tient analysis. A feature detection technique based on a model
of the human visual system (HVS) is employed for the depic-
tion of hypersignals. We differentiate different types of human
prion diseases (sCJD from vCJD) based on the lesions’ topo-
graphical distribution. The remainder of this paper is organized
as follows.

• Section II presents the steps employed on images before
the effective segmentation of abnormal intensities. They
include spatial and intensity normalization, atlas align-
ment, and noise removal.

• Section III introduces the refined registration of internal
nuclei using a labelled atlas. Then we present the HVS-
based detector, an adaptive thresholding method that fol-
lows the function of the human eye to segment abnormal-
ities in deep GM. We further define MRI-based ratios for
the prompting and differentiation of CJD forms.

• Results of our method to detect and quantify intensity dis-
tributions in deep grey nuclei are illustrated in Section IV.

II. PREPROCESSING

In this section, we review the preprocessing stages used be-
fore the actual segmentation of CJD hypersignals. This is a
model of data normalization and regularisation, which is re-
quired to put the images in the same general framework to re-
duce the number of parameters.

The image acquisition protocol is designed to include three
MRI sequences for each patient. The sequences used by our
algorithm are: a T1-weighted acquisition for its higher con-
trast between GM and WM and higher image resolution;
T2-weighted images for its strong contrast between CSF and
brain parenchyma; and a T2-weighted FLAIR sequence for the
depiction of CJD signs in the brain.

A. Image Normalization

The large variability inherent to human anatomy and imaging
parameters leads us to consider spatial and intensity normaliza-
tion as an approach to normalize patient images for further ab-
normality detection. This is done both to localize the areas of
interest with the help of an atlas of the brain, and to normalize
specific imaging parameters for an automatic detection of the af-
fected brain areas. Furthermore, interpatient analysis could now
be performed.

1) Spatial Normalization: Data registration to an atlas has
become a common technique with the introduction of popular
statistical algorithms for image processing, such as statistical
parametric mapping (SPM) [2] or expectation maximization
segmentation (EMS) [48]. A well-known probabilistic atlas in
the scientific community is the MNI Atlas from the Montreal
Neurological Institute at McGill University [11]. Built using
over 300 MRI scans of healthy individuals to compute an
average brain MR image, the MNI template is now the standard
template of SPM and the International Consortium for Brain
Mapping [32] (see Fig. 2 left).

We propose the following registration scheme. T1 images
have the highest resolution in our data set; hence, we register
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Fig. 3. Joint histograms of the two MR patient images before intensity normal-
ization (left) and after the affine regularisation of intensities (right). Note the
realignment of the cloud of points in the middle of images to fit better the first
diagonal (shown in white) once the image normalization has been performed.
Dark vertical lines appearing in the histogram of normalized images are caused
by the dilation of the range of intensities in the image to be normalized; as we
work with discrete data and we do not employ any interpolation, the affine nor-
malization will not cover the entire range between the minimum and maximum
values.

them to the MNI template using an affine transformation. The
registration algorithm, previously developed in our group, is de-
scribed in [37]. It uses a block matching strategy at multiple
scales assuming that there is a global intensity relationship be-
tween the template image and the one being registered to it.
Next, rigid intra-patient registration of the T2 and the FLAIR se-
quences to the T1 image is performed. By combining this rigid
transformation with the affine transformation matching the T1
and the MNI template, we can find correspondences between
the T2 and FLAIR patient images and the atlas. The final image
resolution is that of the MNI atlas: voxels.

2) Intensity Normalization: In addition to geometric vari-
ability, MR images may also exhibit intensity differences.
Common problems in image analysis arise from the consider-
able variations between images of different patients, but also in
images of the same patient taken at different times. As a result,
it is difficult to tune processing parameters for good repeatable
results. We propose the use of an intensity normalization algo-
rithm for the FLAIR images, prior to the detection of signal
deviations. Our method performs an affine equalisation using
the joint histogram of two images: a standard image (from our
database) onto which we align the intensity distribution of the
second image [27].

The two images must be registered prior to normalization in
intensity. Ideally, the joint histogram will be as close as pos-
sible to a straight line along the first diagonal of the intensity
plane. In practice, a joint histogram between MR images of dif-
ferent subjects following the same acquisition protocol resem-
bles a cloud of points centred on a line in the
intensity surface. The affine equalisation we employ finds the
parameters and by minimizing the criterion in (1), where

relates to the points of coordinates in the joint his-
togram. The orthogonal distance is preferred to the vertical dis-
tance, which is biased toward one of the two images to align in
intensity. Note the change in the joint histogram of two MR im-
ages before and after intensity normalization in Fig. 3. This in-
tensity normalization process takes place on images after affine
registration to the MNI atlas. Although this registration is not

perfect and, as described in following sections, nonrigid regis-
tration is required to obtain alignment of fine details, the com-
putation of this global intensity transformation is fairly robust to
small misalignments, as it is computed from the histogram of the
whole image. Furthermore, the aim is to scale the histograms to
fall within the same range of intensities without affecting image
contrast, which is the key feature for further segmentation

(1)

B. Noise Removal and Image Enhancement

MR images are noisy. Our application aims to detect areas of
abnormal intensity in the deep GM of the brain and noise can
hamper the segmentation process. Thus, we smooth our images,
but ensure that the areas of interest (areas of high intensity) are
preserved for accurate segmentation. We employ an anisotropic
diffusion filter based on the diffusion tensor introduced by We-
ickert [49].

The choice of related eigenvalues determines the be-
haviour of the feature detector, as in (2), where is the image to
diffuse. We employ a strong decreasing diffusivity-like function
(see power 12) that encourages the fast removal of small noise,
while contrast at edges is enhanced. Empirically, the choice of
a small contrast threshold gave repeated good results
with respect to noise smoothing without influencing the seg-
mentation of hyperintensities. Since the subsequent intensity
quantification is based on MR values before smoothing or
normalising in intensity, this latter process is not sensitive to
the diffusion filter and its parameters. An example of image
diffusion is presented in Fig. 4

(2)

III. SEGMENTATION AND INTENSITY QUANTIFICATION

Our analysis is based on the abnormal MR intensities that
can appear in the basal ganglia (including the thalamus) of CJD
patients, which often show signs of dementia. Under the given
circumstances, the segmentation of GM (where CJD affections
are visible) cannot be done directly from the patient images, due
to patient movement and therefore low contrast in images. The
MNI atlas can provide a probabilistic segmentation of GM, but
this is not precise enough for our application. We use instead
a segmented anatomical atlas of the brain, the Zubal Phantom
[53], which is introduced in the next section.

A. A Priori Anatomical Data

The data we use were affinely registered to the MNI atlas.
While we avoid direct nonrigid registration to the MNI atlas,
which is an averaged image and lacks detail, the affine registra-
tion is only approximate. A precise local intensity analysis of
internal nuclei would be erroneous at this stage and, therefore, a
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Fig. 4. Effect of anisotropic versus linear diffusion on image smoothing. On the left, we show the original image from a patient with CJD hypersignals in the basal
ganglia. In the middle, the linearly diffused (Gaussian convolution) image after five iterations. On the right, the anisotropically diffused image after five iterations
with smooth areas and well-preserved edges.

Fig. 5. Definition of pulvinar and anterior thalami in the Zubal Phantom. On the left, the pulvinar is highlighted in black as the thalamic area below the VCP
plane. On the right, the “anterior thalamus” is shown in black, a depicted region in the “healthy” area of thalamus.

registration refinement becomes necessary. The Zubal atlas of-
fers a precisely labelled segmentation of brain structures from
the T1-weighted MR image of a single subject (see Fig. 2). Our
interest focuses on the internal nuclei, which are segmented in
the phantom. First, the atlas must be aligned to our set of im-
ages, which have been previously registered to the MNI atlas.
Thus, we register the Zubal Phantom to the MNI template, again
using the block-matching algorithm [37], to estimate an affine
transformation. We perform a nearest-neighbor interpolation to
preserve the segmentation labels. Fig. 2 shows the results of reg-
istering the Zubal Phantom on the MNI reference without dis-
rupting the Zubal labels.

The Zubal Phantom does not include labels for the tha-
lamic nuclei, such as the pulvinar. According to Talairach and
Tournoux [45], the pulvinar represents the “large posterior
portion of the thalamus,” which is “limited by a conventional
verticofrontal plane through the posterior commissure” (CP).
This plane (VCP) goes through the ventricular margin of CP
and is perpendicular on the CA–CP biocommissural line of
Talairach. We draw VCP as described above and the result is

shown in Fig. 5 left, where the pulvinar is marked in black. In
Fig. 5, right, we represent in black what we call “anterior thal-
amus,” an area in the anterior part of the thalamus (above the
VCP plane), which is used to compute mean values of deep GM
in a region with very low probability to show hyperintensities
in CJD patients.

B. Detection of Internal Nuclei and Refined Segmentation

Once the Zubal Phantom is registered to the working
framework, we can easily depict the brain structures that are
of interest, namely the deep GM internal nuclei. Reports in
literature [5], [15], [21], [51], [52] mention the importance
of analysing MR intensities in the basal ganglia. Hence, we
create a mask with the thalamus, putamen and head of the
caudate—which will be referred to as internal nuclei for the
rest of this paper—from the Zubal Phantom registered on
MNI. We aim to use this mask for the segmentation of internal
nuclei in patient images. Although the affine registration gives
correct correspondences in a general brain registration frame-
work, the anatomical variability between patients makes the



LINGURARU et al.: DIFFERENTIATION OF SCJD AND VCJD FORMS 1057

Fig. 6. Registration of the Zubal ventricle and cortex outer boundary on a patient with very large ventricles. This is the most difficult case encountered. Patient
has brain atrophy and dilated ventricles, while the ventricles of the Zubal Phantom are small. From left to right: column 1, the ventricles and brain margin of the
patient (ventricles segmented from T2 and cortex from T1); column 2, the ventricles and brain boundary of Zubal Phantom; column 3, the ventricles and cortex
boundary of the Zubal Phantom registered to the patient; column 4, the deformation fields of the nonrigid registration.

correspondence between the Zubal internal nuclei mask and
the corresponding internal nuclei in each patient erroneous.
A refinement of the registration in the deep GM between the
Zubal internal nuclei mask and the patient internal nuclei seems
necessary.

The segmentation of internal nuclei in patient images is not an
obvious task; nevertheless, there are other important anatomical
landmarks in the brain that are easier to identify. We concentrate
on the segmentation of ventricles and cortex external boundary.
Ventricles will give a good approximation of the deformation
field around the internal nuclei, whereas the cortex boundary
will impose global spatial constraints and stabilize the defor-
mation field inside the brain.

To obtain similar images of segmented brain margin and ven-
tricles for each patient, we employ morphological opening [42],
two erosions followed by two dilations, to extract the ventricles
from T2 (with higher contrast between CSF and brain) and the
cortex from T1 patient images. The cortex boundary could nor-
mally be extracted from either T1 or T2 sequence; we prefer
to use the T1 sequence, since the T2 images we use lack some
top and bottom slices. Although the ventricles are located in the
middle of the brain and it is correct to extract them from T2 im-
ages, the cortex would be incomplete. In both cases, we used
the original nonregistered images. The segmentation results are
registered to the MNI by applying the transformations computed
for the corresponding T1 and T2 images.

We are now in possession of two binary maps of ventricles
and brain boundaries for each patient: one from the Zubal
Phantom and the other from the patient. Nonrigid registration
is used to align the two images, employing the iconic feature-
based algorithm described in [7]. Fig. 6 shows typical regis-
tration results and the related three-dimensional deformation

fields. The outer margin of the cortex ensures that the deforma-
tion fields are spatially sound and do not pull the internal nuclei
over their location.

We apply the computed deformation fields to the mask of
internal nuclei of the Zubal Phantom, deforming the mask ac-
cording to the position and size of the ventricles in the patient
image. The deformed mask is used to segment the internal nu-
clei on the patient image.

The nonrigid registration is done between the segmented bi-
nary masks of ventricles and cortex boundary; hence it should
allow maximum deformation to find the best fit between the pair
of ventricles and brains. The resulting transformation conveys
the deformation that must be applied to the Zubal phantom (or
its segmented internal nuclei), already registered to MNI, to fit
any of the patients MRI modalities, given that they are also reg-
istered to MNI. Since we use only the shape of ventricles and
cortex as registration constraints, the transformation will take
into account neither pathology in the grey or white matter nor
other differences between scans or brain anatomies.

Fig. 7 shows an example of internal nuclei registration and the
segmentation results in a T1-weighted MR image of a patient.
The segmentation of internal nuclei is important for discarding
possible false positives (FPs) in the detection of hyperintensi-
ties. In Fig. 8 we show more details about the segmentation of
internal nuclei by browsing through the MR slices (i.e., axial,
coronal, and sagittal) of a patient.

C. Adaptive Thresholding

A foveal segmentation algorithm completes the detection of
areas of CJD MR hypersignals in the brain. This method was
previously applied with success to the early detection of micro-
calcifications in mammography [30], [31]. This is in essence an
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Fig. 7. Example of internal nuclei segmentation in a T1-weighted image of the patient with very low contrast. On the left, the T1 image of the patient. In the
middle, the segmentation of internal nuclei according to the internal nuclei binary map before nonrigid deformation with the head of the caudate superposed on
the ventricles. On the right, after nonrigid deformation, showing an accurate segmentation.

Fig. 8. Another example of internal nuclei segmentation in a T1-weighted image of the patient. In the far left column, we present the axial T1 slices of the patient.
In the inner left column, the segmentation of internal nuclei in the corresponding axial slices. In the inner right column, the segmentation of internal nuclei in
coronal MR slices; while in the far right column, the segmentation results in sagittal MR slices.
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algorithm of adaptive thresholding, which uses a mathematical
model of human vision. Its motivation comes from the better
sensitivity and specificity that the human eye has over classical
algorithms in detecting and characterizing image features.

We compute a set of mean values using masks for the object
area , its neighborhood ( : the local area around the ob-
ject), and background ( : the rest of the brain), as in (3), where

represents the number of voxels in the area. , the adapted
mean, is calculated as in (3), where is a suitable weight be-
tween 0 and 1 affecting the amount of background implied in
the computation of contrast. The perceivable contrast is cal-
culated according to (4)

(3)

if

otherwise
(4)

(5)

We then compute the adaptive threshold shown in (5),
where is the minimal perceivable contrast by maximum
illuminance. is a constant regulating the normalized amount of
light that discriminates an object from the background. We used
the value proposed in [34]. Using , the contrast
is adapted locally, not only globally, in a manner similar to that
of HVS. Areas in the brain image having are marked
as hyperintensities.

As argued in [31], the minimal perceivable contrast must be
computed as a function of the image gradient in order to ac-
commodate all possible variations of contrast. In MR images
of the brain, the intensity values of GM, WM, and CSF can be
regularised by intensity normalization. Therefore, hyperinten-
sities can be regarded as an exception to the normal intensity
distribution; in this particular case (after image normalization),
a constant over the whole database gives good segmenta-
tion results. Depending on image quality and movement arte-
facts, there will still exist some contrast variability especially
between GM and WM and from one image to another. Using
an adaptive contrast measure both locally and globally, through
the HVS foveal segmentation, our algorithm is less sensitive to
such artefacts and image quality.

D. Intensity Quantitative Analysis

With the tools developed in this study, we can perform what
seems to be the first computer-aided quantitative analysis be-
tween intensities in caudate nuclei or putamen, on one hand,
and thalami (pulvinar nuclei and anterior thalami), on the other
hand, for CJD patients. We will refer to it as intensity quantifi-
cation study (IQS).

We use the segmented putamen, caudate nuclei, pulvinar, and
anterior thalami on the patient images to compute the mean MR
intensities in nuclei, as observed in FLAIR images. We calculate
the absolute values of the subtraction between the mean inten-
sities in either putamen or caudate nuclei and the mean inten-
sity in pulvinar and compare them with the maximum over all
controls. We calculate the absolute values and as in (6)
to represent the mean intensity differences for each patient and
control, where , , , and represent the mean inten-
sities respectively in the pulvinar, putamen, caudate nuclei, and
“anterior thalamus.” represents the maximum value of all
and over all controls. and express quantitatively the
clinical observations regarding MR intensity differences in CJD
patients

(6)

We define a first CJD prompting ratio CP for the separation of
CJD patients from healthy cases as in (7). CP reflects the value
in each control that is closer to the patient data and therefore
less discriminating, while in patients it highlights the most sus-
picious grey nuclei (as not all nuclei are affected in a patient and
different types of CJD affect different nuclei more strongly). CP
is expected to differentiate between CJD patients and controls,
based on the clinical observations that found abnormal MR in-
tensities in at least one of the pulvinar, putamen, and caudate
nuclei

(7)

(8)

We further define a first CJD characterisation ratio CC, as
in (8), where and represent the mean hyperintense
(abnormal) values (lesion specific) in the pulvinar and caudate
nuclei. Using the conclusion of clinical studies, we aim to use
CC to differentiate between sCJD and vCJD, based on the le-
sions topographical distribution.

IV. RESULTS

A. Data

The data collected for the GIS-Prions Project were ac-
quired in two major neuroradiological centers of France: the
Pitié-Salpêtrière Hospital in Paris and the Timone Hospital
in Marseille. The database contains MR sets for a total of 25
subjects: 10 sCJD cases (five definite and five probable cases);
five vCJD cases (two definite and three probable cases with
detection of PrPres in tonsil biopsy); and 10 healthy controls,
which are used for the validation of the algorithm. The ages of
sCJD patients vary between 55 and 79 years with an average of
64 years, while the vCJD vary between 18 and 52 years with
an average age of 36 years. The average age of all patients is
54 years. The ages of controls vary between 31 and 68 with
an average age of 50 years. There may be effects of aging, but
they are not fully understood. There is a priori no reason to
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TABLE I
MEAN VALUES OF INTENSITY, STANDARD DEVIATION,� AND� IN PULVINAR, PUTAMEN, CAUDATE NUCLEI AND “ANTERIOR THALAMI” FOR THE PATIENT

DATA. WE PRESENT RESULTS ON IMAGES BEFORE INTENSITY NORMALIZATION IN ORDER TO PRESERVE THE ORIGINAL INTENSITY VALUES; THEREFORE WE

SEPARATE THE PARIS AND MARSEILLE DATABASES. ALL THE SCJD DATA (“S”) SHOW HIGHER INTENSITIES IN THE CAUDATE AND SOMETIMES PUTAMEN

(USUALLY BOTH), WHICH VERIFIES REPORTS IN THE LITERATURE. VCJD CASES (“V”) SHOW HIGHER INTENSITIES IN THE PULVINAR TOO. NO ABNORMAL

INTENSITIES ARE SIGNALLED IN THE INTERNAL NUCLEI OF CONTROLS (“C”). WE PRESENT THE RESULTS GROUPED BY THE TYPE OF DISEASE (SCJD AND

VCJD), WHERE “PARIS-CJD” ACCUMULATES ALL THE PARIS CJD PATIENTS

Fig. 9. Flowchart of the algorithm proposed for the detection and quantification of CJD-related abnormal hyperintensities in multisequence MRI of the brain.

find hyperintensities in FLAIR on different sites as a correlate
of age.

The images collected at the Pitié-Salpêtrière Hospital in
Paris were acquired using a 1.5 T GE Signa scanner. We use
T1-weighted ( , ), T2-weighted ( ,

), and FLAIR-T2 ( , ,
) MR images. The CJD data collected at the Timone

Hospital in Marseille were acquired using a 1.5-T Siemens Mag-
netom Vision scanner. We use T1-weighted ( ,

), T2-weighted ( , ), and FLAIR-T2
( , , ) MR images. First, we
present results of hyperintensity detection. Subsequently, we
show the results of the intensity quantification study (IQS).

B. Segmentation Results

In this part of the section, we show examples of detection
of abnormal hyperintensities in FLAIR MR images of CJD pa-
tients. The MR scanners used in the two neuroradiological cen-

ters are from different manufacturers and the acquisition proto-
cols differ slightly; our aim is to address all data in a common
normalized framework. Although the raw intensity values in the
two subdatabases are different (see Table I), through intensity
normalization and the use of normalized ratios we can treat all
data together in a nonparametrical framework for both hyper-
signal segmentation and intensity quantification. For each pa-
tient, we have a T1-weighted, a T2-weighted, and a T2-FLAIR
sequence. In the examples shown below, we used all three MR
imaging sequences for the registration of images and segmenta-
tion of hyperintensities. A review of the different stages of our
segmentation algorithm is shown in Fig. 9.

For the validation of the segmentation of internal nuclei, an
expert neuroradiologist manually segmented the head of the
caudate, putamen and thalamus into seven MR FLAIR vol-
umes (slice by slice). The sample database contained healthy
individuals and CJD patients from both Paris and Marseille
centers. The results were compared with those obtained by our
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Fig. 10. Example of manual versus automatic segmentation of internal nuclei in a normal FLAIR image. In the left hand columns, the manual segmentation of
the head of caudate, putamen, and thalamus done by an expert neuroradiologist. In the right hand columns, the automatic segmentation of internal nuclei done by
our method.

automatic method to segment internal nuclei. The automatic
segmentation is accurate and has excellent specificity. All the
automatically segmented volumes are within the real internal
nuclei. Conversely, the automatic segmentation underestimates
slightly the size of certain internal nuclei: 2/7 of the posterior
putamen and 3/7 of the posterior thalamus. The head of the
caudate is correctly estimated in all cases. Fig. 10 shows some
comparative results between the manually and automatically
segmented nuclei.

The segmentation is done on the whole brain image, as the
foveal thresholding is better adapted at the global level when
applied to the whole brain, while the local adaptability is not
altered. Using the mask of internal nuclei, we focused on the
basal ganglia and did not take into account signal abnormalities
in other brain regions, such as WM high signals that are known
to correlate with age and vascular risk factors. Fig. 11 shows
detection results on two patients with postmortem neuropatho-
logically confirmed sCJD. The main radiological characteristic
of the ten sCJD patients is the presence of higher intensities in
the caudate nuclei and putamen. This is not always the case of
thalami, where if there are hyperintensities they are lower than

in putamen or caudate nuclei. Our algorithm detects abnormal
hyperintensities in all 10 sCJD cases. Note the asymmetry of
high signals in the first case in Fig. 11.

The detection of hyperintensities in vCJD cases is further
shown in Fig. 12. Strong thalamic abnormal intensity distribu-
tions are present in all cases. The most affected thalamic nucleus
is the pulvinar and we note that hyperintensities do not spread all
over the thalamus and are localised in the posterior and dorsome-
dial thalamicareas,whichgives the“hockey-stick”appearanceof
the hypersignals, as in Fig. 12. Our algorithm detected abnormal
hyperintensities in all five vCJD cases. None of the internal nuclei
are generally affected entirely (usually only parts of them show
abnormal hyperintensities), therefore, the need to concentrate
on the hyperintense areas, rather than the entire nucleus.

When applying our algorithm on the 10 healthy controls, no
hyperintensities are detected in nine of these images. A motion
artefact leads to a FP in one control image, which lies within the
left thalamus, but outside the pulvinar area.

The detection of abnormal intensities in basal ganglia is con-
sistent over both databases from Paris and Marseille, although
the acquisition protocols vary, as well as the MR scanners used
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Fig. 11. Results on patient data—sCJD cases. Both sets of images reported above (one row per case) originate from patients with definite sCJD. On the left, we
present a cross section of the FLAIR MR data with abnormal hyperintensities in the internal nuclei. Next to it we have the CJD detection map with corresponding
intensities, as seen in the attached colourmap. Further to the right, we present a sagittal cross section and a coronal cross section with their detection maps. Top
row case originates from the Paris database. Bottom row case is from the Marseille database.

Fig. 12. Results on patient data—vCJD cases. Both sets of images reported above (each case is reported on a separate row) originate from patients with definite
vCJD. On the left, we present a cross section of the FLAIR MR data with abnormal hyperintensities in the internal nuclei. Next to it, we have the CJD detection
map with corresponding intensities, as seen in the attached colormap (note the high intensities present in the thalamic area). Further to the right, we present a
sagittal cross section and a coronal crosssection with their detection maps. On the top row case on the left, we show a magnified image of the “hockey stick” shaped
thalamic hyperintensities characteristic to vCJD. Both cases originate from the Paris database.

to obtain the data. Through spatial registration and intensity nor-
malization, our algorithm is not sensitive to original imaging
conditions and offers good results over all data.

C. IQS Results

For the IQS, we prefer using FLAIR images before intensity
normalization for the most accurate estimation of mean values
in the segmented internal nuclei. In fact, normalization was re-
quired to make the segmentation of hyperintensities nonpara-
metric, but it is not required for IQS, since it is based on ra-

tios that implicitly normalize the data. This naturally leads to
different intensity values for the Paris and Marseille databases,
which were acquired with different MR scanners and protocols.
We present in Table I, along the mean intensities and standard
deviations grouped by type of disease (or control) and type of
nucleus, the values of and [from (6)]. The values of
are 9.48 for the Paris data and 25.63 for the Marseille data.

As expected, there is no significant difference between mean
intensities in putamen or caudate nuclei versus pulvinar for
our control data. We performed a nonparametric two-sample
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TABLE II
NORMALIZED MEASURE TO DIFFERENTIATE CJD PATIENTS FROM CONTROLS. FOR EACH CJD PATIENT AND CONTROL IN THE DATABASE, WE DIVIDE THE MEAN

COMPUTED INTENSITY VALUES IN THE PULVINAR, PUTAMEN AND CAUDATE NUCLEUS BY THE MEAN INTENSITY VALUE IN THE “ANTERIOR THALAMUS.” FOR

CONTROLS (“C”), THE COMPUTED NUMBER MUST BE CLOSER TO THE IDEAL VALUE OF 1, WHICH WOULD REFLECT NO VARIATION IN INTENSITY OVER THE DEEP

GREY NUCLEI. TABLE SHOWS IN BOLD THE VALUES THAT ARE HIGHER THAN THE LARGEST NUMBER OVER ALL NUCLEI AND OVER ALL CONTROLS. ALL 10
SCJD (“S”) PATIENTS SHOW HIGH RATIOS RELATED TO THE CAUDATE NUCLEUS AND 8/10 RELATED TO THE PUTAMEN, WHICH SEPARATE THEM FROM CONTROLS

Kolmogorov–Smirnov (KS) test [1] under the null hypothesis
that the distribution of caudate, and respectively putamen,
intensities is similar to that of pulvinar. The hypothesis is
accepted for the Paris control at a significance value of 0.99
for caudate, respectively, 0.69 for putamen. For the Marseille
control data, the significance value is of 0.53 for caudate,
respectively, 0.42 for putamen.

The results in Table I are consistent over the sCJD patients
and conform to the clinical observations. All sCJD cases have
a clear higher signal in the caudate (in 10/10 cases), while the
putamen in 6/10 cases. vCJD data present very high intensities
in the pulvinar, although hypersignals may be present in the
putamen and caudate nuclei too. At this stage, we used mean
values over the entire nucleus, while hyperintensities are not ho-
mogeneous and usually present only in parts of the affected nu-
cleus. Hence, a study of hyperintensities, rather than mean nu-
cleus intensities seems appropriate, as shown later in the paper.
We note that all CJD cases have higher and values than
controls (see ).

1) CJD Prompting: Intensity values in Table I are different
for the Paris and Marseille data, due to the different scanners and
protocols used in the neuroradiological centers where our data
were acquired. In Table II, we introduce a normalized measure
for our database. We divide the mean intensity values in the
pulvinar, putamen, and caudate nuclei over the mean values in
the “anterior thalami” of each patient and control. We highlight
in bold characters the values in patient data that are greater than
the highest value of all ratios over the control data (which is
1.155). All patient data provide at least one suspicious value (in
bold) higher than 1.155. By choosing the largest value over the
ratios of controls as threshold, we prohibit the occurrence of

Fig. 13. Box plot of the two groups: 1) CJD patients (on the left), including the
sCJD and vCJD cases; 2) controls (on the right). Vertical axis shows the CP ratio.
Group medians are shown as central bold lines and the outlier as filled circle.
Although the maximum value in the control group and the minimum value in the
patient group are very close, the two groups have very distinctive distributions.

FP in separating patients from controls, but do not exclude the
prompting of false negatives (FN).

All 10 sCJD cases show high values in the caudate ratio,
as well as 8/10 in the putamen ratio. Four out of five vCJD
cases present high values in the pulvinar ratio, while 3/5 in the
putamen and caudate nuclei, when mean intensities (not hyper-
intensities) over the entire nucleus are computed.

We box plot the value of CP into two groups: 1) CJD cases
(sporadic and variant together) and 2) controls, as shown in
Fig. 13. For each group of data (CJD patients or controls), the
plot shows the group median value (the bold central line), the
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TABLE III
NORMALIZED MEASURE TO DIFFERENTIATE SCJD CASES FROM VCJD. THE TABLE SHOWS IN BOLD THE CC VALUES THAT ARE GREATER THAN ONE, WHICH IS

THE CASE OF ALL 10 SCJD PATIENTS. IN ITALIC WE PRESENT THE CC VALUES SMALLER THAN 1, WHICH IS TRUE FOR ALL VCJD CASES. WHEN THERE ARE

NO HYPERINTENSITIES DETECTED, WE MARKED "NO PULVINAR" OR "NO PUTAMEN," ACCORDING TO THE UNAFFECTED NUCLEUS.

minimum and maximum values (at the end of the dotted lines),
the upper quartile (the median of the upper half of data), and
lower quartile (the median of the lower half of data), which
enclose the box around the median, and the outliers (in circles).
Performing a Welch two sample -test [8] between the two
groups we get a value of , which gives an excel-
lent separation between patients and controls. The ratio mean
values are 1.266 for CJD patients and 1.101 for controls. There
is one outlier (shown as a circle in Fig. 13), corresponding to one
control (TP002), which presents extreme values. The CP ratio
achieves simultaneously zero FP and zero FN in prompting CJD.

Given the small number of cases, and that the CP values
are ratio values, we performed a nonparametric two-sample KS
goodness-of-fit hypothesis test [1] on the CP ratios, under the
null hypothesis that the distribution of CJD patients is the same
as that of normals. The hypothesis was rejected with an asymp-
totic -value of . With 15 patients and 10 normals

the -value is of sufficient
accuracy.

In this experiment, simple discrimination was successful, as
there was no overlap between the CP distributions of patient
and control data. In more complex cases, in which such an
overlap may occur and the relative risk associated with FP and
FN increase, we would need to resort to discriminant analysis
techniques [16].

2) CJD Characterisation: We showed how CJD patients
could be separated from controls using mean intensity values
from pulvinar, putamen and caudate nuclei and their relation
with the mean intensity within the “anterior thalamus”. Not
all the addressed internal nuclei show hyperintensities for all
patients (as seen in Fig. 11 and Fig. 12), as the pulvinar or
the putamen may not always present abnormal distributions;
the caudate appears to be the only nucleus constantly affected.
Furthermore, only parts of a nucleus may show hyperintensi-
ties and, therefore, the mean value computed over the entire
nucleus does not always reflect the degree of abnormality in the
respective nucleus. It is important to compute mean intensities
over the entire nucleus (i.e., pulvinar, putamen, or caudate)
to be able to distinguish patients from controls (who have no
hyperintensities in the deep grey nuclei). But nucleus mean
intensities are insufficient to characterise the CJD type.

Fig. 14. Box plot of the two groups: 1) sCJD patients (on the left); 2) vCJD
cases (on the right). Vertical axis shows the results of the CC ratio, as in Table III.
Group medians are shown with a bold central line; there are no outliers. Plot
shows very distinctive distributions for the two groups.

The ground truth states that sCJD and vCJD patients have
different lesion topographies, with higher abnormal MR inten-
sities (thus, hyperintensities) in the pulvinar in vCJD cases [36],
[51]. Hence, we highlight the relation between pulvinar and
caudate MR hyperintensities to differentiate sCJD from vCJD.
The abnormal intensities we will refer to are the hyperintensi-
ties found by our detection algorithm based on a HVS model
(cf. Section III-C).

We employ masks as shown in Figs. 11 and 12 and compute
mean intensity values only over the hyperintense areas. This
allows us to study the relation between the abnormal intensities
detected in the caudate nuclei of patients (which are relevant
in each patient, as seen in Table II) and their pulvinar (as the
pulvinar is the nucleus that can discriminate sCJD cases from
vCJD).

We present the ratios between hyperintensities in caudate/
putamen and pulvinar in Table III. When there is no hypersignal
in the nucleus, this is marked as “no pulvinar” or “no putamen,”
whether the nucleus is the pulvinar or the putamen. In bold num-
bers, we present values greater than 1, while numbers lower
than 1 are shown in italic. All 10 sCJD cases are shown in bold
values, while all five vCJD cases are presented in italic.
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Fig. 15. Hyperintensity detection results on a case where the characterisation of the type of CJD by clinical visual interpretation of MR intensities was difficult.
After the detection of hyperintensities and quantification of intensities, our algorithm classifies the case correctly as vCJD, as certified by biopsy.

Table III demonstrates the utility of IQS to separate the two
subgroups of CJD patients: sCJD and vCJD. Furthermore, these
results prove in a quantitative form that vCJD patients present
higher abnormal intensities in the pulvinar than putamen or cau-
date nuclei, whereas sCJD patients show stronger hyperintensi-
ties in the caudate nuclei or putamen than pulvinar.

The box plot of the two patient subgroups is presented in
Fig. 14. When no pulvinar hyperintensity was detected (see
PS005), we input instead the maximum value over the other
sCJD cases, namely 1.277. This conservative choice minimizes
the ratios and avoids division by zero in cases when is
null. The two distributions are clearly different, as shown by
the result of the Welch two sample -test with a value of

. The ratio mean values of the two classes are 1.190
for the sCJD and 0.967 for the vCJD.

We further performed a nonparametric two-sample KS test
on the CC values, under the null hypothesis that the distribution
of sCJD patients is the same as that of vCJD patients. The hy-
pothesis was rejected with an asymptotic -value of .
Given the small database, with 10 sCJD patients and five vCJD
cases , the -value is of relative
accuracy.

The example shown in Fig. 15 refers to a case in which the
characterisation of CJD type by visual inspection in the clinical
environment was difficult, as sCJD can mimic vCJD [20]. The
FLAIR MR image of this patient shows high abnormal intensi-
ties in the pulvinar, putamen and head of the caudate. After in-
tensity quantification, the CC ratio is smaller than one, which
indicates a vCJD case. The subsequent biopsy confirmed the
result.

IQS first separates the CJD patients from healthy controls
using the defined CP ratio. Once the CJD cases isolated, we
use the CC ratio to discriminate vCJD from sCJD cases. Thus,
IQS allows the unambiguous differentiation of three distinctive
classes: healthy controls, sCJD patients, and vCJD patients.

We collected two series of results: one from the foveal
segmentation of hyperintensities in the basal ganglia (HVS),
and a second from the intensity quantification study (IQS) of
intensity differences between putamen/caudate/pulvinar nuclei
versus “anterior thalamus.” Thus, our database comprises 15
patients consisting of 10 sCJD cases, five vCJD cases, and
10 controls. All patient MRI sets show hyperintensities in the
zone of interest. With a combination of HVS and IQS, we are
able to prompt 15/15 prion disease cases with simultaneously

no FP and no FN. We detected all cases of hyperintensities in
the basal ganglia employing the foveal segmentation of signal
deviations.

V. DISCUSSION

The results presented in Tables I–III represent a first attempt
for automatic quantitative numerical analysis of MR intensities
of pulvinar versus putamen and caudate nuclei in FLAIR-T2
images of CJD patients. They accurately quantify the clinical
remarks related to the possible classification of different types
of human spongiform encephalopathies.

The main contribution of this paper is the automation of the
differential diagnosis and, in some cases, an improvement of
the diagnosis itself. The original steps of our algorithm include
the atlas-based segmentation of internal nuclei using anatomical
landmarks, namely the ventricles and cortex boundary, aimed at
segmenting brain images with very low contrast between white
and grey matters and identifying specific anatomical segments
of the brain in patient images. We also present an example of
adaptive thresholding based on HVS, used for the first time in
MR image analysis, the major advantage of which is its adapt-
ability both locally and globally to varying contrasts in images.
Our method further combines image normalization (spatial and
intensity-based) with adaptive thresholding (foveal algorithm)
and the definition of intensity-based ratios into a new tool to-
ward the diagnosis of multiple forms of CJD by brain MRI.

We define two new MRI-based ratios to prompt and differ-
entiate CJD forms. All patients show abnormal intensities in
the deep grey nuclei, which are correctly detected by our algo-
rithm. All 10 sCJD patients have higher mean intensities in the
caudate nuclei and generally putamen. vCJD cases show higher
hyperintensities in the pulvinar than in the other deep grey nu-
clei, which distinguishes from the sCJD cases. Sporadic cases
may also show evidence of pulvinar hyperintensities and they
can mimic variant cases [20], but these abnormal intensities are
lower in magnitude when referred to the caudate and putamen
intensities. All our experimental results are in complete accor-
dance with the neurological findings in clinical practice and with
the brain lesions profile described in each form of the disease.
We did not detect any hyperintensities in the basal ganglia of
controls (except for a movement artefact in the thalamus of one
control found outside the pulvinar area), nor did we find signifi-
cant differences between the mean intensities in their three deep
grey nuclei of interest (pulvinar, caudate nucleus, and putamen).
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In order to decrease the number of FP prompted by our
segmentation algorithm, we refined the registration of the
segmented data (the Zubal Phantom) on the patient specific
data. To highlight the utility of using masks of the cortex outer
boundary beside those of ventricles (see Section III-B), we also
tested the use of masks of only ventricles (therefore, without
regularising the deformation within the brain) with a clear
advantage for using the brain boundary as an anatomical con-
straint. The results are again superior when noise is removed
preserving edges. Due to space constraints and the consistency
in the level of description of all the techniques involved, we do
not report in this paper the details of these tests.

We investigated the response of well-known algorithms, such
as VBM [1], [25] and EMS [47], to detect CJD-related abnor-
malities in brain MRI. Good contrast between brain structures is
essential in statistically based methods. Hence, the performance
of EMS and VBM on CJD patient data, which have important
artefacts and no contrast between GM and WM, is inconsistent
and irrelevant for clinical applications. Registration errors also
influencethequalityofstatistical results,ascomparisonsbetween
equivalent areas in normals versus patients or between different
groups of patients are very sensitive to the correct delineation of
the regions of interest. Please note that we employed the basic
VBM version provided by SPM [2], using a mask of segmented
GM to search lesions in GM only. Other options for VBM are
available and might give better results, but this was not pursued
in this paper. The effect of partial volume effects (PVE) [19] will
also be investigated for removal of FP, along with the improved
segmentation of ventricles by phase congruency (PC) [29].

The detection of deep grey nuclei hyperintensities confirms
the previous visually based clinical observations according to
which the FLAIR/T2 MR images of sCJD patients show hy-
persignals in the caudate nuclei. Quantifying the intensities in
thalami, caudate nuclei, and putamen, we show that there are al-
ways higher mean intensities in the caudate nuclei (10/10) and
sometimes putamen (6/10) than the pulvinar of sCJD patients.
The caudate nucleus is also of high intensity in the vCJD cases.
This conclusion highlights the caudate nuclei as an area of in-
terest for the diagnosis of CJD, in complete agreement with the
neuropathological findings.

The algorithm allows the study of asymmetries in CJD MR
hypersignals, which has been long questioned by neuropatholo-
gists. Using basal ganglia masks, we also note that hypersignals
are not homogeneous over the nuclei.

With simultaneously zero FP and zero FN in prompting and
characterising CJD, our method of detection and quantification
of basal ganglia intensity distributions proves to reach max-
imum specificity and sensitivity. We differentiate without ambi-
guity all CJD cases (sporadic and variant) from healthy controls
and further characterise the CJD patients into two subgroups
of human spongiform encephalopathies, sporadic and variant.
More validation will be performed in future work, when more
patient data are available.

The reader can refer to a more detailed version of this paper
in [28].

VI. CONCLUSION

We presented a method for the detection of hypersignals in
GM internal nuclei from multisequence MR images. The par-

ticular context of our application is that of human spongiform
encephalopathies, prion protein diseases referred as CJD. The
technique employs intensity and spatial normalization, noise re-
moval with feature enhancement, foveal segmentation for the
detection of hyperintensities, and a priori anatomical informa-
tion for refined registration and removal of FPs. We are able to
prompt 15/15 prion disease cases with no FPs or FNs.

Our method further allows the quantification of intensity dis-
tributions in basal ganglia, as we introduce two MRI-based ra-
tios that differentiate between patients and normals, and be-
tween CJD forms. The caudate nuclei are highlighted as main
areas of diagnosis of sCJD, in agreement with the histological
data. In vCJD patients, we find higher hyperintensities in the
pulvinar than in the other internal nuclei, which confirms the
visually based radiological observations related to CJD.

Our method proves as reliable as the visual interpretation
of radiologists for the detection of basal ganglia hypersignals.
Moreover, it automatically yields quantitative data from MR pa-
tients with CJD, which could be used for patient follow-up and
to evaluate the efficiency of therapeutic procedures. Our study
demonstrates the value of MRI for a prospective noninvasive
diagnosis of sCJD and the characterisation of prion diseases, as
we clearly differentiate sporadic from variant CJD cases.
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